
  
Abstract—Derivations of generalized closed-form harmonic 

equations for a family of polynomial-approximated and 
parameterized exponential nonlinear devices (NLDs) are 
presented. The application of this research is for nonlinear 
signal processing based psychoacoustic bass enhancement 
systems. The derived harmonic equations are used to compute 
THD scores analytically to show that even though the 
nonlinear curves are different, which may cause different 
perceptual effects, the THD scores turn out to be exactly the 
same for all six exponential NLDs. The insights gained from 
this mathematical analysis indicate that, even without linking 
to perceptual attributes such as audio quality or nonlinear 
distortion perception, THD is not a suitable metric to judge or 
measure the quantitative degrees of nonlinear curves. 

 
Index Terms—Total harmonic distortion, nonlinear systems, 

nonlinear devices  
 

I. INTRODUCTION  
Exponential NLDs are used in the signal processing 

systems for bass enhancement using psychoacoustic 
technique [1], [2]. For example, the NLD used for bass 
enhancement in multiactuator panels, a special type of flat 
panel loudspeakers to reproduce spatial audio under the 
wave field synthesis system is an exponential equation: 

( 1)( ) xf x eα −=                                      (1) 

where x  is the input, f  is the nonlinear function, and α  is 
a gain factor that controls the harmonics [1]. However, 
quantitative or algebraic closed-form analysis of how α  can 
be used to control harmonics is not available in the paper. 
Motivated by the curiosity of how α  controls the harmonics, 
the mathematical analysis is started in this paper. Based on 
this analytical result, a more general analysis of base-
parameterized exponential NLDs is carried out. Furthermore, 
min-max normalization technique (that is usually used to 
normalize scores in statistical analysis of data in the field of 
data mining) is applied here to transform the curves of 
exponential NLDs (i.e., the same formula is applied here for 
different usage). After the closed-form equations are 
obtained, whether total harmonic distortion (THD) metric 
can be used to judge the degree of nonlinearities is assessed 
here. The astounding result indicates that all these 
exponential NLDs deliver the same THD scores. Therefore, 
the validity of THD for the case of nonlinear device 

 

 

assessment is questioned. 
 

II. DERIVATION OF HARMONIC EQUATIONS FOR 
EXPONENTIAL NONLINEAR DEVICES 

First, the harmonic analysis equation is derived for (1) as 
follows. Assuming that all the exponential nonlinearities can 
be polynomial approximated, let us now define 
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where ˆ ( )f x  is the polynomial approximated function of 
( )f x , with cos( )x A tω= , where A  is the amplitude and 

ω  is the angular frequency of the input. The right hand side 
of (2) is a truncated Fourier series, where 0ˆ 2c  is DC, ˆkc  
(for k = 1, 2, …, Q ) are the amplitudes of harmonics, 
where k  is the harmonic index, Q  is the highest order 
harmonic number, which is equivalent to the highest degree 
of approximating polynomials. The goal is to derive closed-
form algebraic equations for ˆkc  with k = 0, 1, 2, …, Q  
given the parameter of system equation and input signal 
amplitude. 

From (1), ( ) ,xf x eαβ=  is derived, where 1 eαβ =  is a 
constant, parameterized byα . Using Taylor’s series, let us 
denote 
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where EXP0 is the name given to (1). Based on the works of 
Schaefer and Suen in [3] and [4] that are, however, not in 
closed-forms due to the series expansions instead of 
polynomials, the closed-form harmonic equation for EXP0 
is obtained as: 
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where ( 1) ( )!k j k jΓ + + = +  is a gamma function and 

⎢ ⎥⎣ ⎦  is a floor function. Hence, (4) is the resultant harmonic 
analysis equation for (1). 

Next, instead of using the parameter α , the base of the 
exponential function b  is set as a parameter to control the 
harmonics, and the respective closed-form harmonic 
equations are derived. The two exponential NLDs 

( ) xf x b= and ( ) xf x b−=  are studied first. As in (3), let us 
define 
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where EXP1 and EXP2 are names given to ( ) xf x b= and 

( ) xf x b−= respectively. Following the analytical steps 
from (3) to (4), the harmonic equations for (5) and (6) are 
respectively obtained as follows: 
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The input-output (IO) plots of (5) and (6) are shown in 
Fig. 1 where the parameter b  is varying from 1.1 to 10 with 
a step-size of 1.1. Notice also from Fig. 1 that these NLDs 
are not suitable to be used directly in digital audio 
processing system, unless the output dynamic range is 
limited from -1 to 1 [i.e., to 0 dB full scale (dBFS)], to avoid 
clipping. Next section solves this problem by normalizing 
the nonlinear curves but the derived equations (7) and (8) 
are found to be reused. 

 
Fig. 1. Nonlinear transfer characteristics of EXP1 (5) and EXP2 (6). The 

parameter b is varied from 1.1 to 10 with stepsize of 1.1. 

III. MIN-MAX NORMALIZATION FOR EXPONENTIAL 
NONLINEAR CURVES 

Min-max normalization is a statistical data preparation 
technique used in biometrics [6] or data mining [7]. The data 
transformation is linear on the original data [7]. The original 
formula for the min-max normalization is given by 

min
max min min

max min

( )y yy y y y
y y

−= − +
−

        (9) 

where min-max normalization maps a value y  in the range 

[ miny , maxy ] to y  in the range [ miny , maxy ]. Instead of 
mapping the data, nonlinear functions can also be 
normalized to map the output range from 
[ min[ ( )]f x , max[ ( )]f x ] to [ min[ ( )]f x , max[ ( )]f x ], 

where ( )f x  is a resultant function and ( )f x  is a function 
to be normalized. Thus, by applying (9) to (5) and (6), the 
four closed-form functions of new exponential NLDs are 
obtained, which are bounded in the full-range (FR) of [ 1− , 
1] or the half-range (HR) of [0, 1]. The functions are listed 
in the second column of Table 1, where their respective 
acronyms are in the first column. These analytical formulae 
can be further simplified by introducing two basic functions 
such as 
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So that the third column of Table I is obtained. The IO 
plots of these NLDs are shown in Fig. 2. Unlike the IO plots 
in Fig. 1, notice that the output is always bounded in 
between 1−  to 1 or 0 to 1 regardless of varying parameter 
b . Notice the similarities between the four IO plots and the 
output dynamic ranges. 

 
Fig. 2. Nonlinear transfer characteristics of HREXP1, HREXP2, FREXP1 

and FREXP2. Parameter b varies from 1.1 to 10 with a stepsize of 1.1. 
Increase in parameter b increases the nonlinear curvatures. 

TABLE I: MIN-MAX NORMALIZED EXPONENTIAL NLDS. 

NLD ( λ ) Nonlinear Function ( , )f x bλ  
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Harmonic analysis equations for these four NLDs of half-

range and full-range are then derived and the results are 
listed in Table II. The second and third columns of Table II 
denote the truncated Fourier coefficients in (2). Notice also 
that the basis functions in (10) are embedded in the 
harmonic analysis equations and the simpler harmonic 
relationships among NLDs are revealed. 
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TABLE II: DERIVED HARMONIC EQUATIONS. 

NLD ( λ ) 
Truncated Fourier Coefficients 
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IV. VALIDITY OF THD METRIC IN JUDGING 
NONLINEARITIES 

The THD metric [5] is defined as 
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where ˆkc  are truncated Fourier coefficients or amplitudes of 

harmonics. Note that ˆkc  can be positive (same phase with 
the input) or negative (180 degree out of phase). In order to 
eliminate this phase information, the denominator of (11) is 
taken as the absolute value of the amplitude of the first 
harmonic (magnitude of the first harmonic), instead of just 
using the amplitude. However, root mean square (rms) 
values can also be used to compute THD metric. 

The THD simulation results of the above six exponential 
NLDs such as γ ∈ {EXP1, EXP2, HREXP1, HREXP2, 
FREXP1, FREXP2} are shown in three dimensional plots of 
Fig. 3, where the magnitude of input tone A  and 
exponential base parameter b  are varied from 60−  to 0 
dBFS with 1−  dBFS incremental step-size, and 1.1 to 10 
with a step-size of 1.1, respectively. Notice that all six plots 
look the same, meaning that computed numerical results of 
THD scores are exactly the same for all six NLDs. In order 
to explain why all these NLDs produce the same THD 
results even though their curves look different, an analysis is 
presented here. By using (7) and (8), the third column of 
Table II, and noticing that, 

EXP1 EXP2
( ) ( )k kabs c abs c= , 

where (.)abs  is an absolute operator, and 

1 2( ) ( )b b bΦ = − Φ  from (10), THD analytical expression 
for the six exponential NLDs, parameterized by A  and b  is 
finally obtained as 
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Therefore, it has been proven analytically that THD 
scores of all six exponential NLDs can be formulated as (12). 

As for numerical values comparison, Table 3 provides the 
rms values of the five harmonics and their respective THD 
scores. Notice that THD scores are all equal to 35.6% for all 
six NLDs. The THD metric in (11) is used with individual 
harmonics’ rms values, which are listed from second to sixth 
columns of Table 3. The exponential NLDs are polynomial 
approximated to the fifth order. The input signal peak 
amplitude is set as 1−  dBFS and the base parameter is fixed 
as 5.55. 

 
Fig. 3. THD plots of the six exponential NLDs. 

TABLE III:  NUMERICAL RESULTS OF THD SCORES USING RMS VALUES OF HARMONICS WITH 0 .8 9 1 3A = , 5.5500,b = AND 5Q =  PARAMETER 
SETTINGS. 

NLD ( λ ) 
(rms) Peak amplitude 2 2k kc c= =  

1k =  2k = 3k = 4k = 5k = THDλ

EXP1 1.4256 0.4926 0.1203 0.0200 0.0031 35.6 % 

EXP2 1.4256 0.4926 0.1203 0.0200 0.0031 35.6 % 

HREXP1 0.2655 0.0917 0.0224 0.0037 0.0006 35.6 % 

HREXP2 0.2655 0.0917 0.0224 0.0037 0.0006 35.6 % 

FREXP1 0.5310 0.1835 0.0448 0.0075 0.0011 35.6 % 

FREXP2 0.5310 0.1835 0.0448 0.0075 0.0011 35.6 % 

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

205



V. CONCLUSIONS 
Based on the obtained results in Section IV, the 

conclusion is drawn that THD may not be a figure of merit 
to measure the different nonlinearities’ transfer function 
characteristics because in our case all of the six exponential 
NLDs generate the same THD scores although their 
curvatures are different. In addition to this finding, closed-
form algebraic harmonic analysis formulae for the 
exponential NLDs have been derived and presented in this 
paper. The min-max normalization from the data mining is 
applied to the transformation of nonlinear curves as an 
intermediate step for the analysis or derivations of new 
exponential NLDs that are bounded in HR or FR. Although 
THD results prove to be invalid to judge different 
nonlinearities here, the derived harmonic equations are 
novel to accurately compute the truncated Fourier 
coefficients or simply harmonic amplitudes and DC 
components of these polynomial approximated exponential 
NLDs for the application of psychoacoustic bass 
enhancement systems. The main objective of this paper is on 
the analysis of THD metric. For the further research to relate 
to perceptual domain, we would perform the comparative 
studies applying two perceptual models such as Rnonlin [8] 
and PEMO-Q [9], and multitone distortion analysis [10]. 
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