



Abstract—Quality assessment of open source software isan

important and active research area. One of the reasons for this

permanent interest is a consequence of Internet popularity.

Nowadays, programming involves looking within a large set of

open source libraries and tools that may be reused when

developing our software applications. In order to reuse such

open source software artifacts, programmers not only need the

guarantee that the reused artifact is certified, but also that

independently developed artifacts can be easily combined into

acoherent piece of software. In this paper we describe a domain

specific language that allows programmers to describe in an

abstract level how software artifacts can be combined into

powerful software certification reports. This domain specific

language is an important system of a web-based, open-source

software certification portal. This paper introduces the

embedding of such a domain specific language as a combinator

library.

Index Terms—Process management, combinators, attribute

grammars, functional programming.

I. INTRODUCTION

The advent of the Internet is changing our lives. Not only is

it changing the way we live, but also the way we develop our

software. While in the last century building software

applications was mainly supported by programming

languages and their libraries, which provided the necessary

support to build software applications, nowadays, the way we

develop has changed: programming languages still offer

supporting libraries, but there are many more resources

available in the internet. These wide set of resources can be

other powerful off-the-shelf reusable libraries and tools,

usually available as Open Source Software (OSS).

This fact influence the way we program since developing a

particular software tool/library may be, in most cases, a

matter of looking for the right (open source)

software/libraries solutions already available. Indeed, the

Internet encourages sharing our software. This new style of

developing software, however, needs to handle three

important issues:

1) Firstly, because there is so much OSS available in the

Internetit is difficult to select the right tool/library. Thus,

we need anappropriate framework to support the analysis

of the available alternatives.

Manuscript received November 4, 2012; revised January 31, 2013. This

work is funded by the ERDF through the Programme COMPETE and by the

Portuguese Govern- ment through FCT - Foundation for Science and

Technology, project ref. PTDC/EIA-CCO/108995/2008.

Pedro Martins and João Saraiva are with the HASLab / INESC TEC,

Universidade do Minho, Portugal (e-mail: prmartins@di.uminho.pt,

jas@di.uminho.pt).

João P. Fernandes is with HASLab / INESC TEC, Universidade do

Minho, Portugal (e-mail: jpaulo@di.uminho.pt), and he is also with

Universidade da Beira Interior (e-mail: jpf@di.ubi.pt).

2) Secondly, because we may reuse different software

artifacts, developed in different contexts, we need to

integrate them into acoherent piece of software.

3) Thirdly, because we are reusing OSS, we may need to

guarantee that it satisfies certain properties before

reusing it. For example,when developing software that

handles credit card information we mayneed the

guarantee that a piece of software to be reused conforms

tospecific security guarantees. On a different context, if

weare developing software for embedded systems, we

may need toguarantee that a reused library implements

optimal memory management.

In the past, we have presented a web portal for the analysis

and certification of Open Source Software (CROSS) that

aims at improving on these three issues [1]. The portal works

as a repository for tools that certifies source code. By the

certification of a piece of software we understand the process

of analyzing its source code while producing an information

report about it.

In this paper we continue on developing this

heterogeneous and distributed analysis system, focusing on

the creation of reports. On a web portal that manages

software analysis by applying a sequence of pre-chosen,

individual and self-contained tools, managing their results

implies dealing with a huge amount of heterogeneous

information, both in their type and context. For example, the

result of tool A can be HTML code, while the result of tool

Bcan is tabular data in the form of comma-separated values

(CSV). And while these are plain text, they have different

contexts and meanings and should, therefore, be managed

differently. Furthermore, other tools can produce Scalable

Vector Graphics (SVG), showing dependency graphs, or

simply JPEG or PNG figures with statistics information.

This document is organized as follows: in Section II we

provide an overview of the motivation and potential

challenges this work faces. In Section III we introduce our

combinator language together with small examples of its

usage. In Section IV we present works that relate to ours, and

in Section VI we conclude.

II. MOTIVATION

The techniques for analyzing source code to produce in the

context of our web portal for the analysis and certification of

Open Source Software (CROSS) [1], should, either

individually or combined with others, result in the production

of reports called Certifications. Certifications are often

composed by smaller units that are capable of

communicating with each other in order to achieve a state

where the overall mechanics of each unit and the flow of

information among them is capable of producing quantifiable

results. In the remaining of this paper, we will address

ourselves to these smaller units that contribute to a general

A Combinator Language for Software Quality Reports

Pedro Martins, João P. Fernandes, and João Saraiva

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

377DOI: 10.7763/IJCCE.2013.V2.208

mailto:prmartins@di.uminho.pt

goal as Components.

In detail, a Component is a bash tool that is capable of

accessing and producing meta-data via the standard UNIX

communication channels (the standard input, STDIN, and the

standard output, STDOUT). Also, a component must be able

of receiving arguments that define the type of the information

that is received via STDIN and the type of the information

that is to be channeled through STDOUT.

Such tools can have functionalities that range from the

need to maintain software as easily as possible to the removal

of its bugs and the improvement of its overall characteristics

[2]–[7].

What is more, different, heterogeneous and distributed

teams often develop components independently, and their

development and integration in more complex Certifications

closely follows the philosophy of open source software

development itself.

In Fig. 1 we sketch the flow of information that has been

implemented in order to produce a sample Certification

called Certification 2. This is a Certification that expects

Java programs and that analyzes them according to three

distinct sub-processes that are independent with respect to

each other and therefore can be executed in parallel. One of

these processes chains a series of software units, namely

Interface Analysis andcsv2Report. Java Metrics is composed

by a simple, singular tool and the other, which is itself a

Certification calledCertification1, implements a Cyclomatic

Dependency analysis while producing an information report

by itself.

Fig. 1. The flow of information implemented in Certification 2.

We have already addressed in [8] the problem of defining

the flow of information through various Components using a

Domain Specific Combinator Language for Process

Management. Through this DSL, the user is capable of

specifying the flow of information through a number of tools,

both through sequential or parallel processes, while type

checking and process management and isolation are

automatically guaranteed.

The main issue with dealing with the flow of information

among these tools is that they will inevitably produce

different information, and by different we mean completely

diverse in character and content, while our web portal must

always produce a standard-type report. Although this

technique elegantly solves the problem of creating

multi-process Certifications, there is no control support on

the output they produced. In fact, the final report will be

composed by the union of all sub-results and one tool,

Interface Analysis, had to be supported through the

implementation of a translatorthat ensured that it would be

capable of producing information that can be concatenated

with all the other results.

The DSL that we present in this paper ensures that all the

information can be composed onto a final report, which is an

XML file, but forces the sequential computations to also

produce an XML report, forcing their programmers to either

implement that feature or to implement translator tools. What

is more, there is no support, on the final report, for the usual

subdivision and structural support documents have. The final

report produced by our web portal should be composed of

results that are sub-parts of bigger results, similar to chapters

and sections usually found on documented information.

In Fig. 2 we show a possible definition for the result of

Certification 2.

Fig. 2. Report specification in Certification 2.

While the flow of information is kept unchanged from Fig.

1, the report is now subdivided and structured. The three

initial processes that compose this Certification do not

generate three different reports. Instead, Interface Analysis

outputs a sub-result of Java Metrics. In this context,

Certification 2 produces the second part of the report, which

is structurally independent from the other two processes.

Also, we introduced a special set of combinators, which take

common formats and wrap them around XML files in order to

be united to produce a final report.

We achieve the combination of outputs by forcing the final

result shown to the user to be an XML file whose schema we

have previously defined. All the tools and analysis will

necessarily be a part of this XML file. To achieve this, we

have defined a set of combinators that take common data

types and transform them into pieces of our XML report and

that guarantee formats conformity.

We believe the combination of our process management

DSL together with this work will create an optimum

environment for software analysis. Not only management is

easily controlled to create powerful analysis, through the

work we present in this paper this analysis is a document

which is customized, easy to read and to understand and

therefore has the exact characteristics the user wants the final

report to have.

III. A COMBINATOR LANGUAGE FOR REPORT MANAGEMENT

The combinator language we is written in Haskell [9] and

propose helps controlling the final report structure and

content by providing a set of constructors that allow the easy

manipulation of such information. What is more, its

complexity is scalable, as the user can simply define the order

and position of the information to create a report that is easy

to read, add contextual information between results or even

tune the name of a section to create expressive software

reports.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

378

A. Datatypes

We start by presenting the datatypes that support our

combinator language. These are used to support the

intermediate structures between the reports specified with the

combinators and the final XML document that our

framework creates.

These datatypes are somehow similar to the structure of

XML documents themselves, with a header that carries

information related to the XML version and the encoding,

and a set of data constructors that behave like XML attributes,

on a tree-based structure, and that carry information of

another constructors. The datatypes we have defined are

presented next:

XML contains a header and a list of Sections. Sections

can contain results or a set of SubSections, with both Sections

and SubSection giving the option to customize the name of

that part of the report, although this is not mandatory.

Together with these datatypes we present a set of

combinators that aid in creating XML reports and in creating

information within the XML datatype. We also provide

functions that perform the transformation from this XML

datatype to concrete XML text documents.

B. XML Begin Combinator

First, we present the combinator that represents the

beginning of a report. This combinator is mandatory, and it is

the only one that must always appear in a report description.

Using this combinator a user can specify both a very simple

report, that represents only the information of a Tool, and a

very complex report with differentSections and SubSections

and with customized names.

Next, we present an example of the simple usage of this

combinator:

This is a very simple example, where only one tool

constitutes the report. Init is just a starting flag, designed to

help the user initiate the report. Although it is mandatory in

all reports, it has no semantic purpose and exists only to

provide syntactic sugar to our language.

When the Begin combinator receives as argument only a

tool, it automatically creates a Section in the XML report. In

fact, our reportr will always have at least one or more

Sections and 0 or more SubSections.

Similarly to other combinators, the user can always

provide a custom title for the report, as shown in the next

example.

The resulting XML produced by this report is shown next:

As stated earlier, a report will always have at least one

Section that we can clearly see in the XML document. In this

case, only one result is presented, which is produced by “tool

1”. Another important note is that our framework

automatically indents the XML report to make it easier to

read it or to change it, if necessary.

C. Section Combinator

The Section combinator is mandatory only when the user

pretends to have two or more Sections in his/her report. As

we have seen earlier, it is possible to create one report

without using this combinator, as long as the user only wants

to have the result of one tool.

When it is desired to create more than one Section, this

combinator can be used to sequence information, which may

have customized Section titles (later we will see that this

combinator can also be used to sequence SubSections).

Next, we present a report with three Sections, which

represent the results of tool1, tool2 and tool3:

In this example the user chose to customize a few Sections,

as it is the case with the second Section, which has the

titleResult of Tool2, and the case of the third Section, which

has the title: Result of Tool3. The first Section is left with a

static name. The XML report created with this sequence of

combinators is shown next:

The produced XML Report has the expected three Sections

defined with the combinators, where the last two have a “title”

attribute that carries the customized title the user chose to

give these Sections. The Section left without a name has no

attribute. By doing so, the tool that analyzes and transforms

the XML Report has the responsibility to do whatever the

user wants with these “empty titles” Sections. In the context

of our website, for example, we chose to set default names,

such as Section I, Section II, etc by defining so on

an“EXtensible Stylesheet Language” (XSL) document that

takes the XML reports and applies them to our web page, but

different users with different needs might need to hand these

differently.

D. SubSection Combinator

Similarly to the Section combinator, SubSection is not

mandatory, as the user can chose to have a report composed

only of Sections. Nevertheless, this combinator is important

<?xml version="1.0" encoding="ISO-8859-1"?>

<section title="Custom Title">
Result of tool1

</section>

<?xml version="1.0" encoding="ISO-8859-1"?>
<section>

Result of Tool1
</section>
<section title="Result of Tool2">

Result of Tool2
</section>
<section title="Result of Tool3">

Result of Tool3
</section>

Init >| (“Custom Title”, imageTranslator
tool1)

data XML = XML Header [Section]
 | Init

type Header = String

data Section

= NoTitleSection Result
 | TitleSection Title Result
 | TitleWithSubSections Title [SubSection]

 | NoTitleWithSubSections [SubSection]

data SubSection

= NoTitleSubSection Result
| TitleSubSection Title Result

type Title = String

Init >|(imageTradutor tool1)
>- ("Result of Tool2", pdfTranslator tool2)

>- ("Result of Tool3", htmlTranslator tool3)

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

379

because it increases the expressiveness of reports which can

be composed of various groups of information in Sections,

with the SubSections holding the actual results.

This combinator is composed of two primitives: one

primitive that constitutes the beginning of a sequence of

SubSections, beginSubsection, and which can be used alone

and is mandatory whenever the user wants to add

SubSections, and another primitive, >-- that combines

SubSections.

The simplest example of an application of a SubSection is

one where the user wants to have a report with only one

Section and only one SubSection, as shown next:

In this example, the user used the Begin combinator, and

applies the SubSection immediately after. This procedure

automatically creates a Section to contain the SubSection. It

is also important to notice that the user chose to give the

Section a name, Section with Subsections but leave the

SubSection anonymous. As is common with our combinator

framework, the user can always choose to give custom titles

to Sections or SubSection. Next, we present the XML

document generated:

The SubSection combinator can be used in more practical

examples, such as to set a group on results in the report. The

example shown next presents a usage of this combinators that

shows this particular case where the report is splitted into

groups of results:

This example is a little more complex, and shows the

creation of a report with two groups of tests, in two Sections

named, respectively, Memory Tests and Usability tests. The

first Section contains only one SubSection, with the result of

tool 2. The second Section, which contains the group of

results labeled Usability Tests, is more complex and contains

a set of three SubSections, each one with the result of one

analysis tool. Next, we present the XML document produced

by this report:

The XML report clearly shows this distinction between

two groups of tests into two sections. Also, the three

SubSections in the second Section are also pretty clear. We

believe our framework presents not only an elegant method to

write documentation, but also produces an elegant, easily to

understand and manipulate XML document.

E. Translators Combinator

We have seen, throughout the examples presented

previously, that we usually use primitives like

“imageTranslator” or “csvTranslator”, which we apply to

tools in order to create results to produce in our reports.

These translators are necessary because, due to the nature

of our web portal, we use a very wide and heterogeneous set

of tools, which must always be translated into a XML report.

One simpler option would be to force the tool programmers

to write tools that comply with a specific output format, but

we believe this is a burden to programmers and it will make

producing tools for our web portal harder. Therefore, we have

created a set of translators which have the responsibility of

taking common formats of information, such as “CSV” or

“PDF” files, and make them available in our report. To some

formats, these translators might do things as simple as insert

the path of the resulting file, being the responsibility of

presenting them to the user carried by whatever mechanism is

used to handle the report. For example, in the context of our

web portal, we translate the XML reports to HTML code,

where files like images or “PDF”s are displayed using HTML

primitives.

F. Creating an XML Document

We have seen and presented a set of combinators that

allow the definition of XML structured documents. This

combinators are not translated directly into an XML

document. Instead, they are translated into an intermediate

datatype, presented in Section A, which represents an

abstract definition of our final XML report. This intermediate

datatype is important, because it facilitates the extensibility

of our combinators and the introduction of new ones: as long

as the result belongs to this intermediate datatype, we always

guarantee its traduction to an actual XML document. What is

more, if static analysis needs to be performed, it is easier to

do it in this intermediate data type rather than on the actual

XML document (although both options are available to the

user).

Despite its usefulness, this intermediate, abstract

representation of a report must be translated into an actual

XML text document.

Next, we present the function responsible for such

transformation:

This function is presented as a Class in Haskell, with an

instance for every constructor from our intermediate data

types.

We have built this function so that it creates indented

reports, to make them easier to understand by the user, but

also to be easily configurable.

Init

 >| ("Memory Tests",
(beginSubsection $ pdfTranslator tool2))

 >- ("Usability tests",

(beginSubsection $ textTranslator

tool6)
>-- ("Result of Tool2", pdfTranslator

tool2)
>-- (csvTranslator tool4))

<?xml version="1.0" encoding="ISO-8859-1"?>
<section title="Section with Subsections">

<subsection>
 This is just text
</subsection>

</section>

t6 = Init >| ("Section with Subsections",
(beginSubsection $ textTranslator tool6))

<?xml version="1.0" encoding="ISO-8859-1"?>

<section title="Memory Tests">
<subsection>
 pdf_path

</subsection>

</section>
<section title="Usability Tests">

<subsection>
 This is just text
</subsection>

<subsection title="Result of Tool2">
 pdf_path
</subsection>

<subsection>
 csv_path
</subsection>

</section>

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

380

indent = 4

sectionElement = "section"

subsectionElement = "subsection"

class ToXML a where

 toXML :: Int -> a -> String

instance ToXML XML where

 toXML 0 (XML h body) = h ++ "\n" ++ (toXML 0 body)
instance ToXML [Section] where

 toXML i l = concat $ map (toXML i) l

instance ToXML Section where
 toXML i (NoTitleSection r) = spaces i ++ "<"++sectionElement++">" ++ (toXML (i+indent) r) ++
spaces i ++ "</"++sectionElement++">\n"

 toXML i (TitleSection t r) = spaces i ++ "<"++sectionElement++" title=\""++t++"\">\n" ++
(toXML (i+indent) r) ++ spaces i ++ "</"++sectionElement++">\n"
 toXML i (NoTitleWithSubSections s) = spaces i ++ "<"++sectionElement++">\n" ++

(toXML (i+indent) s) ++ spaces i ++ "</"++sectionElement++">\n"
 toXML i (TitleWithSubSections t s) = spaces i ++ "<"++sectionElement++" title=\""++t++"\">\n"
++ (toXML (i+indent) s) ++ spaces i ++ "</"++sectionElement++">\n"

instance ToXML [SubSection] where
 toXML i l = concat $ map (toXML i) l
instance ToXML SubSection where

 toXML i (NoTitleSubSection r) = spaces i ++ "<"++subsectionElement++">\n" ++
(toXML (i+indent) r) ++ spaces i ++ "</"++subsectionElement++">\n"
 toXML i (TitleSubSection t r) = spaces i ++ "<"++subsectionElement++" title=\""++t++"\">\n" ++

(toXML (i+indent) r) ++ spaces i ++ "</"++subsectionElement++">\n"
instance ToXML Result where
 toXML i (IMAGE r) = spaces i ++ r ++ "\n"

 toXML i (PDF r) = spaces i ++ r ++ "\n"
 toXML i (CSV r) = spaces i ++ r ++ "\n"
 toXML i (DOT r) = spaces i ++ r ++ "\n"

 toXML i (HTML r) = spaces i ++ r ++ "\n"
 toXML i (TEXT r) = spaces i ++ r ++ "\n"

spaces :: Int -> String
spaces i = take i aux
 where aux = ' ':aux

As we can see by the code above, it is very easy to

customize the final, generated XML document. The elements

for Section and SubSection have flags that allow the user to

easily customize the generated XML document, in case he

wants to, and even the indentation, i.e., the number of spaces

used for pretty printing the report, is something easy to

change.

We believe this translator from our abstract datatype to an

XML report is not only powerful enough to create easy to

read information, it’s easy customization allows the

adaptation of this framework to whatever needs the final user

has, either in the context of our web portal or in any other

contexts analysis reports must be easily produced.

IV. RELATED WORK

Several projects have focused on the analysis and

assessment ofsoftware, being the Squale project [10] QSOS

[11] and the Alitheia Core [12] important examples of these.

In comparison with our work, we believe that potential

users of these systems see their extensibility and

improvement limited by custom schemas of information or

domain-specific languages for plug-ins development. This is

either because these projects are based on assessment models

for OSS, or because they create unified storage systems or

even because they imply the usage of frames of reference to

create an evaluation that often depends on axis of criteria.

What is more, none of these systems has an option to

customize its results: the user is always stuck with

pre-defined information representations with no or very little

customization.

V. FUTURE WORK AND CONCLUSION

In this paper we have presented a combinator language for

software quality reports. Through it a user can easily define

software reports structurally by organizing its contents into

groups of information composed by sections and sub-sections

and even customizing their titles.

We believe the advantages of our system are two fold: the

combinators not only create an intuitive, simple and powerful

environment to create Certification reports, but it also

supports processes outputs management in general and is

upgradable to create not only XML information, as it is the

case, but also any type that suits the users needs.

Also, because we use intermediate data types and defined

functions in order to make they perform differently easy, we

believe our framework has a good potential to be adapted and

used in other information and analysis site who force into the

user pre-defined representations information, both on their

context and on their syntax.

One potential analysis technique that could be applied to

this Combinatory language is the analysis and validation of

our intermediate structure by expressing them as Attribute

Grammars (AGs) [13] i) for once, we are analyzing

tree-based structures, for which the AG formalism is

particularly suitable; ii) secondly, because AGs have a

declarative nature which in our context contributes to

intuitive implementations that are easy to reason about and to

further extend. In fact, we believe that it would be simple to

integrate in our framework advanced AG-based and well

studied techniques such as the detection of circular

dependencies [14] and the use of higher-order attributes [15].

REFERENCES

[1] P. Martins, J. P. Fernandes, and J. Saraiva, “A web portal for the

certification of open source software,” in Proc. of the 6th International

Workshop on Foundations and Techniques for Open Source Software

Certification Conference, LNCS (to appear).

[2] M. Haigh, “Software quality, non-functional software requirements

and it-business alignment,” Software Quality Control, vol. 18, no. 3, pp.

361-385, September 2010.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

381

[3] D. Stavrinoudis, M. Xenos, P. Peppas, and D. Christodoulakis, “Early

estimation of users’ perception of software quality,” Software Quality

Control, vol. 13, no. 2, pp. 155-175, June 2005.

[4] R. G. Dromey, “Software quality prevention versus cure?” Software

Quality Control, vol. 11, no. 3, pp. 197–210, July 2003.

[5] D. N. Wilson and T. Hall, “Perceptions of software quality: a pilot

study,” Software Quality Control, vol. 7, no. 1, pp. 67–75, May 1998.

[6] S. Chulani, B. Boehm, J. Verner, and B. Wong, “Workshop description

of 4th work- shop on software quality (wosq),” in Proc. the 2006

international workshop on Software quality, New York, NY, USA,

ACM, 2006, pp. 1–2.

[7] J. Cunha, J. P. Fernandes, J. Mendes, P. Martins, and J. Saraiva,

“Smellsheet detective: A tool for detecting bad smells in spreadsheets,”

in Proc. the 2012 IEEE Symposium on Visual Languages and

Human-Centric Computing, Washington, DC, USA, IEEE Computer

Society, 2012, pp. 243-244.

[8] P. Martins, J. P. Fernandes, and J. Saraiva, “A purely functional

combinator language for process management,” in Proc. the 1st

Symposium on Languages, Applications and Technologies, Braga,

Portugal, pp. 51-69.

[9] S. P. Jones, Haskell 98 Language and Libraries: the Revised Report,

2003.

[10] Squale: Front page. (August 2012). [Online]. Available:

http://www.squale.org

[11] QSOS: Front page. (August 2012). [Online]. Available:

http://www.qsos.org

[12] Alitheia Core: Front page. (August 2012). [Online]. Available:

http://www.sqo-oss.org

[13] D. E. Knuth, “Semantics of context-free languages,” Mathematical

Systems Theory 5, vol. 1, pp. 95-96, 1971.

[14] J. P. Fernandes and J. Saraiva, “Tools and libraries to model and

manipulate circular programs,” in Proc. the ACM SIGPLAN 2007

Symposium on Partial Evaluation and Program Manipulation, ACM

Press, 2007, pp. 102–111.

[15] D. Swierstra and H. Vogt, “Higher order attribute grammars,”

International Summer School on Attribute Grammars, Applications

and Systems. LNCS, Springer-Verlag, vol. 545, pp. 48–113, 1991.

International Journal of Computer and Communication Engineering, Vol. 2, No. 3, May 2013

382

Pedro Martins is a Ph.D student at the Department of

Informatics, University of Minho, Portugal. He

obtained his Master's degree in 2001, where he

developed language extensions to the Matlab

programming environment. Currently he is

researching software quality methodologies for Open

Source Software.

João F. Paulo has graduated in Mathematics and

Computer Science from the University of Minho, in

2004 (best of class), where he conducted his graduate

thesis.Later, in March 2009, he received his Ph.D.

degree from the same university, following his work

on the Design, Implementation and Calculation of

Circular Programs. In his research he pursues

rigorous ways to reason about programming, which he

has successfully been able to apply in the context of functional

programming, spreadsheets, language engineering and bidirectional

transformations, and in the context of several research projects.

João Saraiva studied systems and software

engineering (Licenciatura em Engenharia em

Sistema e Informáticos, 1986-1991) and Computer

Science (MSc. defended in July 1993) at the

Department of Informatics at Minho University, after

which he went to Utrecht University, The

Netherlands, where he worked under Prof. Dr.

Doaitse Swierstra supervision on his Ph.D. thesis. He

defended the thesis in Utrecht in December 1999, and, then, returned to

Minho University where he is now an auxiliar professor at the Department of

Informatics.

