
  
Abstract—Space-time block codes (STBCs) from Orthogonal 

designs have attracted attention due to their fast maximum 
likelihood decoding and full diversity, but the maximum 
symbol transmission rate for complex signals is only ¾ for four 
transmit antennas so quasi orthogonal STBC was proposed, in 
this paper  the structure and characteristics of some new type 
of a Quasi-orthogonal space time block codes (QOSTBC)is 
analyzed, The error performance for these codes  for four 
transmitted antennas over uncorrelated and spatially 
correlated MIMO channels is  investigated. A maximum 
likelihood (ML) decoding algorithm for the suggested code is 
also provided. 

 
Index Terms—Diversity, space time codes, MIMO systems, 

quasi-orthogonal codes. 
 

I. INTRODUCTION  
A space–time code (STC) is a method employed to 

improve the reliability of data transmission in wireless 
communication systems using multiple transmit antennas [1], 
[2]. STCs rely on transmitting multiple, redundant copies of 
a data stream to the receiver in the hope that at least some of 
them may survive the physical path between transmission 
and reception in a good enough state to allow reliable 
decoding. The Alamouti code [1] is the first STBC that 
provides full diversity at full data rate for two transmit 
antennas. However, if the transmitting antennas are more 
than two, using orthogonal space time codes would not 
obtain the maximum transmission rate [3], [4]. So 
Jafarkhani proposed a space time code structure based on 
the full rate [5]. In Jafarkhani’s method, the transmission 
matrix columns are divided into groups .while the columns 
within each group are not orthogonal to each other, different 
groups are orthogonal to each other. Thus this method is 
also called the quasi-orthogonal space time block codes, 
another code was proposed in [6] called TBH (ABBA)  it 
give the same performance as Jafarkhani when there is no 
correlation in channel but for spatially correlated channel 
the performance of this codes degrade compared to 
Jafarkhani. The suggested codes are designed by replacing 
the Alamouti based sub block matrix with different matrices 
as in Jafarkhani [5], and TBH [6].  

 

II. SYSTEM MODEL 
Let the number of transmitting antennas and receiving 

antennas is N and M respectively, a complex space time 
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block codes is given by T×N transmission matrix G, T 
represents the number of time slots for transmitting one 
block of symbols,  supposing quasi-static flat rayleigh 
fading channel the receiver vector will be 

)()()()( knkskHkr +=
 

where r(k) is the receiving 
vector , s(k) is the transmitting vector and n(k) is additive 
white Gaussian noise and H is the channel matrix and αij is 
the fading coefficients from the i transmitting antenna to j 
transmitting antennas.  

 

III. SPACE TIME BLOCK CODES 

A. Alamouti Space Time Code  
Historically, the Alamouti code is the first STBC that 

provides full diversity at full data rate for two transmit 
antennas [1]. The information bits are first modulated using 
an M-ary modulation scheme. The encoder then takes a 
block of two modulated symbols s1 and s2 in each encoding 
operation and gives it to the transmit antennas according to 
the code matrix, 
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In equation (1), the first row represents the first 
transmission period, whereas the second row the second 
represents the transmission period. The first and the second 
columns correspond to the symbols transmitted from the 
first and the second antenna respectively.  

B. Jafarkhani Quasi Orthogonal Codes 
Based on Alamouti scheme, Jafarkhani construct his quasi 

orthogonal space time block codes for four antennas. Two (2 
× 2) Alamouti codes S12 and S34 are defined equation (2), 
and they are used as sub-blocks to build Jafarkhani code for 
four transmit antennas. 
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 Using these matrices as sub-block matrix, the coding 
matrix of Jafarkhani codes could be expressed as follows. 
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The decoder is based on the multiplication of SEA with its 
Hermitian matrix leading to the non-orthogonal Gramian 
matrix QEA. A Gramian matrix A is a Hermitian symmetric 
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matrix that fulfils AAH = , where H indicates conjugate-
transpose [7]. 
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EAγ is the channel dependent interference parameter, it 
is the interference parameter that define how close such a 
matrix to be orthogonal From equation (3), the symbols s1, 
s4 and the symbols s2, s3 appear in pairs, a fact that 
simplifies the analysis of the code. 

C. TBH Quasi orthogonal Codes 
Two (2 × 2) Alamouti codes S12 and S34, as shown in  

equation (2), are used as sub-blocks to build the TBH code, 
also called the ABBA code, [6] for four transmit antennas. 
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The multiplication of the code matrix SABBA by its 
Hermitian yields to the following non-orthogonal Gramian 
matrix QABBA. 
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IV. CONSTRUCTION OF SUGGESTED CODES  

A. Suggested Code 1 
 According to the above analysis by changing the 

Alamouti based matrix S12 a new transmitting coding 
matrices could be obtained based on the position of the 
correlated values in the Gramian matrix [7],[8].Let the sub-

blocks matrices be as follows. 
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In this case we did not take the Alamouti as the sub-block 
matrix; the new design is expressed in equation (7). 
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By using equation (6) as a sub-block, 16 coding matrices 
can be generated using the four matrices that are defined in 
equation (8) and using their negative and / or conjugated 
versions (i.e. – C, C*, and – C*). 
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By multiplication of the code matrix Cnew1 by its 
Hermitian the following non-orthogonal Gramian matrix 
Qnew1 is obtained: 
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For decoding this code, the receiver computes the 
decision metric that is defined in equation (10) over all 
possible xk=sk and making a decision in favour of the 
constellation symbols that minimize this sum. Perfect 
channel state information is assumed. 
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The maximum likelihood decision metric, in equation 
(10), can be calculated as the sum of f12(s1,s2)+f34(s3,s4)  
where f12 is independent from s3, s4  thus minimization of 
equation (10) is equivalent to the minimization of each two 
symbols separately. This reduces the complexity of the 
decoder, since instead of decoding four symbols all together 
it decodes each two separately. 

Simple manipulation of equation (10) yields to the 
following formulas. Equation (11) is used to decode s1, s2, 
whereas equation (12) is used for decoding s3, s4. 
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B. Suggested  Code 2 
The sub-block matrices S12, S34 are defined as follows: 
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Thus the suggested design is as defined in equation (13). 
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The multiplication of the code matrix Cnew2 by its 
Hermitian yields to the following non-orthogonal Gramian 
matrix Qnew2. 
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number. 
And for ML decoding, we use the following equations to 

decode each pair separately 
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V. SIMULATION RESULTS 
In this section the simulation results that demonstrate the 

efficiency of the suggested codes are demonstrated. First it 
is assumed that Rayleigh fading channel is kept constant 
during the transmission of each code block but it changes 
independently between successive blocks, the receiver has 
perfect CSI, and the fading between transmit and receive 
antennas is mutually independent. For the suggested codes 
QPSK modulation is used at the transmitter, with 
constellation rotation with angle that equals π/4 for s3, s4 [9] 
to achieve full diversity. The bit error rate versus signal to 
noise ratio is shown in Fig. 1 for Jafarkhani codes, TBH 
codes, and the two suggested codes. From Fig. 1 the two 
new codes have better BER than Jafarkhani and TBH. 

 
Fig. 1 The bit error rate performance comparison for QSTBCs 

 
Fig. 2 shows a comparison between 16 different codes 

using the four coding matrices in equation (8) with their 
negative, conjugate and negative conjugate. Fig. 2 shows 
that the bit error rate for the 16 codes is the same because 
they have the same value for correlation coefficient, so any 
of these coding matrices code is used to represent the 
suggested code 1. 
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Fig. 2. Using 16 different matrices to represent new1 code 

 
Each code was simulated on i.i.d. (independent and 

identically-distributed) channels and on spatially correlated 
channels [8] (high correlation, ρ = 0.95) using the following 
correlation matrix: 
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Fig. 3. Comparison of code designs on spatially uncorrelated and spatially 

correlated MIMO channels (ρ= 0.95) with ML receiver. 
 

Fig. 3 shows comparison between suggested codes and 
already known codes in spatially uncorrelated channel and 
spatially correlated channel. The difference between the 
code designs in fig.3 is the self-interference parameter 
showing up in the corresponding non-orthogonal Gramian 
matrices. In fact, the allocation of interference parameter in 

the corresponding Gramian matrix does not affect the code 
performance. This is confirmed by their identical 
performance in spatially uncorrelated channels. However, in 
spatially correlated channels a substantial performance 
difference is observed due to different values of the self-
interference parameter. 

 

VI. CONCLUSIONS 
In this paper, two suggested codes are demonstrated for 

Quasi orthogonal space time codes. Different codes could be 
obtained by changing sub-block matrix to obtain various 
values for the self interference parameter.  The performance 
of these codes compared to Jafarkhani and TBH, the 
simulation results have demonstrated that performance of 
these codes differ in spatially correlated channel depending 
on the value of self interference parameter γ . 
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