

Abstract—Processing digital signals acquired from high

speed Analog Front Ends (AFE) is of interest in many
consumer electronics and PC end applications. This paper
presents a modular and structured architecture for processing
high speed signals using Field Programmable Gate Arrays
(FPGA). In particular it describes the various programmable
elements necessary and challenges involved in building such a
signal processing system. The approach described here is using
Altera's Stratix III and Cyclone II FPGAs. The development
was performed using Altera's Quartus 9.1 software
environment.

Index Terms—Digital signals, ADC, high speed, field
programmable gate array.

I. INTRODUCTION
Due to the consistent improvement in the FPGA

technology, developing signal processing systems on a
FPGA using Hardware Description Language (HDL) is not
only highly flexible and efficient but also advantageous due
to the ease of use. Digital systems of tremendous
complexity can be implemented on a single FPGA device.
However, the performance and efficiency of processing
signals > 1GHz largely depends on efficiency of
architecture and the optimization techniques used in the
design.

With development of fast Analog-to-Digital Converters
(ADC) and other high speed interface technologies with
processing speed of above 5G Samples / sec (GSps), there is
a need for developing an efficient and reliable signal
processing and acquisition system which plays a major
factor in design and development of modern electronic
systems.

The purpose of this paper is to present a modular and
structured FPGA architecture and the design challenges
involved in developing such a system. The design and
experiments were done with data coming from EV8AQ160,
a Quad ADC from E2V. Following section describes the
different design blocks involved.

Fig. 1 shows the logic blocks of the architecture
described in subsequent sections.

Manuscript received April 29, 2012; revised June 7, 2012.
Chong Ming Ying, Kyaw Swa Maung, Lai Yoon Fei, Manoj Kumar

Dey, and Sandeep Dattaprasad are with Seagate Techonology, EAO,
Advanced Development Engineering, 7000, Ang Mo Kio Ave 5, Singapore
569877(e-mail: sandeep.dattaprasad@gmail.com).

Cao Bin is with Institute for Infocomm Research, Embedded Systems
Department, Singapore 138632

 Fig. 1. FPGA logic blocks

II. DESIGN BLOCKS

A. Stage 1: De-Serializer / FIFO 1

The data is then sent to LVDS FIFO which is instantiated
using Altera’s parameterizable Megacore® IP functions.
The Dual Clock mixed width Megafunction (DCFIFO)
supports different write input data and read output data
widths. This application has an incoming data stream width
of 128 bits and the output data width would be 256 bits. The
FIFO depth can be adjusted to any value between 2048
words to 131072 words as required.

To ensure the contents don’t get corrupted, the
OVERFLOW_CHECKING parameter is turned on. This
ensures that the write request signal is ignored when FIFO
is full and hence prevents any corruption of data. Similarly,
the UNDERFLOW_CHECKING is turned on to ensure the
read request is ignored when FIFO is empty. The
synchronization stages from the write control logic to the
read control logic and vice versa is set to 4.

Implementation of FPGA-Based Logic Blocks for High
Speed Signal Processing System

Cao Bin, Chong Ming Ying, Kyaw Swa Maung, Lai Yoon Fei, Manoj Kumar Dey, and Sandeep
Dattaprasad

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

183

The first step is to de-serialize the incoming ADC data.
There are 8 groups of outputs from the ADC, each
containing 8 bits. The incoming 64-bit ADC value is
converted into 128-bit single data rate (SDR) ADC value
through a LVDS receiver. ADC chips work at one-channel
mode and1:2 DMUX mode. The 128-bit data is clocked on
the rising edge of clock signal.

B. Stage 2: DDR3 Memory Controller
The data from the FIFO will be stored in a DDR3

memory device and retrieved as and when a read instruction
is received. To accomplish this, it’s imperative to design

1) Memory controller and

2) PHY interface.

The memory controller used is Altera’s High
Performance Memory Controller II (HPC II). It is
generated using Megafunction HPC II in Quartus software.
This function initializes the memory devices, manages
SDRAM banks, translates read / write requests from local
interface in to SDRAM commands and also takes care of
reordering the commands. The frequency of the controller
can either be equal to the memory interface frequency (full-
rate) or half of the memory interface frequency (half-rate).
For a half-rate controller, the memory clock runs twice as
fast as the clock provided to the local interface; so data
buses on the local interface are four times as wide as the
memory data bus. For a full-rate controller, the memory
clock runs at the same speed as the clock provided to the
local interface, so the data buses on the local interface are
two times as wide as the memory data bus. Each read or
writes request on the local interface fits into a single
memory read or writes command on the memory interface,
simplifying the controller design.

The Command Queue Look-Ahead Depth is set to 4 and
local maximum burst count is 4.

Fig. 2. Memory controller

Along with the controller, ALTMEMPHY is generated

using Altera’s Megafunction. The ALTMEMPHY is a PHY
interface between a memory controller and memory devices
and performs read and write operations to the memory.

The PLL reference clock frequency for ALTMEMPHY is
set to 20MHz and the memory clock frequency for DDR3-
800 is set to 400MHz.

In addition, the dynamic parallel on-chip termination
(OCT) is enabled in the PHY settings. A dedicated clock is
used for clocking address/commands. Depending on the
number of layers the PCB has and expected skew on the
signals, the board skew is set in board timing parameters tab.
For our application based on the PCB it was set to 20 ps.

The driver controls the communication between the ADC
and DDR3 during write operations and also between DDR3

and the user interface during read operations. The driver is
responsible for processing the read requests, write requests,
generating DDR3 addresses, generating sync header and
End Of Packet (EOP). The driver performs all these
operations with a state machine. The state machine is
responsible for transitioning from one read/write state to
another and at the same time update the address counter of
the DDR3 rows and columns. The state machine waits for
the write requests to receive the data from ADC. Once it
receives the write requests it checks to see if the controller
is ready. The controller asserts “local ready” signal after
which the write cycle begins. The data from LVDS FIFO is
sent to the row, column and bank address of the DDR3 as
generated by the address generator. The write cycle
continues until the ADC is disabled by the user interface.

Fig. 3. ALTMEMPHY architecture

C. Stage 3: DDR3 Memory Controller Driver
The buffer in DDR3 memory is circular, so once the

memory fills up, it begins to over write from the starting
address and upon detecting the required trigger event it
writes until the trigger delay time expires and then stops.
Designing a circular buffer is especially important since
when triggered, it is imperative to capture the pre-trigger
and post-trigger events.

Once the ADC is stopped, the user interface issues a read
request to fetch the data from the DDR3. The state machine
services this read request after receiving local ready signal
from controller by reading the rows, columns and banks of
DDR3. The data thus read is passed on to the next stage.
In addition to this, the driver inserts a header at the start of
the packet and an End of Packet frame at the end. This is for
verifying the data integrity during transmission. The user
interface needs to verify the header and EOP when it
receives the packet from Stratix III.

D. Stage 4: FIFO 2
The data read from stage 3 is sent to a second FIFO in

Stratix III. It acts as a buffer between LVDS transmitter and
the memory controller read channel. FIFO2 is instantiated
from Altera’s Megafunction Dual Clock FIFO (DCFIFO)
which has an input width of 256 bits, Output width of 32
bits and Depth of 128 words. The FIFO is set to have 4 sync
stages. The size of FIFO 2 hence would be 256-bit × 128 =
1024 Bytes.

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

184

E. Stage 5: LVDS Serializer / transmitter
The LVDS transmitter (Tx) is generated by MegaWizard

Plug-in Manager using Altera’s IP ALTLVDS. The 32 bit
data stream from FIFO 2 is serialized with a serialization
factor of 32. The Output data rate is 640Mbps.

III. USER INTERFACE AND SECONDARY FPGA
When there are multiple ADC channels, the data is

collected from respective Stratix III FPGAs. A secondary
FPGA or micro controller, whose objective is to receive
data from all the different channels, check for data integrity,
convert the commands to user interface protocol such as
PCI or PCIe or USB and send it to the user interface. In this
application, an external Cyclone II FPGA was used for this
purpose since it offers the design flexibility and is easy to
integrate with Stratix III. The internal architecture of the
design implemented on the secondary FPGA is as shown
below.

 Fig. 4. Secondary FPGA

Once the trigger signal is detected by trigger circuitry,

Cyclone II sends a command to stop sampling and Stratix
III ends the write cycle to DDR3. Cyclone II generates a
read request to read the data in the DDR3 that is interfaced
with Stratix III. When Stratix III responds with the
requested data, Cyclone II needs to de-serialize the
incoming LVDS data. This is done using LVDS receiver.

The data is then sent to a memory read block. When
ADC data are stored in DDR3 memory, the memory read
block issues memory read request to Stratix III FPGA.
When memory read grant signal is received, memory read
block receives ADC data and clocks. The data is then
checked for correctness by looking at it’s header and EOP
and then sent in to a PCI FIFO. When errors are found in
the received ADC data, LVDS retry signals are sent out to
Stratix III to request a re transmission of ADC data again.

The PCI FIFO is a buffer between PCI target and LVDS
Rx. It is generated by Quartus software, and is an
instantiation of Altera’s Megafunction Dual Clock FIFO
(DCFIFO). The width of the FIFO is 32 bits and depth is
1024 words.

The FIFO then sends the data to a PCI target IP which
converts the incoming data in PCI protocol and sends it to
PC host. PCI target core is an instantiation of Altera’s
Megafunction PCI target (pci_t32). PCI target is a bridge
between PCI master (residing on mother board) and local
memory mapped interfaces. It runs at 33MHz and its bus is
32-bit wide. It is set to have following PCI configuration:
Device ID: 4; Vendor ID: 0x1172; Revision ID: 1;
Subsystem ID: 0x389; Subsys Vendor ID: 0x1172;
Minimum Grant: 0; Maximum Latency: 0; BAR0 =
2MBytes;

Cyclone II also has trigger control circuit. Trigger control
circuit is enabled by settings in trigger control register
inside PC host driver. It is responsible for enabling or
disabling the ADC depending on whether or not the trigger
condition is met. Once the delay counter expires, the trigger
control block disables ADC from getting any more samples.
This ensures that the post trigger events are captured.

IV. PC HOST DRIVER
The driver on the PC host communicates with cyclone II

FPGA through PCI bus. The driver provides GUI for the
user to set up PCI register and configuration space. With
appropriate pre-processing, this methodology can be
employed to process signals from variety of high speed
signals (> 1 Giga Hz range) from interfaces such as PCIe,
USB, DDR, Ethernet...etc. to PC host.

V. ISSUES ENCOUNTERED AND WORKAROUNDS
As described before, the memory controller driver needs

to wait for local ready from the memory controller IP,
which lets the user logic- know if the controller is ready to
accept a transfer command, or if it is busy and thus the user
logic must wait. A common issue with the local ready signal
is that it permanently goes low preventing any further
commands from being accepted by the controller,
effectively resulting in the controller being ‘locked up’.

The most common cause of this is the timing error in the
Altera memory controller. In particular, when bursts of
writes are requested, any delay in providing all beats of that
write access to the controller before another command is
requested could cause this issue. As the controller waits for
the missing write beat, it's command FIFO will fill up with
other commands (usually reads) and once full it fails to de-
assert local ready indicating that it is busy and thus the
driver/user logic must wait. This issue has been documented
by Altera 10.

 One possible workaround that we implemented is -
when it locks up, the Stratix stops sending data and PCI
interface issues a retry, resetting the memory controller.
This effectively restarts the state machine inside the
controller and it issues local ready signal resolving the lock
up.

REFERENCES
[1] P. J. Ashenden, “The designer’s guide to VHDL,” Morgan Kaufmann,

2008.
[2] P. J. Ashenden, J. P. Mermet, and R. Seepold, “System-on-chip

methodologies and design languages,” Springer, 2001

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

185

[3] P. Z. Peebles, Jr, "Digital Communication Systems," Prentice-Hall,
INC.

[4] Reference Manual, “External Memory Interface Handbook,” Altera
Corporation, vol. 3, 2011.

[5] A. M. U. Guide, “External Memory PHY Interface (ALTMEMPHY),”
Altera Corporation, 2011

[6] A. M. U. Guide “I/O Buffer (ALTIOBUF),” Altera Corporation, 2011

[7] AN 436: “Using DDR3 SDRAM in Stratix III and Stratix IV Devices”,
Altera Corporation

[8] A. Wiki: “Local ready signal issues with alter external memory
controller, IP,” [Online]. Available:
http://www.alterawiki.com/wiki/Local_ready_signal_issues_with_Alt
era_external_memory_controller_IP,Altera,Corporation, November
2010.

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

186

