
  
Abstract—Processing digital signals acquired from high 

speed Analog Front Ends (AFE) is of interest in many 
consumer electronics and PC end applications. This paper 
presents a modular and structured architecture for processing 
high speed signals using Field Programmable Gate Arrays 
(FPGA). In particular it describes the various programmable 
elements necessary and challenges involved in building such a 
signal processing system. The approach described here is using 
Altera's Stratix III and Cyclone II FPGAs. The development 
was performed using Altera's Quartus 9.1 software 
environment. 
 

Index Terms—Digital signals, ADC, high speed, field 
programmable gate array. 
 

I. INTRODUCTION 
Due to the consistent improvement in the FPGA 

technology, developing signal processing systems on a 
FPGA using Hardware Description Language (HDL) is not 
only highly flexible and efficient but also advantageous due 
to the ease of use. Digital systems of tremendous 
complexity can be implemented on a single FPGA device. 
However, the performance and efficiency of processing 
signals > 1GHz largely depends on efficiency of 
architecture and the optimization techniques used in the 
design. 

With development of fast Analog-to-Digital Converters 
(ADC) and other high speed interface technologies with 
processing speed of above 5G Samples / sec (GSps), there is 
a need for developing an efficient and reliable signal 
processing and acquisition system which  plays a major 
factor in design and development of modern electronic 
systems.  

The purpose of this paper is to present a modular and 
structured FPGA architecture and the design challenges 
involved in developing such a system.  The design and 
experiments were done with data coming from EV8AQ160, 
a Quad ADC from E2V.  Following section describes the 
different design blocks involved. 

Fig. 1 shows the logic blocks of the architecture 
described in subsequent sections. 
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      Fig. 1. FPGA logic blocks 

 

II. DESIGN BLOCKS 

A. Stage 1: De-Serializer / FIFO 1 

The data is then sent to LVDS FIFO which is instantiated 
using Altera’s parameterizable Megacore® IP functions. 
The Dual Clock mixed width Megafunction (DCFIFO) 
supports different write input data and read output data 
widths. This application has an incoming data stream width 
of 128 bits and the output data width would be 256 bits. The 
FIFO depth can be adjusted to any value between 2048 
words to 131072 words as required.  

To ensure the contents don’t get corrupted, the 
OVERFLOW_CHECKING parameter is turned on. This 
ensures that the write request signal is ignored when FIFO 
is full and hence prevents any corruption of data. Similarly, 
the UNDERFLOW_CHECKING is turned on to ensure the 
read request is ignored when FIFO is empty. The 
synchronization stages from the write control logic to the 
read control logic and vice versa is set to 4. 
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The first step is to de-serialize the incoming ADC data. 
There are 8 groups of outputs from the ADC, each 
containing 8 bits. The incoming 64-bit ADC value is 
converted into 128-bit single data rate (SDR) ADC value 
through a LVDS receiver. ADC chips work at one-channel 
mode and1:2 DMUX mode. The 128-bit data is clocked on 
the rising edge of clock signal. 



B. Stage 2: DDR3 Memory Controller 
The data from the FIFO will be stored in a DDR3 

memory device and retrieved as and when a read instruction 
is received. To accomplish this, it’s imperative to design 

1) Memory controller and 

2) PHY interface. 

The memory controller used is Altera’s High 
Performance Memory Controller II (HPC II).  It is 
generated using Megafunction HPC II in Quartus software. 
This function initializes the memory devices, manages 
SDRAM banks, translates read / write requests from local 
interface in to SDRAM commands and also takes care of 
reordering the commands. The frequency of the controller 
can either be equal to the memory interface frequency (full-
rate) or half of the memory interface frequency (half-rate). 
For a half-rate controller, the memory clock runs twice as 
fast as the clock provided to the local interface; so data 
buses on the local interface are four times as wide as the 
memory data bus. For a full-rate controller, the memory 
clock runs at the same speed as the clock provided to the 
local interface, so the data buses on the local interface are 
two times as wide as the memory data bus. Each read or 
writes request on the local interface fits into a single 
memory read or writes command on the memory interface, 
simplifying the controller design.  

The Command Queue Look-Ahead Depth is set to 4 and 
local maximum burst count is 4. 

 
Fig. 2. Memory controller 

 
Along with the controller, ALTMEMPHY is generated 

using Altera’s Megafunction. The ALTMEMPHY is a PHY 
interface between a memory controller and memory devices 
and performs read and write operations to the memory.  

The PLL reference clock frequency for ALTMEMPHY is 
set to 20MHz and the memory clock frequency for DDR3-
800 is set to 400MHz.  

In addition, the dynamic parallel on-chip termination 
(OCT) is enabled in the PHY settings. A dedicated clock is 
used for clocking address/commands. Depending on the 
number of layers the PCB has and expected skew on the 
signals, the board skew is set in board timing parameters tab. 
For our application based on the PCB it was set to 20 ps.  

The driver controls the communication between the ADC 
and DDR3 during write operations and also between DDR3 

and the user interface during read operations. The driver is 
responsible for processing the read requests, write requests, 
generating DDR3 addresses, generating sync header and 
End Of Packet (EOP). The driver performs all these 
operations with a state machine. The state machine is 
responsible for transitioning from one read/write state to 
another and at the same time update the address counter of 
the DDR3 rows and columns. The state machine waits for 
the write requests to receive the data from ADC. Once it 
receives the write requests it checks to see if the controller 
is ready. The controller asserts “local ready” signal after 
which the write cycle begins. The data from LVDS FIFO is 
sent to the row, column and bank address of the DDR3 as 
generated by the address generator. The write cycle 
continues until the ADC is disabled by the user interface. 

 
Fig. 3. ALTMEMPHY architecture 

C. Stage 3: DDR3 Memory Controller Driver 
The buffer in DDR3 memory is circular, so once the 

memory fills up, it begins to over write from the starting 
address and  upon detecting the required trigger event it 
writes until the trigger delay time expires and then stops. 
Designing a circular buffer is especially important since 
when triggered, it is imperative to capture the pre-trigger 
and post-trigger events. 

Once the ADC is stopped, the user interface issues a read 
request to fetch the data from the DDR3. The state machine 
services this read request after receiving local ready signal 
from controller by reading the rows, columns and banks of 
DDR3. The data thus read is passed on to the next stage.  
In addition to this, the driver inserts a header at the start of 
the packet and an End of Packet frame at the end. This is for 
verifying the data integrity during transmission. The user 
interface needs to verify the header and EOP when it 
receives the packet from Stratix III. 

D. Stage 4: FIFO 2 
The data read from stage 3 is sent to a second FIFO in 

Stratix III. It acts as a buffer between LVDS transmitter and 
the memory controller read channel. FIFO2 is instantiated 
from Altera’s Megafunction Dual Clock FIFO (DCFIFO) 
which has an input width of 256 bits, Output width of 32 
bits and Depth of 128 words. The FIFO is set to have 4 sync 
stages. The size of FIFO 2 hence would be 256-bit × 128 = 
1024 Bytes. 
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E. Stage 5: LVDS Serializer / transmitter 
The LVDS transmitter (Tx) is generated by MegaWizard 

Plug-in Manager using Altera’s IP ALTLVDS. The 32 bit 
data stream from FIFO 2 is serialized with a serialization 
factor of 32. The Output data rate is 640Mbps. 

 

III. USER INTERFACE AND SECONDARY FPGA 
When there are multiple ADC channels, the data is 

collected from respective Stratix III FPGAs. A secondary 
FPGA or micro controller, whose objective is to receive 
data from all the different channels, check for data integrity, 
convert the commands to user interface protocol such as 
PCI or PCIe or USB and send it to the user interface. In this 
application, an external Cyclone II FPGA was used for this 
purpose since it offers the design flexibility and is easy to 
integrate with Stratix III. The internal architecture of the 
design implemented on the secondary FPGA is as shown 
below. 
 

 
 Fig. 4. Secondary FPGA 

 
Once the trigger signal is detected by trigger circuitry, 

Cyclone II sends a command to stop sampling and Stratix 
III ends the write cycle to DDR3. Cyclone II generates a 
read request to read the data in the DDR3 that is interfaced 
with Stratix III. When Stratix III responds with the 
requested data, Cyclone II needs to de-serialize the 
incoming LVDS data. This is done using LVDS receiver. 

The data is then sent to a memory read block. When 
ADC data are stored in DDR3 memory, the memory read 
block issues memory read request to Stratix III FPGA. 
When memory read grant signal is received, memory read 
block receives ADC data and clocks. The data is then 
checked for correctness by looking at it’s header and EOP 
and then sent in to a PCI FIFO. When errors are found in 
the received ADC data, LVDS retry signals are sent out to 
Stratix III to request a re transmission of ADC data again.  

The PCI FIFO is a buffer between PCI target and LVDS 
Rx. It is generated by Quartus software, and is an 
instantiation of Altera’s Megafunction Dual Clock FIFO 
(DCFIFO). The width of the FIFO is 32 bits and depth is 
1024 words.  

The FIFO then sends the data to a PCI target IP which 
converts the incoming data in PCI protocol and sends it to 
PC host. PCI target core is an instantiation of Altera’s 
Megafunction PCI target (pci_t32). PCI target is a bridge 
between PCI master (residing on mother board) and local 
memory mapped interfaces. It runs at 33MHz and its bus is 
32-bit wide. It is set to have following PCI configuration: 
Device ID: 4; Vendor ID: 0x1172; Revision ID: 1; 
Subsystem ID: 0x389; Subsys Vendor ID: 0x1172; 
Minimum Grant: 0; Maximum Latency: 0; BAR0 = 
2MBytes;   

Cyclone II also has trigger control circuit. Trigger control 
circuit is enabled by settings in trigger control register 
inside PC host driver. It is responsible for enabling or 
disabling the ADC depending on whether or not the trigger 
condition is met. Once the delay counter expires, the trigger 
control block disables ADC from getting any more samples. 
This ensures that the post trigger events are captured.  

 

IV. PC HOST DRIVER 
The driver on the PC host communicates with cyclone II 

FPGA through PCI bus. The driver provides GUI for the 
user to set up PCI register and configuration space. With 
appropriate pre-processing, this methodology can be 
employed to process signals from variety of high speed 
signals (> 1 Giga Hz range) from interfaces such as PCIe, 
USB, DDR, Ethernet...etc. to PC host. 

 

V. ISSUES ENCOUNTERED AND WORKAROUNDS 
As described before, the memory controller driver needs 

to wait for  local ready  from the memory controller IP, 
which lets the user logic- know if the controller is ready to 
accept a transfer command, or if it is busy and thus the user 
logic must wait. A common issue with the local ready signal 
is that it permanently goes low preventing any further 
commands from being accepted by the controller, 
effectively resulting in the controller being ‘locked up’.  

The most common cause of this is the timing error in the 
Altera memory controller. In particular, when bursts of 
writes are requested, any delay in providing all beats of that 
write access to the controller before another command is 
requested could cause this issue. As the controller waits for 
the missing write beat, it's command FIFO will fill up with 
other commands (usually reads) and once full it fails to de-
assert local ready indicating that it is busy and thus the 
driver/user logic must wait. This issue has been documented 
by Altera 10. 

 One possible workaround that we implemented is - 
when it locks up, the Stratix stops sending data and PCI 
interface issues a retry, resetting the memory controller. 
This effectively restarts the state machine inside the 
controller and it issues local ready signal resolving the lock 
up. 
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