



Abstract—SQL injection is an attack technique that exploits a

security vulnerability occurring in the database layer of an

application and a service. This is most often found within web

pages with dynamic content. This paper provides taxonomy on

SQL injection prevention and detection approaches.

Furthermore, for each type of vulnerability, we provide

descriptions of how attacks of that type could take advantage of

that vulnerability and perform attack. We also present and

analysis some of existing detection and prevention techniques

against SQL injection attacks. Finally, we compare different

type of approaches and techniques and provide a list of their

deployment requirements.

Index Terms—SQL injection attack, SQL queries, web

application, DBMS, taxonomy, web application security.

I. INTRODUCTION

Nowadays by rapid development of Internet, online

services use web applications to present their services and use

the web paradigm are becoming an interesting strategy for

application software companies. It allows the design of

pervasive applications which can be potentially used by

thousands of customers from simple web clients. World Wide

Web a great growth, but attacks on web increased

simultaneously. Therefore, effective security mechanisms on

web applications and addressing them seem to be very

important.

Code injection is a type of utilization caused by processing

invalid user inputs. The concept of injection attacks is to

inject (or insert) malicious code into a program so as to

change structure of SQL query. Such an attack may be

performed by adding strings of malicious characters into data

values in the form or argument values in the URL. Injection

attacks generally take advantages of improper validation over

input/output data. SQL Injection Attack or SQLIA is a type of

code injection attacks which consist of injection of malicious

SQL commands by means of input data from the client to the

application that are later passed to the instance of the database

for execution and aim to affect the execution of predefined

SQL commands. There are a number of ways a

programmer/system administrator can prevent or counter

attacks made on their systems. In these ways a programmer or

system administrator uses different techniques in

development cycle of application which contains uses

parameterized queries, least privilege, different account,

Manuscript received January 22, 2013; revised April 15, 2013.

S. Sajjadi is with the Department of Electrical, Computer and IT

Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran (e-mail:

s.sajjadi@qiau.ac.ir).

B. Tajalli Pour is with Department of Computer Engineering, Islamic

Azad University, Tehran North Branch, Tehran, Iran (e-mail:

bahar_tj@yahoo.com).

customized error message and etc. Although these techniques

remain the best way to prevent SQL injection vulnerabilities,

but their application is problematic in practice. These

techniques are prone to human errors and are not as rigorously

and completely applied as automated techniques. Whereas

most developers do make an effort to code safely, it is

extremely difficult to apply defensive coding practices

rigorously and correctly to all sources of input. Therefore

researchers suggested a range of techniques and approaches

to assist developers and compensate for shortcoming in the

application of defensive coding. In these techniques utilize

static, dynamic or hybrid analysis for detecting SQLIA. Some

methods use machine learning techniques for improvement

and training their legitimate query lists. Furthermore, also

there are other ways for countering to SQLIA which we

described in the rest of this paper.

The rest of this paper is organized as follows. We begin by

motivating vulnerability concepts and introducing SQL

injection attacks in Section II. Section III present taxonomy

of different type of SQL injection prevention and detection

approaches. In Section IV, we compare and evaluate different

SQLIA countering techniques and characterize their

deployment requirements. Finally, a brief conclusion of this

paper is provided in Section V.

II. UNDERSTANDING VULNERABILITY AND SQL INJECTION

Vulnerability is a weakness in the application which can be

a design flaw or an implementation bug. An attacker can use

such vulnerabilities, harm to the stakeholders of an

application. SQL Injection Attack, Cross-Site Scripting

(XSS), Cross- Site Request Forgery (CSRF), Broken

Authentication and Session Management are some of the

application layer vulnerabilities targeting most of the current

web application [1]. According to reports that are provided by

OWASP [2] and WHID [3], among all these attacks SQLIA

and XSS are very common. SQLIA is considered a severe of

attack affecting confidentiality, integrity and availability of

information. SQL injection vulnerability is a type of attacks

adds Structured Query Language code to a web form input

box to gain access or make changes to data. By using this

vulnerability an attacker could send his commands directly to

web application's underlying database and destroy

functionality or confidentiality. SQLIA can be classified into

five basic classes based on vulnerabilities in web applications.

This classification is illustrated in Table I.

III. REVIEW AND ANALYSIS DIFFERENT TYPES OF SQLIA

COUNTERMEASURES

Several papers in literatures have proposed ways to prevent

SQLIA in the application or database tier. We provide a

Study of SQL Injection Attacks and Countermeasures

Sayyed Mohammad Sadegh Sajjadi and Bahare Tajalli Pour

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

539DOI: 10.7763/IJCCE.2013.V2.244

comprehensive survey of SQLIA detection and prevention

techniques. SQLIA countermeasures techniques are divided

into three main approaches: static, dynamic and hybrid

approaches [4]. Static approaches are desirable during

development and testing phase of applications. Developers

should follow some techniques for SQL injection prevention.

Static approaches counteract the possibility of SQLIA at

compile time. Whereas, dynamic approaches are useful for

analysis of dynamic SQL query, generated by web application.

This approach performs countering the possibility of SQLIA

at runtime. Both approaches may need analysis or

modification of application’s source code.

In hybrid approaches exploit a combination of static and

dynamic approaches. These approaches attempt to utilize

advantages of both approaches for preventing and detecting

SQLIA. In the rest of this paper, some of the new and popular

existing static, dynamic and hybrid techniques are presented.

A. Static Approach

1) An algorithm of prepared statement replacement for

removing SQLIVs

 Thomas et al. [5] proposed a prepared statement

replacement (PSR) algorithm and corresponding automation

for removing SQLIA vulnerabilities from vulnerable SQL

statements by replacing them with secure prepared statements.

This method analysis source code containing SQLIVs and

generates a specific recommended code structure containing

prepared statements. An SQLIV exists when an SQL

statement does not keep statement structure and input

separate.

TABLE I: SQLIA CLAASIFICATION BASED ON VULNERABILITY.

Vulnerability A brief explanation

Bypassing

Web

Application

Authentication

This is the most common usage adopted by the

attackers to bypass authentication pages, used in web

applications. In this category of attack, an attacker

exploits an input field that is used in a query’s 'where'

condition part.

Getting

Knowledge of

Database

Fingerprinting

This attack is considered as pre-attack preparation by

an attacker. This category of attack is performed by

entering some inputs by which it generates an illegal

or the logically incorrect queries. The error messages

reveal the names of the tables and the columns that

cause error. The attacker also comes to know about

the application database used in the backend server.

Injection with

UNION query

In such an attack, an attacker extracts data from a

table which is different from the one that was

intended in the web application by the developer. An

attacker exploits a vulnerable parameter to change

the data set returned for a given query.

Damaging with

additional

injected query

This category of attack is generally very harmful. An

attacker enters input such that an additional injected

query is generated along with the original query.

Remote

execution of

stored

procedures

This category of attack is conducted by executing the

procedures, stored previously by the web application

developer.

PSR-algorithm collects information from application’s

source code which possible including SQLIVs. Then

generates secure prepared statement code that maintains

functional integrity. Another algorithm which called Prepared

Statement Replacement Generator (PSR-Generator) is

created for automates the generation of the prepared

statement-based code in Java, which results from the

PSR-Algorithm. PSR-Algorithm is useful for developers

which have source code contains SQLIVs and need to be

removed. Authors claim that their proposed method is remove

SQLIVs with minimal manual intervention. Note that

PSR-Algorithm is used to remove only SQLIV and does not

have to be integrated into the runtime environment.

2) MUSIC: mutation-based SQL injection vulnerability

checking

Shahriar and Zulkernine[6], proposed a MUtation-based

SQL Injection vulnerabilities Checking (testing) tool

(MUSIC) that automatically generates mutants for the

applications written in Java Server Pages (JSP) and performs

mutation analysis. Mutation is the act of intentionally

modifying a program’s code, then re-running a suite of valid

unit tests against the mutated program. Mutation testing is a

method of fault-based software testing, which involves

modifying programs' source code or byte code in small ways.

Mutation testing is done by selecting a set of mutation

operators and then applying them to the source program one at

a time for each applicable piece of the source code. The result

of applying one mutation operator to the program is called a

mutant. These mutants are killed by a test case if it is causes

different end output or different intermediate state between

the original program and a mutant. Otherwise the mutant is

remaining alive. Additional test cases should be generated for

killing live mutants. Authors proposed nine mutation

operators to inject SQLIV in source code of application which

four of them inject faults into generated SQL queries and

remaining five of operators inject faults into the API method

calls. However, MUSIC is very simple and effective way

for testing SQL queries having simple form, but it cannot

address the SQLIV of stored procedures.

3) Sania: syntactic and semantic analysis for automated

testing against SQL injection

Sania [7], is a technique for detecting SQLIV in web

applications in development and debugging phase which

using the following procedures. 1) Sania intercepts the SQL

queries between a web application and a database. Then,

collects normal SQL queries between client and web

applications and between the web application and database,

and analysis the vulnerabilities. 2) It automatically generates

elaborate attacks according to the syntax and semantics of the

potentially vulnerable spots in the SQL queries. 3) After

attacking with the generated code, it collects the SQL queries

generated from the attack. 4) Sania compares the parse trees

of the intended SQL query and those resulting after an attack

to assess the safety of these spots. 5) Finally, it determines

whether the attack succeeded or not. By analyzing the syntax

in the parse tree of SQL queries, it is possible to generate

precise pinpoint attack requests.

B. Dynamic Approach

We discuss three different popular dynamic approaches for

countering to SQLIA.

1) AIIDA-SQL [8]

This method suggests a hybrid approach based on Adaptive

Intelligent Intrusion Detection (AIIDA-SQL) for detection of

SQLIA. AIIDA-SQL combines the advantages of

Case-Based Reasoning (CBR) systems, such as learning and

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

540

adaptation, with the predictive capabilities of a combination

of Artificial Neural Network (ANN) and Support Vector

Machine (SVM). Through these mechanisms, their take

advantages of both strategies in order to trustworthy

classifying the SQL queries. In final manner, in order to

classify SQL queries as distrustful, utilized a virtualization

mechanism, which combines clustering techniques and

unsupervised neural models to reduce dimensionality of the

data.

2) A query tokenization based method

In [9], a technique based query tokenization is proposed for

detect and prevent SQL injection attacks. This method checks

user inputs whether their cause changes query’s intended

result. At the next step, this method tokenizing original query

and malicious injected query, separately. After tokenizing,

two arrays are created by all tokens. Finally, the lengths of

obtained arrays are compared. If their length be different, an

injection attack is detected.

3) A learning based approach

Bertino et al. [10] have proposed a framework based on

anomaly detection techniques to detect malicious behavior of

database application programs. The approach is as follows. At

first step, a fingerprint of an application program based on

SQL queries is created. Then, take advantages of association

rule mining techniques to extract useful rules from these

fingerprints. These rules depict normal behavior of the

database application. Finally, dynamic queries check against

these rules to detect injection attacks that not conform to these

rules.

C. Hybrid Approach

1) A method based on removing SQL query attribute

values

 Lee et al. [11] proposed a simple and efficient method for

detecting SQLIA. Their method utilizes static and dynamic

phases for finding vulnerabilities in web application. This

method removes the attribute values of SQL queries at

runtime (dynamic method) and compares them with the SQL

queries analyzed in advance (static method). It detects attacks

by comparing the structure and the grammar of the queries. If

a dynamically generated query has a different structure or

uses a different grammar from that of a static query, it is

detected. Authors shown that their proposed method has time

complexity O (1) and can implement on any type of DBMS.

2) Obfuscation-based Analysis of SQL Injection Attacks

Halder and Cortesi [12] proposes the obfuscation and

deobfuscation based technique to detect the presence of

possible SQLIA in a query before submitting it to a DBMS. In

the static phase, the queries in the application are replaced by

queries in obfuscated form. Now the Obfuscated code is a

source code that has been made difficult for human. In

obfuscation approach the possible attack injection are verified

at atomic formula level and only those atomic formulas which

are tagged as vulnerable, also this approach avoids the root

cause of SQL injection attacks in dynamic query generation.

Authors show that their proposed algorithm could detect

SQLIA with negligible runtime overhead and do not

dependent on specific application.

IV. EVALUATION

In this section, SQL injection countermeasure techniques

presented in Section III would be compared. In fact, SQLIA

countermeasures dependent on that prevent or detect SQL

injection attacks, can divide two main approaches: detection

techniques and prevention techniques. In prevention

techniques, prevent to build injection SQL statements through

user input analysis whereas in detection-focused techniques

detect attacks in runtime and prevent to gain access to

back-end database. To determine the effort and additional

elements required to use the technique, we examined the

author’s description of the technique and its current

II summarize the result of

comparison of additional factors.

TABLE II: ANALYSIS OF ADDITIONAL ELEMENTS OF EACH DETECTION AND

PREVENTION METHOD

Detection/

prevention

method

Modify

code

base

Detection prevention Additional

elements

PSR-

Algorithm

[5]

Yes N/A Code

suggestion

Developer

learning,

MUSIC[6] Yes N/A Auto N/A

Sania[7]

No

N/A

Auto

Proxy filter,

Attack code

generator

AIIDA-SQL

[8]

No

Auto

Auto

CBR engine,

Developer

learning

Query

tokenization

[9]

No Auto Auto Query parser

method

Learning[10]

No

Auto

N/A

Developer

leaning,

Fingerprinting

database

application,

Anomaly

detection

model training

sets

Removing

SQL query

attribute[11]

Yes

Auto

Auto

Developer

leaning

Obfuscation-

based

analysis[12]

No

Auto

Auto

N/A

V. CONCLUSION

This paper provides taxonomy of methods for prevent and

detect SQL injection attacks. We first define vulnerabilities in

web application and how these vulnerabilities may cause SQL

injection attacks. Then, we present a classification of SQLIA

based on vulnerability. Afterwards, divide the SQL injection

and prevention methods to three different categories: static,

dynamic and hybrid approaches. These approaches different

in the time which are counteracting to possibility of SQLIA.

The paper discusses different SQL detection and prevention

techniques for a given attack which recently been proposed.

Furthermore, we evaluated these techniques, with respect to

deployment requirements. For all the negative impact of SQL

injection vulnerability, the countermeasures are surprisingly

simple to enact. The first rule, which applies to all Web

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

541

implementation. Table

development, is to validate user-supplied data. SQL injection

payloads require a limited set of characters to fully exploit

vulnerability. Web sites should match the data received from a

user against the type (for example, integer, string, date) and

content (for example, e-mail address, first name, telephone

number) expected. We believe that each detection or

prevention technique cannot provide complete protection

against SQLIA, but a combination of the presented

mechanisms will cover a wide range of SQL injection attacks

which will culminate in a more secure and reliable database

which is protected against SQL Injection Attacks.

REFERENCES

[1] M. Shema, Seven Deadliest Web Application Attacks, Elsevier Inc. ,
2010, pp. 47-69.

[2] The Open Web Application Security Project, OWASP TOP 10 Projects.
[Online]. Available: http://www.owasp.org/

[3] Web Hacking Incident Database Project. [Online]. Available:
http://projects.webappsec.org/.

[4] W. G. Halfond, J. Viegas, and A. Orso , “A Classification of SQL
Injection Attacks and Countermeasures,” in Proc. the International
Symposium on Secure Software Engineering, 2006.

[5] S. Thomas, L. Williams, and T. Xie, “On automated prepared
statement generation to remove SQL injection vulnerabilities,”
Information and Software Technology Journal, vol. 51, 2009, pp.
589-598.

[6] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL
Injection Vulnerability Checking,” in Proc. The Eighth International
Conference on Quality Software(QSIC 08), IEEE Press, 2008, pp.
77-86.

[7] Y. Kosuga, K. Kernel, M. Hanaoka, M. Hishiyama, and Y. Takahama,
“Sania: syntactic and semantic analysis for automated testing against
SQL injection,” in Proc. the Computer Security Applications
Conference , 2007, pp. 107–117.

[8] C. Pinzon, J. F. Paz, J. Bajo, A. Herrero, and E.Corchado,
“AIIDA-SQL: An Adaptive Intelligent Intrusion Detector Agent for
Detecting SQL Injection Attacks,” in Proc. 10th International

Conference on Hybrid Intellignt Systems (HIS), IEEE Press, 2010, pp.
73-78.

[9] N. Lambert and K. S. Lin,” Use of Query Tokenization to detect and
prevent SQL Injection Attacks,” in Proc. 3rd IEEE International
Conference on Computer Science and Information Technology
(ICCSIT), July 2010, pp. 438-440.

[10] E. Bertino, A. Kamra, and J. P. Early, “Profiling Database
Applications to Detect SQL Injection Attacks,” in Proc. IEEE
Internation Conference on Performance, Computing, and
Communications (IPCCC), 2007, pp. 449-458.

[11] I. Lee, S. Jeong, S. Yeo, and J. Moon, “A novel method for SQL
injection attack detection based on removing SQL query attribute

 Mathematical and Computing Modeling Journal , vol. 55, pp.
58-68, 2011.

[12] Obfuscation-based Analysis of SQL
Injection Attacks,” in Proc. IEEE Symp. On Computers and
Communications (ISCC), 2010, pp. 931-938.

Sayyed Mohammad Sadegh Sajjadi received the

B.S in computer software engineering from Islamic

Azad University Shiraz Branch in 2007 and M.S.

degree in computer software engineering from Islamic

Azad University Qazvin Branch in 2012. His current

research interest is designing and developing schemes

and algorithms for countering to code injection

attacks. His M.S’s Thesis was a novel technique for

detecting SQL injection attacks in web applications

via machine learning methods. He is also very interested in the study of

intrusion detection methods in web application, vulnerability testing of

software, database and network security and cloud computing privacy and

security.

Bahare Tajalli Pour received the B.S. in computer software engineering

from Islamic Azad University Tehran North Branch in 2000 and M.S. degree

in Information Security from Islamic Azad University Tehran North Branch

in 2011. Her M.S.’s thesis was a method for prevention of malicious

transactions in database management. She is very interested in the study of

cryptography and foundation of computer Security, Network Security

Application, etc.

International Journal of Computer and Communication Engineering, Vol. 2, No. 5, September 2013

542

values,”

R. Halder and A. Cortesi, “

