
  

 

Abstract—Intelligent Agriculture (IA) system is a complex 

system featured by complexity, uncertainty and large 

time-delay, and all its subsystems need cooperation with 

feedbacks from each other so that the whole system's control 

targets could be achieved. Components of IA system are 

dispersed unities with independent control targets, it is proved 

that Multi-Agent technology for system modeling and control is 

a useful method with simplicity and validity. In this paper, we 

had tried to research the cooperative control for IA system with 

this method firstly, and the way of Q-learning was used in 

researching of multi-agent collaboration control inference rule. 

According to control needs of three kinds of strawberries 

planted in the same greenhouse, we had designed different 

control agents corresponding to each environment variables. 

Joint optimal solution among these factors had been achieved 

through global control optimizing by cooperation controller, 

and intelligent adjusting of whole system can be effectively 

realized. 

 
Index Terms—Intelligent agriculture (IA), complex system, 

reinforcement learning, cooperative control.  

 

I. CONTENT AND STRUCTURE OF INTELLIGENT AGRICULTURE 

Definition of IA from the point of view of complex system 

cybernetics and intelligent control is actually blank at present. 

Based on control concepts, IA system is an integrated 

large-scale closed loop control system of various 

technologies [1]. According to reference [1], IA system based 

on large-scale system control must have the following two 

distinct characteristics: (1) Feedback Control. In this system, 

procedures from information presetting and processing, to 

signal acquisition and feedback should be in the closed loop 

frame. (2) Cooperative and Autonomous Control. The 

system's control module and model should have the capacity 

of self-adaptation, self-study, and active fault-tolerance.  

Fig. 1 is the multi-level hierarchical model of IA system 

from reference [1]. In this system, subsystems respectively 

representing the pre-stage, mid-stage and post-stage of 

agriculture production system are designed at the micro level. 

The various subsystems are subject to regulations of their 

local controllers, and the macro harmonizing controller in the 

system observes the hierarchical information flow and 

figures out global optimization solution as given constraints 

to all local controllers by means of the Internet. 
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Fig. 1. Multi-level hierarchical model of IA system based on intelligent 

cybernetics of large-scale Systems. 

 

II. THE GENERAL METHOD OF COOPERATIVE CONTROL  

Components of IA system are all dispersed unities with 

independent control targets, it is proved that Multi-Agent 

technology for system modeling and control is a useful 

method with simplicity and validity [2]. With greater 

flexibility and adaptability, the Multi-Agent approach 

removes dependence on accurate system model and is more 

suitable and effective for implementation and analysis of 

distributed systems [3]. This article designed multiple agents 

for agricultural subsystems and realized intelligent 

cooperation among them.  

It's a very challenging and interesting subject to figure out 

a simple and effective way to achieve cooperation of 

Multi-Agent system and endow agents abilities to adapt to a 

dynamic environment. Through learning, agents can change 

their behaviors as well as their structures as response to 

changes in environment and finally realize global evolution. 

This paper discussed cooperation of multi-agent based on 

reinforcement learning [4]. In the environment of Markov 

Decision Process model, Agent learns an optimal behavior 

strategy to maximize an indicator function (i.e, the value 

function) [5]. 

According to reference [5], for the quadruple Markov 

decision process MDP=< S,A,T,r >, define a function Q: 

S×A→R, and formula is given as here: 

 

 
 

Use the optimal Q function to approximate the optimal 

value function V*. Of which: S is an aggregate of finite states 

in random environment, A is a finite aggregate of agent 

actions, T: S × A → Δ (S) is the transition function between 

the states, r: S × A → R is the immediate reward function or 

expectation of a state-action pair , γ (0 ≤ γ <1) is the discount 

factor, s', au' are respectively the next state vector and the 

corresponding joint action vector at the same iteration step t, 
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policy π describes agent' s options for actions under various 

states. 

Since in a distributed multi-agent system, agent i usually 

has no complete observation  information about other agents, 

the Q-value table of full information will have to be projected 

and compressed as incomplete information of agent i by 

qi(s,ai) [6]. For each agent i and iteration step t, there are 

iterative formula as following: 

 

 
 

The qi value table always holds the qi values of transitions 

that maximize agent's revenue, thus agent could choose the 

state-action pair from history records to get maximum action 

revenue. Other agents adopt their own optimal strategies in 

the same way, so each agent's target to maximize 

theirexpected discounted reward and the goal of the whole 

Multi-Agent system are accordant in this cooperative 

reinforcement learning approach [7]. 

Inference rule for agent's current action strategy πi  is given 

as following formula:  

  if  or  

 

= 

      else 

 

From the above we can see, agent will modify its action 

strategy only when the q-value can be improved, otherwise 

the original action strategy will be remained. Assuming that 

each agent adopts such a strategy inference rule, then we can 

get the joint action strategy: πu(s) = (π1(s),…,πt(s),…,πn(s)). 

With incomplete observation information, agents take action 

according to state-action pairs of current q value table firstly, 

and then modify their q value and state-action pair according 

to the observation of environmental feedback reward. Before 

agents meet the Nash equilibrium point, they will always be 

able to find themselves action strategy with higher 

environmental reward. The global optimal strategy for joint 

action is reached until each agent can no longer search for 

better strategy. 

 

III. COOPERATIVE CONTROL OF STRAWBERRY GREENHOUSE 

PRODUCTION 

A. Cooperative Control Frame  

For researching of cooperative control in agricultural 

complex system, we had set the control system in greenhouse 

for different breeds of strawberry. In the greenhouse, micro 

climate of three kinds of strawberry A, B, C should be 

respectively controlled to meet different growth requirements, 

such as control goals for temperature, light, soil fertilizer 

nutrient and irrigation. Obviously this greenhouse control 

system is a complex system which needs cooperative control. 

Figure 2 is the control frame of the complex system. Based on 

above cooperative control analysis, we had designed four 

control agents, lighting control agent A1, soil fertilizer 

nutrient control agent A2, soil temperature control agent A3, 

irrigation control agent A4. These agents are used to 

respectively control a specific kind of environmental 

variables for three strawberry breeds, and then we got the 

optimal joint solution for multiple environmental factors 

through the global optimization of coordinated controller. 

Specific algorithms are described as follows: 

 

 

Fig. 2. Control structure for strawberry greenhouse production. 

1) Initialize the value function of each agent. The 

state-action pairs of agent A1 is q1 

(s1(A1,B1,C1),a1(A1,B1,C1)), agent A2 q2 

(s2(A2,B2,C2),a2(A2,B2,C2)), agent  A3 q3 

(s3(A3,B3,C3),a3(A3,B3,C3)), agent A4 q4 

(s4(A4,B4,C4),a4(A4,B4,C4)). Here si represents state of 

environmental variable; ai represents the agent's action 

aggregate responding to environment change. According 

to strawberry's planting experiment, the three breeds of 

strawberries have the same action rules as shown in table 

1. 
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TABLE I: CONTROL ACTION RULES OF STRAWBERRIES IN GREENHOUSE 

 Agent A1 Agent A2  Agent A3 Agent A4 

0 Ordinary 

light 

No need No heating No 

irrigation 

1 Medium 

light 

Differential 

concentration 

ratio 

Medium 

temperature 

Medium 

irrigation 

2 High light Equal 

concentration 

ratio 

High 

temperature 

High 

irrigation 

2) Learn from the initial state. Calculate the q values of all 

possible actions of each agent under state s and choose 

action ai*(Ai, Bi, Ci) which has the largest q value. 

Implement action ai*(Ai, Bi, Ci) and observe the next state 

s' and the reward. Then substitute them into the formula 

 
3) Coordinating controller keeps modifying the qi value and 

state-action pair according to environmental feedback 

reward until each control agent has maximized their 

revenue, then we will get the joint action strategy πu. The 

description matrix of the greenhouse system is as 

follows: 

A1A   A1B     A1C 

A2A  A2B      A2C 

A3A   A3B     A3C 

A4A   A4B     A4C 

 

Here, respectively each line corresponds to the different 

control agents A1, A2, A3, A4, and each column corresponds 

to the strawberry breeds A, B, C. 

After the completion of corresponding control algorithm, 

each strawberry adaptive control subsystem receives its own 

agent action [A1A, A2A, A3A, A4A], [A1B，A2B ，A3B，A4B], [A1C，

A2C，A3C，A4C]. Through control actions of the sunshade net, 

soil heating device, the nutrient solution proportioning and 

releasing device, irrigation device and so on, we had 

achieved automatic control of various environmental 

variables and created the best micro-climate for strawberry 

growth. 

A. Constraints Design of Strawberry Cooperative 

Controller 

To infer out the optimization results of greenhouse 

environment control system, we also need to take into 

account the constraints conditions as a compromise. 

Accuracy requirements of greenhouse environment control 

are not as high as industrial control and its values of 

environmental variables given by cultivation experts are 

often interval values [8].Under circumstances that 

environment variables are maintained within the required 

interval ranges, we can still choose from different control 

actions to minimize greenhouse system energy consumption. 

System's environment variables will interact with each other, 

for example, light exposure will lead to temperature rise, the 

lack of moisture will cause soil compaction and affect the 

root absorption of nutrients, high temperature will lead to 

increased transpiration and decreased humidity, and so on. 

According to greenhouse cultivation experience, main 

reasoning expressions of constraints table had been given as 

below: 

“If strawberry lacks both water and fertilizer, then increase 

irrigation first”. 

“If the greenhouse is in high temperature and low humidity, 

then irrigate and stop heating at the same time”. 

“If the greenhouse lacks lighting and strawberry leaves 

turn yellow, then increase both illumination and fertilizer”. 

“If the greenhouse lacks lighting and strawberry suffers 

from low soil temperature, then increase illumination first”. 

IV. CONCLUSION 

In this paper, we explored the frame and mechanism of 

cooperative control and gave constraints conditions and 

general reasoning expressions in the example of greenhouse 

strawberry production control system. IA systems in the 

future will witness more applications of various cooperative 

controllers. Current researches mainly focus on large-scale 

coordination and network communications. Future research 

should emphasize on the adoption of Agent technology to 

achieve coordinator evolution and intelligent control effects. 

Research on agricultural subsystems cooperative control has 

propelled IA research to upgrade new step forward[9][10], 

but meanwhile there are many noteworthy places that need 

further attention, such as definition and modeling of 

cooperative control in an open agricultural environment, 

constraints inference imposed by agricultural resources and 

energy consumption. 
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