
 

Abstract—The production database are transactions 

intensive  transactions can be insert, update on the tables, 

failover is the replica of the production server, if there is any 

change we have to implement on the production and it will be 

automatically implemented on failover or standby database. 

Now a days the data on the production server is increasing and 

we need extra storage space on production server to keep data 

and this is same required on the failover. To generate reports 

from that data will increase load on the production server and 

can affect the performance of the server. There are also some 

threats which can cause loss of data from which we have to 

protect our database like Hardware failure, loss of machine. 

Replication is one of the methods for Backup of the running 

database and its immediate failover during failure. This paper 

represents some parts for the replication techniques, failover, 

and transaction states. 

 
Index Terms—Asynchronous, synchronous, active, commit, 

rollback, RAIDb.   

 

I. INTRODUCTION 

Demand for high performance combined with plummeting 

hardware prices have led to the widespread emergence of 

large computing clusters [1]. Database systems are a key 

component of the computer infrastructure of most 

organizations. It is thus crucial to ensure that database 

systems work correctly and continuously even in the 

presence of a variety of unexpected events. The key to 

ensuring high availability of database systems is to use 

replication [2]. In this paper, we propose an approach for 

Replication of data for Backup and failover. 

Traditional database replication techniques as provided by 

both commercial and open source database management 

system (such as Oracle, IBM DB2, Microsoft SQL Server, 

PostgreSQL, or MySQL) can be applied [3]. 

The traditional approach to replication management 

involves read one copy; write all copies (ROWA). These are 

classified by three design criteria; whether an approach is 

based on changes to the database kernel or by middleware 

that uses (nearly) unmodified single node DBMS engines for 

the replicas; whether updates are allowed at any site, or only 

at a "master" primary site, and whether transaction 

propagation to other replicas is done eagerly (as part of 

commit processing) or lazily after the commit. Multi-master 

 
Manuscript received January 15, 2013; revised March 27, 2013. 

Tarandeep Singh is with the Punjab Technical University, India (e-mail: 

tarandeepskhs@gmail.com). 

Parvinder S. Sandhu is with the Rayat and Bahra Institute of Engineering 

and Bio-Technology, Mohali, Punjab, India (e-mail: 

parvinder.sandhu@gmail.com). 

Harbax Singh Bhatti is with the Department of Applied Sciences, Baba 

Banda Singh Bahadur, Engineering College, Fatehgarh Sahib (India). 

and eager replication protocol, which makes use of an 

available group communication system to guarantee a total 

order delivery which allows sites to remain consistent (so, 

1-copy serializability can be ensured). Improved 

performance came from doing the database processing at one 

site only, and applying efficient primary-keyed write 

operations at other sites, with a certification to prevent 

conflicts, that was done consistently at all sites. Using sites 

that provide SI as concurrency control, and giving one-copy 

SI rather than serializability, allows a great improvement in 

performance [4]. 

 

II. DATA REPLICATION TYPES 
 

A. Synchronous Replication 

When synchronous replication is applied, a change made 

to a data at the primary site is synchronously replicated to a 

data volume at a secondary site. This ensures that the 

secondary site has an identical copy of the data at all times. 

Write I/O operation acknowledgement is sent to the 

application only after the write I/O operation is 

acknowledged by the storage subsystem at both the primary 

and the secondary site. Before responding to the application, 

the storage subsystem must wait for the secondary subsystem 

I/O process to complete, resulting in an increased response 

time to the application. Thus, performance with synchronous 

replication is highly impacted by factors such as link latency 

and link bandwidth. Deployment is only practical when the 

secondary site is located close to the primary site. When 

evaluating the use of synchronous replication, an important 

consideration is the behavior of the storage subsystem when 

the connection between the primary and secondary 

subsystem is temporarily disrupted [5]. Synchronous 

replication does not provide protection against data 

corruption and loss of data due to human errors [5]. Snapshot 

technology must be used with synchronous replication to 

provide full protection against both losses of access to data 

and loss of data due to data corruption [5]. 

B. Asynchronous Replication 

In an asynchronous mode of operation, I/O operations are 

written to the primary storage system and then sent to one or 

more remote storage systems at some later point in time. Due 

to the time lag, data on the remote systems is not always an 

exact mirror of the data at the primary site. This mode is ideal 

for disk-to-disk backup or taking a snapshot of data for 

offline processes, such as testing or business planning. The 

time lag enables data to be replicated over lower-bandwidth 

networks, but it does not provide the same level of protection 

as synchronous replication. Asynchronous replication is less 

Replication of Data in Database Systems for Backup and 

Failover – An Overview  

Tarandeep Singh, Parvinder S. Sandhu, and Harbax Singh Bhatti  

535

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

DOI: 10.7763/IJCCE.2013.V2.243

mailto:tarandeepskhs@gmail.com
mailto:parvinder.sandhu@gmail.com


sensitive to distance and link transmission speeds [5]. 

However, because replication might be delayed, data can be 

lost if a communication failure occurs followed by a primary 

site outage. According to deferred update technique, 

transactions are processed locally at one database server and 

when committed, are forwarded for certification to the other 

servers. Deferred update replication offers many advantages 

over its alternative, immediate update replication, which 

synchronizes every transaction operation across all servers 

[5].  

The advantages and disadvantages, one may cite: 

C. Advantages  

 SAN network-based replication is storage agnostic and 

server-architecture agnostic [5]. When combined with 

mirroring or snapshot functionality, SAN 

network-based replication can be easily integrated into 

and managed in an application/database environment 

[5]. 

 Better performance, by gathering and propagating 

multiple updates together, and localizing the execution 

at a single, possibly nearby, server (thus reducing the 

number of messages in the network) [6]. 

 Better support for fault tolerance, by simplifying server 

recovery (i.e., missing updates may be treated by the 

communication module as lost messages) [6]. 

 Lower deadlock rate, by eliminating distributed 

deadlocks [6]. 

D. Drawbacks 

 Replication is limited to a single pair of servers or, at 

best, several servers running the same version of 

operating system. An additional cost or license might be 

required for each server added [5].  

 SAN network-based replication adds latency to the 

primary data path. When an application writes data to 

primary storage, the data is also written to the remote 

site, adding delay to the write operation. Thus, the SAN 

infrastructure does not act as a transparent layer 

between the server and the primary storage, which can 

make diagnosing faults more difficult [5].  

 The disadvantage of synchronous replication is that a 

write I/O operation acknowledgement is sent to the 

application only after the write I/O operation is 

acknowledged by the storage subsystem at both the 

primary and the secondary site. Before responding to 

the application, the storage subsystem must wait for the 

secondary subsystem I/O process to complete, resulting 

in an increased response time to the application. Thus, 

performance with synchronous replication is highly 

impacted by factors such as link latency and link 

bandwidth. Deployment is only practical when the 

secondary site is located close to the primary site [5].  

 The main drawback of the deferred update technique is 

that the lack of synchronization during transaction 

execution may lead to large transaction abort rates [6]. 

 

III. TRANSACTION STATES 

During its processing, a transaction passes through some 

well-defined states. The transaction starts in the executing 

state, when it’s read and writes operations are locally 

executed at the database site where it was initiated. When the 

client that initiates the transaction requests the commit, the 

transaction passes to the committing state and is sent to the 

other database sites. A transaction received by a database site 

is also in the committing state, and it remains in the 

committing state until its fate is known by the database site 

(i.e., commit or abort) [3]. Different states are shown with the 

help of following Fig. 1. 

 

Fig. 1. Example of transaction states 

A. Active State  

It is divided into two phases. 

 Initial Phase: A database transaction is in this phase 

while its statements start to be executed [7], [8]. 

 Partially Committed Phase: A database transaction 

enters this phase when its final statement has been 

executed [7], [8]. At this phase, the database transaction 

has finished its execution, but it is still possible for the 

transaction to be aborted because the output from the 

execution may remain residing temporarily in main 

memory - an event like hardware failure may erase the 

output. [7], [8]. 

B. Failed State  

A database transaction enters the failed state when its 

normal execution can no longer proceed due to hardware or 

program errors [7], [8]. 

C. Aborted State  

A database transaction, if determined by the DBMS to 

have failed, enters the aborted state. An aborted transaction 

must have no effect on the database, and thus any changes it 

made to the database have to be undone, or in technical terms, 

rolled back. The database will return to its consistent state 

when the aborted transaction has been rolled back. The 

DBMS's recovery scheme is responsible to manage 

transaction aborts [7], [8]. 

D. Committed State  

A database transaction enters the committed state when 

enough information has been written to disk after completing 

its execution with success [7], [8]. In this state, so much 

information has been written to disk that the effects produced 

by the transaction cannot be undone via aborting; even when 

a system failure occurs, the changes made by the committed 

transaction can be re-created when the system restarts [7], 

[8].  

536

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013



IV. FAILOVER 

Failover is one basic fault-tolerance function of mission- 

critical systems that are providing a constantly accessible 

service. Its purpose is to redirect requests from the failing 

system to a backup that mimics the operations of the first one. 

The whole process is supposed to happen automatically and 

transparently to the end user. Failover or switchover 

solutions are widely used whenever and wherever high 

availability is needed. Adopting such an approach is neither 

new nor original; yet, the real challenges of this work are its 

wide scope, the number of teams involved, and the 

geographically distributed nature of both the Grid and the 

related operational tools [9]. 

The failover concern played a great role in the way this 

architecture has been designed: the clear separation between 

the different modules implies indeed an easier replication 

work, as well as many possibilities of failover scenarios. 

These scenarios include partial switches, each of these 

modules being able to work with any of the replicas of the 

other modules. The failover process consists of three phases: 

the first step is to detect failure, the second step to identify 

and activate the standby resource, and the last step for the 

standby application to go active [9]. 

Data can be replicated automatically and precisely to many 

locations. However replication works as a defense if we use 

logical replication over distinct database systems. Many 

replication algorithms copy data values from the source data 

item to its replicas. Logical replication copies the command 

that caused the source data item to change. The command is 

executed at each replica’s site and, because of one copy 

serializability, results in the same new value for the replica. If 

we assume a distinct provenance (defined in the next section) 

for the database system software at each site, then the Trojan 

horse will not be replicated at all sites. An attack must 

compromise multiple, possibly heterogeneous, host programs, 

an unlikely event in practical systems. Even if the attackers 

can succeed at every site, the attack still may fail. Other 

Threat to the database system are Manual attacks are carried 

out by giving malicious commands to the database system. 

An n-person rule requires n humans outside the system to 

agree to a change to the database. Transaction control 

expressions are a more general form of this concept. They 

require multiple users to agree to specific conditions defined 

on specific steps of a transaction [10].   

 

V. REDUNDANT ARRAY OF INEXPENSIVE DATABASES 

One of the goals of RAIDb is to hide the distribution 

complexity and provide the database clients with the view of 

a single database like in a centralized architecture [11], [12].  

RAIDb controllers can offer caching to hold the replies to 

SQL queries. The controller is responsible for the granularity 

and the coherence of the cache. Additional features such as 

connection pooling can be provided to further enhance 

performance scalability. There is no restriction to the set of 

services implemented in the RAIDb controller. Monitoring, 

debugging, logging or security management services can 

prove to be useful for certain users [11], [12]. 

Three basic RAIDb levels varying the degree of 

partitioning and replication among the databases. RAIDb-0 

(database partitioning) and RAIDb-1 (database mirroring) 

are similar to RAID-0 (disk striping) and RAID-1 (disk 

mirroring), respectively. Like RAID-5, RAIDb-2 is a 

tradeoff between RAIDb-0 and RAIDb-1. Actually, 

RAIDb-2 offers partial replication of the database [11], [12].  

A. RAIDb-0 

RAIDb-0 consists in partitioning the database tables 

among the database backend nodes. A table itself cannot be 

partitioned but the different tables can be distributed on 

different backend nodes. RAIDb-0 requires at least two 

database backend, provides moderate performance 

scalability but does not offer fault tolerance [11], [12]. Fig. 2, 

“RAIDb-0 example” shows an example of a RAIDb-0 

configuration [11], [12]. 

 

Fig. 2. RAIDb-0 overview 

B. RAIDb-1 

RAIDb-1 offers a full mirroring or full replication of the 

database on the backend. It offers the best fault tolerance 

scheme since the system is still available with only one 

backend. On the minus side, there is no speedup on writes 

(UPDATE, INSERT, DELETE requests) since they have to 

be broadcasted to all nodes. Fig. 3, “RAIDb-1 example” 

shows an example of a RAIDb-1 configuration [11], [12].  

 

Fig. 3. RAIDb-1 overview 

C. RAIDb-2 

RAIDb-2 is a tradeoff between RAIDb-0 and RAIDb-1. It 

provides partial replication to tune the degree of replication 

of each database table to obtain the best read/write 

throughput. RAIDb-2 requires that each database table is 

available on at least two nodes. Fig. 4, “RAIDb-2 example” 

shows an example of a RAIDb-2 configuration [11], [12]. 

 

Fig. 4. RAIDb-2 overview 

537

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013



D. Nested RAIDb Levels 

It is possible to compose several RAIDb levels to build 

large scale configurations or meet specific needs. The next 

example is a RAIDb-1-0 configuration where a top level 

RAIDb-1 controller dispatches the requests to three full 

databases implemented with a RAIDb-0 controller. Fig. 5, 

“RAIDb-1-0 example” shows an example of a RAIDb-1-0 

configuration [11], [12]. 

 

Fig. 5. Example of a RAIDb-1-0 composition 

E. RAIDb-0-1 

This last example (Fig. 6, “RAIDb-0-1 example”) shows a 

RAIDb-0-1 composition. The top level is a RAIDb-0 

controller and fault tolerance is achieved on each partition 

using a RAIDb-1 controller [12]. 

 

Fig. 6. Example of a RAIDb-0-1 composition 

 

VI. CONCLUSION 

Applications need high scalability and availability at low 

and controlled cost. Utility computing is not limited only to 

the single database system for support and high performance. 

The purpose of this paper is to show methods of replication 

and failover for the performance upgrade for the mission 

critical and transaction intensive databases. 

REFERENCES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

538

International Journal of Computer and Communication Engineering, Vol. 2, No. 4, July 2013

[1] L. Camargos, F. Pedone, and R. Schmidt, “A primary-backup protocol 

for in-memory database replication,” in Proc. Fifth IEEE International 

Symposium on Network Computing and Applications, pp. 204-211, 

July 24-26, 2006.

[2] R. Garcia, R. Rodrigues, and N. Preguiça, “Efficient middleware for 

byzantine fault tolerant database replication,” in EuroSys '11 Proc. the 

sixth Conference on Computer systems, pp. 107-122, ACM New York, 

NY, USA, 2011

[3] J. Osrael, L. Froihofer, M. Weghofer, and K. M. Goeschka, 

“Axis2-based replication middleware for web services,” in Proc. IEEE 

International Conference on Web Services, ICWS, pp. 591-598, July

9-13, 2007.

[4] H. Jungy, H. Han, A. Fekete, and U. Rohm, “Serializable snapshot 

isolation for replicated databases in high-update scenarios,” presented 

at the VLDB Endowment, Seattle, Washington, August, 2011.

[5] P. Brouwer, “The art of data replication,” An Oracle Technical White 

Paper, Oracle Corporation World Headquarters 500 Oracle Parkway 

Redwood Shores, CA 94065 U.S.A, pp. 1-28, September 2011.

[6] F. Pedone, R. Guerraoui, and A. Schiper, “The database state machine 

approach,” in Manufactured in The Netherlands Distributed and 

Parallel Databases, Kluwer Academic Publishers, pp. 71–98, 2003.

[7] Transaction states. [Online]. Available: 

http://www.jkinfoline.com/transaction-states.html  

[8] Database transaction. [Online]. Available: 

http://it.toolbox.com/wiki/index.php/Database_Transaction 

[9] A. Cavalli, A. Pagano, O. Aidel, C. L’orphelin, G. Mathieu, and R.

Lichwala, “Geographical failover for the EGEE-WLCG grid 

collaboration tools,” in Proc. International Conference on Computing 

in High Energy and Nuclear Physics, vol. 119, 2008.

[10] J. P. McDermott, “Replication does survive information warfare 

attacks,” in Proc. the IFIP TC11 WG11.3 Eleventh International 

Conference on Database Security XI 1998, pp. 219-228, London, UK, 

UK, 1998.

[11] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “RAIDb: Redundant

array of inexpensive databases,” Institut National De Recherche En 

Informatique Et En Automatique, September, 2003.

[12] RAIDb basics. [Online]. Available: 

http://c-jdbc.ow2.org/current/doc/userGuide/html/ar01s10.html

Tarandeep Singh is a Master in Computer Applications (MCA) doing 

Doctorate from Punjab Technical University, Punjab, India. And is working 

as a Sr. Lecturer in Gyan Jyoti Institute of Management and Technology, 

Mohali, Punjab, INDIA. Email: tarandeepskhs@gmail.com

Parvinder S. Sandhu obtained his doctorate in Computer Science and 

Engineering and is currently working as Professor in Computer Science & 

Engineering department at Rayat & Bahra Institute of Engineering and 

Bio-Technology, Mohali, Punjab, INDIA. He is editorial committee member 

of various International Journals and conferences. He has published more 

than 150 research papers in various referred International journals and 

conferences. He chaired more than 100 renowned International Conferences 

and also acted as keynote speaker in different countries. His current research 

interests are Software Reusability, Software Maintenance, Machine Learning 

and Image Processing. Email: parvinder.sandhu@gmail.com

Harbax Singh Bhatti received his Ph.D in Mathematical Modeling, Partial 

Differential Equations and is currently working as Professor and HOD 

(Applied Sciences) in Baba Banda Singh Bahadur Engineering College, 

Fatehgarh Sahib, Punjab (India).


