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Abstract—The choice value and the testing process against 

the vigilance parameter , characteristic of ART Neural 

Network, are merged. Only, a single unique test is required to 

determine if a committed category node can represent the 

current input or not. Advantages of APT over ART are: 

1-Avoid testing every committed category node before deciding 

to train a committed category node or a new node must be 

committed, 2-The vigilance parameter  is fixed during training, 

and 3-The choice value parameter  is eliminated.  

 

Index Terms—Adaptive pointing theory, APT ANN, adaptive 

resonance theory, ART ANN, ARTMAP, compact fuzzy ART, 

artificial neural networks. 

 

I. INTRODUCTION 

ART Artificial Neural Network (ANN) has been employed 

in many fields. It has been implemented for Integrated Fire 

Evolution Monitoring System (IFEMS) [1],for MR brain 

tumor image classification [2], for handwritten signature 

verifications [3]; for watershed hydrological modeling [4], 

and forcustomer relationship management [5]. For more 

details see [6]. 

The Adaptive Resonance Theory (ART) Artificial Neural 

Networks cover both supervised and unsupervised training 

algorithms. However, the fundamental principle for both 

forms is measuring the choice value for each committed 

category node. The maximum choice value node is the 

candidate to represent the input patterns. When the candidate 

node fails to pass the vigilance parameter we have to put it in 

shut off mode and determine the new maximum choice value 

node. We keep doing this until either a committed category 

node can represent the current input or a new node must be 

committed. Such process is time consuming. 

 

II. OBJECTIVE 

The objective of this study is to introduce a new approach 

that merges the choice value and the testing process against 

the vigilance parameter  in a single step. The first candidate 

committed category node either can represent the current 

input or a new node must be committed. This is to avoid 

testing all committed category node. This reduces the training 

time,  is fixed during training, and eliminates the choice 

value parameter. Also, design the supervised version for 
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(Adaptive Pointing Theory) APT the APT-TAG and 

APT-BAG. 

 

III. ADAPTIVE RESONANCE THEORY 

The ART ANN covers both unsupervised training 

algorithms: Fuzzy ART [7]; Flagged and Compact Fuzzy 

ART [8], and supervised: Fuzzy ARTMAP [9]; ART-TAG 

[10]; ART-BAG [11]. However, the fundamental principles 

for ART ANNs are: 

 Measuring the choice value for each committed 

category node. The choice value represents the 

activation level for each committed category node; 
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where wij are the weights between each committed category 

node j and the input nodes. A
(t)
∈[0, 1] is the normalized input 

pattern and its complement, α is the choice value and C is the 

number of committed category nodes. 

 Determine the maximum choice value node J as a 

candidate to represent the input patterns;  

 
( ) ( )max{ }, 1,...,t t

J jT T j C                  (2) 

 

 Compute the match value SJ for this promising node; 
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 Test this promising node against the vigilance 

parameter ρ[0,1]. 

If SJ ≥ ρ weights for node J are trained:  

 
( )( ) (1 ) ; 1,...,2new t old old

iJ i iJ iJw A w w i M        (4) 

 

where ]1,0( is the learning parameter. Otherwise, we have 

to put node J in shut off mode and determine the new 

maximum choice value node according to its choice value. M 

is number of input features.  

We keep doing this until either a committed category node 

can represent the current input or we run out of committed 

category node (all committed category nodes are in shut off 

mode) and a new category node must be committed. This is 
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time consuming during training. 

We followed closely the Compact Fuzzy ART. It differ 

from Fuzzy ART by: 1) No initialization values for the 

category nodes, 2) No initialization values for the weights, 

and 3) Only committed category nodes rather than the whole 

number of category node are involved in determining the 

winning category node. For more details about Compact 

Fuzzy ART see [8]. 

 

IV. ADAPTIVE POINTING THEORY (APT) 

We will describe the training algorithm for (Adaptive 

Pointing Theory) APT in unsupervised form. The 

architecture for it is the same as that for Compact Fuzzy ART. 

See Fig. 1 for the full architecture. However, the training 

algorithm for APT is very efficient relative to Compact Fuzzy 

ART from training time point of view. 

The main steps for training APT ANN is: 

 Measuring the match value for each committed category 

node. The match value S for a committed category node 

represents the similarity between the input and the 

committed category node; 
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where, ( ) min( , ); ( ) max( , )A w A w A w A w     

The nominator in the above equation can be considered as 

the intersection of A and W, and the denominator as the union 

of A and W. When A = W, we have value of one which is the 

max value for the vigilance parameter. When ρ =1,
 
 we have a 

perfect match between the input and the committed category 

node. The choice value parameter α is not required. It had 

been inserted to break the tie in choice value between two or 

more committed category nodes. 

 Determine the maximum match value node J as a 

unique candidate to represent the input patterns; 

 
( ) ( )max{ }; 1,...,t t

J jS S j C                   (6) 

 

 Test the matching value for the max node against the 

vigilance parameter ρ. IF )(t

JS the weights for node 

J is trained using equation-4. 

Otherwise, new category node must be committed. 

 

 
Fig. 1. The architecture of adaptive pointing theory (APT). C is number of 

committed category nodes. N is the full capacity of the Neural Network. 

Only committed category nodes are involved in match value calculations. 
C<<N. 

V. ALGORITHM OF APT 

A. Training Algorithm of APT 

1) Input parameters 

 Dynamic parameters; 

   [0, 1]: vigilance parameter.=1 for perfect 

matching. 

 β(0, 1]: The dynamic learning parameter; β=1 for 

fast learning. 

 Data characteristics; 

 M: The dimension of the input features. 

 Pt: The number of patterns to be used in learning. 

 Initialization; 

 Number of iterations t=1. 

 Number of committed category nodes C=1.  

2) New input 
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4) Determine the Node J, which has the maximum match 

value  
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Assign weights of the new node C; 
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6) If you have more training pattern GOTO STEP (2) 

7) Training has been done. Save the committed category 

nodes and their weights. 

B. Classification Algorithm of APT 

1) New input 
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3) Determine the node J, which has the maximum match 

value;  
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4) Node J represents this input. 

5) GOTO STEP (1) for next input until all of them are 

classified. 

6) Classification has been done. 

 

VI. APPLICATION  

The supervision of APT ANN using TAGging (AL-Rawi 

1999) and BAGging (AL-Rawi et al. 1999) approaches will 

leads to APT-TAG and APT-BAG, respectively. 

In APT-TAG, the weights of the winning committed 

category node are trained when it passes the vigilance 

parameter  and its TAG equal to the class of the current 

input as well. Otherwise a new node must be committed and 

tagged with the class of the current input. Details about 

TAGging approach can be seen in [10]. 

In APT-BAG, the weights of the winning committed 

category node are trained when it passes the vigilance 

parameter  and the BAG of the winning category node is 

equal to the class of the current input. Otherwise a new node 

must be committed from the BAG that represents the class of 

the current input. Details about BAGging approach can be 

seen in [11]. 

ART-BAG reduces sharply the training time relative to 

ART-TAG especially when we have large number of classes 

and large number of committed nodes [12]. However, 

training time reduction for APT-TAG is slightly better than 

APT-BAG since it point to the winning node in a single test. 

That is because in TAGging approach we find the max for all 

committed category nodes while for BAGging approach we 

have to find the max for each BAG then we determine the 

max among them. 

We run APT-TAG to analysis Landsat TM image. The 

image we used with six bands and 13 different classes. The 

results are compared to ART-TAG. Both run on an Intel 

P4-1.7GHz with 256MB RAM. 9,000 exemplars used for 

training. The total number of pixels is 62,000. Combination 

of vigilance parameter =0.8, 0.9, 0.98 and dynamic learning 

rate =0.3, 0.6, 0.9 are used. =1.0 is also used for =0.98. 

The classification accuracy is about the same while number 

of committed node C for APT-TAG is less than that for 

ART-TAG. This also reduces both training and classification 

time. These runs are shown in Table I.  

 
TABLE I: CLASSIFICATION OF LANDSAT THEMATIC MAPPER IMAGE USING 

APT-TAG AND ART-TAG ANNS. THE NUMBER OF COMMITTED 

CATEGORY NODES C AND THE CLASSIFICATION ACCURACY ARE LISTED FOR 

DIFFERENT TRAINING PARAMETERS USING 9,000 EXEMPLARS FOR 

TRAINING AND 62,000 FOR TESTING. 

  APT-TAG ART-TAG 

  C Accuracy% C Accuracy% 

0.80 0.3 17 73 51 71 

 0.6 20 65 62 70 

 0.9 24 61 71 70 

0.90 0.3 50 78 70 78 

 0.6 73 77 80 77 

 0.9 100 67 119 77 

0.98 0.3 380 81 390 81 

 0.6 803 86 807 85 

 0.9 1531 86 1511 87 

0.98 1.0 2117 88 2172 89 

VII. DISCUSSION AND CONCLUSIONS 

The classification accuracy for both APT-TAG and 

ART-TAG are about the same order. However, the training 

time for APT-TAG is much less than ART-TAG because a 

single test is requires determining if the committed category 

node, with max matching value, can represent the current 

input or a new node must be committed rather than checking 

every single committed category node. In the ART-TAG case 

C checking time is required which is C times more than that 

for APT-TAG before deciding for a new category node to be 

committed. 

Moreover, the vigilance parameter  is fixed during 

training. The choice value parameter α is eliminated. Number 

of committed category node is reduced. 

Such algorithm will reduce the training time and testing 

time as well, especially when we have a large number of 

committed category nodes, which is the case in most practical 

problem. More studies are required to insure the reduction in 

number of committed category nodes and classification 

performance as well.  
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