
  

  
Abstract—To improve the robustness of distributed speech 

front-ends in mobile communication we introduce, in this paper, 
a new set of feature vector which is estimated through three 
steps. First, the Mel-Line Spectral Frequencies (MLSFs) 
coefficients are combined with conventional MFCCs, after 
extracted from a denoised acoustic frame using the wiener filter. 
Also, we optimize the stream weights of multi-stream HMMs by 
deploying a discriminative approach. Finally, these features are 
adequately transformed and reduced in a multi-stream scheme 
using Karhunen-Loeve Transform (KLT). Recognition 
experiments on the Aurora 2 connected digits database reveal 
that the proposed front-end leads to a significant improvement 
in speech recognition accuracy for highly noisy GSM. 
 

Index Terms—Distributed speech recognition, front-end 
processing, mel-frequency coefficients, Mobile communications, 
noise robustness.  
 

I. INTRODUCTION 
Environmental robustness is an important area of research 

in speech recognition. Mismatch between trained speech 
models and actual speech to be recognized is due to factors 
like background noise. It can cause severe degradation in the 
accuracy of recognizers which are based on commonly used 
features like Mel-Frequency Cepstral Coefficient (MFCC). It 
is well understood that all previous auditory based feature 
extraction methods perform extremely well in terms of 
accuracy due to the dominant frequency information present 
in them and they have become standard and currently used in 
systems for distributed speech recognition (DSR). For such 
systems, it is crucial to use robust features to maintain a good 
performance when the signal to noise ratio (SNR) decreases. 
In order to face this difficulty many techniques have been 
developed. They are centered upon two major approaches. 
The first approach aims at establishing a compensation 
method for clean models in order to adapt to new 
environments. The second approach aims at extracting, 
through a robust parameterization process, the relevant 
information while eliminating noises and artifacts. A broad 
range of techniques exists for conveniently representing the 
speech signal in mismatched conditions [8,11]. However, 
most of the current approaches assume that the speech and 
noise are additive in the linear power domain and the noise is 
stationary. In this paper we are concerned with the 
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optimization of the parameterization process in order to 
maintain, in noisy conditions, the relevant part of the 
information within a speech signal while eliminating their 
noise-corrupted part for the DSR over GSM networks.  

In previous work [1,13], we introduced a multi-stream 
paradigm for DSR in which, we merge different sources of 
information about the speech signal that could be lost when 
using only the MFCCs to recognize uttered speech. Our 
experiments showed that such multi-variable, integrating 
some parameters based on a model simulating the cochlea 
and the acoustic cues reflecting the spectral resonances 
(formants), leads to an improved recognition rate. This 
showed that the MFCC, despite their popularity, lose the 
appropriate information to the process of recognition in 
strongly noisy environment. We used a 3-stream feature 
vector. The first stream vector consists of the classical 
MFCCs and their first derivatives, whereas the second stream 
vector consists of acoustic cues derived from hearing 
phenomena studies. The magnitudes of the main resonances 
of the spectrum of the speech signal were used as the 
elements of the third stream vector. The above-mentioned 
work has been extended in [13] by the use of the formant 
frequencies instead of their magnitudes for ASR within the 
same multi-stream paradigm. In these experiments, the 
recognition of speech is performed using a 3-stream feature 
vector, which uses the formant frequencies of the speech 
signal obtained through an LPC analysis as the element of the 
third stream vector combined with the auditory-based 
acoustic distinctive features and the MFCCs. The obtained 
results showed that the use of the formant frequencies for 
ASR in a multi-stream paradigm improves the ASR 
performance. Then in [1], we extended our work to evaluate 
the robustness of the above mentioned proposed features 
using a multi-stream paradigm for ASR in distributed 
environments. In this latter configuration the weights of each 
stream is determined empirically and remain constant after 
being fixed. The obtained results showed that the use of such 
features renders the recognition process more robust in noisy 
environments of Aurora-2 tasks. 

Many studies have been published in order to propose the 
robust recognition systems in mobile telecommunications 
[16]. In the proposed front-end the state-of-the-art MFCC 
features are supplemented by MLSFs features (Mel Lines 
Spectral Frequencies). It is important to note that MLSFs 
have the advantage of being used in systems for speech 
coding. The integration of MLSFs feature sets is done based 
on the multi-stream paradigm. Furthermore for optimizing 
the stream exponents (also known as weights) of 
multi-stream HMMs, a distinctive technique is proposed, by 
deploying a discriminative approach. On the other hand, we 
aim to optimize the use of flow parameters by reducing the 
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size of acoustic vectors while improving system robustness. 
An effective way to perform this reduction is to use the 
Karhunen-Loéve transformation (KLT) [7]. This is a 
technique of decomposition into subspace also used in 
enhancement of noisy signals [6], [14]. Thus integrating KLT 
in our approach, we realize two objectives: reduction of 
optimal parameters and improved robustness, by eliminating 
the noisy principal components.  

This work presents a complementary solution for the 
extraction of acoustic parameters adapted to a noisy 
environment. The rest of the paper is organized as follows. 
Section 2 gives an overview on distributed speech 
recognition and section 3 describes an alternative approach 
based on the combination of multiple feature sets was 
proposed. Section 4 is devoted to experimental validation and 
analysis of its results. A conclusion, on the present work, 
completes this article. 

 

II. OVERVIEW OF DISTRIBUTED SPEECH RECOGNITION 
Transmitted speech over mobile channels can significantly 

degrade the performance of speech recognizers when 
compared to the unmodified signal. This is due to the low bit 
rate speech coding as well as channel transmission errors. 
One solution to these problems might be elimination of the 
speech channel and instead using an error protected data 
channel to send a parameterized representation of the speech, 
which is suitable for recognition. By doing this, the 
recognition process is distributed between the terminal and 
the network which is why such systems are known as 
distributed speech recognizers. The ETSI Aurora standard [3] 
was originally created for speech recognition on distributed 
architectures. The terminal has a charge of extracting cepstral 
parameters and transmits them after compression (Fig. 1). 
The compressed stream is then received by a remote server 
for recognition. Degradation due to coding of low debit voice 
or channel coding is avoided. 

 
Fig. 1. Bloc diagram of DSR system. 

 
The standard ETSI DSR-FE is mainly based on MFCC 

features. These features are the most popular features in 
current ASR systems. However, the performance of an 
MFCC cepstrum based system deteriorates in the presence of 
noise. In order to improve the noise robustness of the DSR 
front-end; one must combine the MFCCs with features that 
are robust against noise.  PLP features [4], RASTA features 
[5], and spectral peaks, also known as formant-like features 
[1], are some of the features that are known to be robust 
against additive noise. Choosing the best feature set highly 
depends on the application and constraints. In DSR systems 
the feature extraction process takes place on a mobile set with 
limited processing power. On the other hand there is a certain 
amount of bandwidth available for each user for data 
transmission. Among the features mentioned above, MLSF 

features are more suitable for this application since; 
extracting them can be done as part of the process of 
extracting MFCCs, which saves a lot of computational 
process. Also, the two main reasons which have motivated 
our choice to consider the MLSFs in noisy communications 
mobile are; the first relates to the fact that the MLSF regions 
of the spectre can stay above the noise level even if the SNR 
is very low, while regions of lower energy tend to be masked 
by the energy of noise. The second reason is related to the 
fact that MLSFs are commonly used in conventional speech 
codec. This prevents the incorporation of new parameters that 
may require significant and costly changes to existing 
devices and codec.  

 

III. INTEGRATION OF MULTIPLES FEATURES SETS 
The superscript numeral used to using HMMs with 

multiple streams has been adopted by many researchers [2]. 
This early-stage feature combination approach has the 
advantage of computational simplicity as well as 
implementation feasibility. In this method multiple acoustic 
feature streams obtained from different sources are 
concatenated to form a multi- stream feature set which is then 
used to train multi-stream HMMs. 

Consider S information sources that provide time 
synchronous observation vectors Ots; s = 1…S at each time 
instant t. The dimensionality of the observation vectors can 
vary from one source to another. Each time sequence of the 
observation vector provides information about a sequence of 
hidden states j (j = 1… J). In a multi-stream system, instead 
of generating S state sequences from S observation sequences, 
only one state sequence is generated. This is actually done by 
introducing a new output distribution function for states. The 
output distribution of state j is defined as:  
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The exponent γ specifies the extent to which each stream 
contributes to the overall distribution by scaling the output 
distribution of each feature stream. The values of γjs are 
normally assumed to satisfy the constraints [11]: 
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In HMMs, Gaussian mixture models are used to represent 
the output distribution of states. Equation (1) can be rewritten 
as: 
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where M is the number of mixture components in stream s, 
Cjsm is the weight of each mixture component of state j in each 
mixture of each stream and N(O; μ, φ) denotes a multivariate 
Gaussian of mean μ and covariance φ. 

It is very important to choose proper exponents (or weights) 
since the performance of the system is significantly affected 
by the values of γ There has been a great deal of research on 
developing methods for optimizing the stream weights. 
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IV.  EXPERIMENTAL EVALUATION 

A. Baseline System 
In the Aurora project, whole-word HMMs were used to 

model the digits. Each word model consists of 16 states with 
three Gaussian mixtures per state. Two silence models were 
also considered. One of the silence models has relatively 
longer duration, modeling the pauses before and after the 
utterances with three states and six Gaussian mixtures per 
state. The other one is a single state HMM tied to the middle 
state of the first silence model, representing the short pauses 
between words [10]. 

In our experiment, the baseline system is defined over 
39-dimensionel observation vectors, which consists of 12 
cepstral and the log-energy coefficients, in addition the 
corresponding deltas and accelerations vectors. It is noted 
MFCC_E_D_A (39), and considered as the front-end by 
conventional DSR ETSI standard [3]. Training and 
recognition phases were carried out by the HMM-based 
toolkit HTK [15]. In some special cases HTK toolkit 
automatically divided the feature vector into multiple 
equally-weighted streams, in a way similar to the 
multi-stream paradigm. The idea of this separation is based 
on the lack of correlation between features. In the case of the 
baseline vector, we use three streams: one for the static 
coefficients plus an energy coefficient, the second and third 
are reserved, respectively, delta and acceleration coefficients 
with their delta and acceleration energy component.  

B. Experimental Protocol 
In case the front-end proposed in the framework of the 

multivariable, the 12 MFCCs coefficients and their first 
derivatives, without the energy component, are the first and 
second stream. The 10 coefficients MLSFs are taken as third 
stream. These multiple streams have equal weights. This new 
front-end will be noted by MFCC_D_MLSF (34), where 34 
indicates its size. The MLSFs added to produce a 
multidimensional set of parameters, and replace the 
component accelerations and energies of conventional 
front-end. To assess the impact of weights γjs of (1), we 
conducted another experiment on the same vector but with 
the use of different weights satisfying the (2). For example, 
the vector incorporated will be noted MFCC_D.8_MLSF.2 
(34). It indicates a weighting of 0.8 for the first two flows and 
0.2 for the third corresponding to MLSFs. On the other hand, 
we aim to optimize the use of these stream parameters by 
reducing the size of acoustic vectors while improving system 
robustness. For this, we apply a KLT on all flows constituting 
the vector. Also, MFCC_D.8_MLSF.2 (KLT_24) to indicate 
that KLT is applied to the vector of dimension 34, all three 
streams at different weights (0.8 for MFCCs and 0.2 for 
MLSFs), which we retain the first 24 components. 

To further reduce noise, we propose to apply at the 
proposed acoustic frame, one floor of the Wiener filter. The 
estimate by the filter is individually made to short segments 
of the signal where two consecutive frames have a difference 
of time of 10 ms [9]. Also, the results presented in last line of 
the table 1 show that the features extraction from a denoising 
frame by the Wiener filter improves further the recognition 
rates for different SNR (especially those less than 5 dB), 
compared to the ETSI Mel-cepstral front-end and those using 

the MFCC-MLSF approach proposed. The constituted vector 
is noted by MFCC_D.8_MLSFdn.2 (KLT_24). In our 
experiments, we opted for a KLT at class independent 
(CI-KLT) in which the transformation matrix is global and is 
determined for all classes, unlike the case of class dependent 
(CD-KLT) [12] where we use a transformation matrix for 
each acoustic model 

Table I gives the results for GSM speech corrupted by 
different noise. Best results in terms of word recognition 
accuracy are edited in bold. For very low SNRs, when the 
SNR decreases less than 5dB, the use of MLSF front-end 
with 34-dimensionnal feature vector leads to a significant 
improvement in word recognition accuracy. We note that our 
approach is all the better, when the SNR decreases. The 
substituting of acceleration components and energy by the 
MLSFs in the baseline vector led to an improvement in rate 
recognition with a consequent dimension vector. 

In addition, for a different weighting of flux used, there is a 
marked improvement from 10dB. At this level of SNR (10 
dB), 20% contribution of MLSFs compared to MFCC 
improves the recognition rate significantly (up to 25%). On 
the other hand, we note that KLT applied to the new weighted 
vector, reduced in turn and optimizes the original space of 
parameters. KLT has led to better performance with fewer 
parameters. Under unfavourable conditions, the 
decomposition by KLT into subspaces works better 
compared to conventional front-end of ETSI. 

Also, the results presented in last line of the table 1 (in bold 
for indicate the best score) show that the features extraction 
from a denoising frame by the Wiener filter improves further 
the recognition rates for different SNR (especially those less 
than 5 dB), compared to the conventional ETSI and those 
using the MFCC-MLSF approach proposed.  

On the other hand, we note that KLT applied to the new 
weighted vector, reduced in turn and optimizes the original 
space of parameters. KLT has led to better performance with 
fewer parameters. Under unfavourable conditions, the 
decomposition by KLT into subspaces works better 
compared to conventional front-end of ETSI (Fig. 2). 

 

V. CONCLUSION 
In this paper, we investigate the performance of a new 

codec that could constitute an alternative to the present ETSI 
DSR-XAFE codec in severely degraded mobile 
environments. It is based on a multi-stream paradigm using a 
multivariable acoustic analysis Mel line spectral frequencies 
(MLSF) and MFCCs. The proposed system will be 
compatible with 3GPP and 3GPP2 standards respectively for 
both European (GSM) mobile and North American (CDMA) 
systems. 

We conducted a further analysis of ETSI basic codec used 
from there recognition of speech distributed ETSI DSR basic. 
The results show that the MLSFs improve the performance of 
the DSR, compared to that of the basic DSR front-end of 
ETSI using MFCC alone. This improvement is especially 
important when we perform a pre-processing of KLT, more 
particularly for highly noisy environments. On the other hand, 
although the extraction the new features may add some level 
of complexity to the front-end process, the use of a 
24-dimensional feature vector instead of 39-dimensional  
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TABLE I: RECOGNITION RATE (%) OF THE BASIC DSR SYSTEM AND THOSE USING THE MULTIVARIABLE ON AURORA DATABASE 

Noise type Multi-variable Vector 20db 15db 10db 5db 0db -5db 

Restaurant 

MFCC-E-D-A  (39) 89,99 76,24 54,77 31,01 10,96 3,47 
MFCC-D-MLSF (34) 81.89 75.93 62.02 38.62 18.70 9.64 

MFCC-D.8-MLSF.2 (34) 94.29 88.85 73.84 45.38 22.32 11.76 
MFCC-D.8-MLSF.2 (KLT_24) 92.97 89.25 75.87 50.14 23.06 12.54 

MFCC-D.8-MLSFdn.2 (KLT_24) 94.89 90.57 78.63 53.87 27.38 14.56 

Airport 

MFCC-E-D-A (39) 90,64 77,01 53,86 30,33 14,41 8,23 
MFCC-D-MLSF (34) 74.77 66.03 51.00 33.46 17.63 9.07 

MFCC-D.8-MLSF.2 (34) 93.98 88.19 73.93 47.27 25.11 13.63 
MFCC-D.8-MLSF.2 (KLT_24) 92.34 88.34 75.66 49.45 26.59 14.94 

MFCC-D.8-MLSFdn.2 (KLT_24) 94.43 90.76 79.21 52.29 31.84 17.54 

 

 
Fig. 2. Average recognition rate achieved with different types of test B noise 

for values 5, 0 and -5 dB SNR. 
 

Feature vector will reduce the computing time and a 
storage capacity for the process performed on the main server. 
This work is being continued to assess the contribution of 
these new parameters in a noisy environment towards the 
auto-optimization of stream weight with respect to the noise 
source, speaker gender and phonetic contents of the speech. 
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