

Abstract—This work confers an application, which makes
possible to use a Bluetooth enabled mobile phone to remote
control Traffic Signals connected to the personal computer. It
can also be used to control other computer applications such as
Emergency and Road Map. It is a client – server based
application, which makes use of powerful Java technology to
achieve its end. The program works on a variety of Bluetooth
enabled mobile phone and is compatible with majority of
Bluetooth stacks.

Index Terms—Bluetooth, mobile phones, home networking,
PAN, wireless networks, J2ME, java.

I. INTRODUCTION
An electronic device, which has intruded our life, more

than any other device are mobile phone. It keeps us
connected to every part of the world all the time. It contains
some of our most guarded secrets. It is our notepad, guide,
alarm and what not. It looks as if sometime in the future
everything would be possible to do by a mobile phone. Our
work also is a step to empower this small device. It enables
a mobile phone with Bluetooth to control a computer system
and all the hardware attached to it.

II. MOTIVATION BEHIND THE WORK
Simply speaking, Bluetooth enabled remote control is a

remote control for a personal computer. The interesting
thing is that the remote control is nothing but your mobile
phone. Your mobile phone acts as a remote control for the
applications present in your computer. For instance, you can
know the details about road map and emergency services
present in your computer with the help of your mobile
phone.

Infrared is normally used by a remote control of television.
But Bluetooth enabled remote control uses Bluetooth. Why?
Because many mobile phones today contain Bluetooth and
similarly many personal laptop and computer are also
coming equipped with Bluetooth. Thus instead of using
extra hardware required by infrared remote control, we can
use already available Bluetooth hardware. So this gives us a
major advantage i.e. No extra Hardware Cost. Bluetooth
Enabled Remote Control is a software program. Part of it
resides in a computer and a part in mobile phone. Each
Bluetooth hardware requires a program called Bluetooth
stack to be installed before use. Different vendors have
different Bluetooth stacks and most of the time they are

Manuscript received February 24, 2012; revised april 27, 2012.
G. Manikandan is Research Scholar, Sathyabama University, and

Chennai. (e-mail: mani4876@gmail.com)
 S. Srinivasan is with Director of Affiliation, Anna University of

Technology Madurai, and Madurai.

incompatible with each other. We have tried to make
Bluetooth enabled Remote Control generic and successfully
achieved it.

III. OPERATIONAL OVERVIEW
The system basically involves communication between a

mobile phone and computer application.

Fig. 1. Data exchange

A computer and a mobile phone can communicate with

each other using ports. Similar to two islands which
communicate with each other using ship ports or airports.
Technically we call them COM ports. Data can be
exchanged using ports i.e. port of mobile phone and port of
computer. This data is known as commands. When the
commands are received from the user’s Mobile Phone the
server accepts and produces the desired operation on the
Personal Computer. The server has been implemented in
J2SE and operations are produced in a variety of ways such
as by producing virtual key presses, calling different
executable files.

IV. SYSTEM COMPONENTS
The “Bluetooth enabled Remote Control” has two

components, namely
1) Client Program
2) Server Program

V. CLIENT PROGRAM
Client program uses Bluetooth API to create Bluetooth

connection with the computer. The “Client Program” has
been implemented in J2ME [1]. The jar file has to be
transferred and installed on the Mobile Phone. After opening
the application the user has to select “Search” from the
menu so that all the nearby Bluetooth devices appear on the
mobile screen.

This operation takes 20 to 40 seconds under normal
circumstances. This time for searching can be eradicated if
the same Personal Computer is used again and again by
storing the serial port service URL and using it directly to
open connection. When the list of operations is displayed,
user can select the appropriate operations (Personal

Traffic Control by Bluetooth Enabled Mobile Phone
G. Manikandan and S. Srinivasan

International Journal of Computer and Communication Engineering, Vol. 1, No. 1, May 2012

66

Computer on which Server Program is installed). Then
pairing of the operations occur and using the 48 bit
Bluetooth address of the Personal Computer a serial port
connection is established between the Personal Computer
and the Mobile Phone.

After this a list of operations are appear on the screen;
 Traffic Signals
 Emergency
 Road Map

On selecting “Traffic Signals” the program displays the
following list;

 Stop
 Go
 Etc.

On selecting “Emergency” the following menu appears;
 Ambulance
 Fire
 Police
 Exit

Now we will discuss the internal operations, which are
performed by the “Client Program”. Firstly the program
discovers all the nearby devices using startInquiry() [2].

Once the device is discovered a RFCOMM Stream
connection or a virtual serial port connection is established
with the Personal Computer and the Interface three is
displayed to the user. On the selection of an option from a
sub menu a command is sent to the “Server Program”.

This command is actually a 5-character code. The right
most character is identified as character 0.

Character 4,3,2,1 defines the application on which the
operation has to be done. Character 0 defines the operation,
which has to be done on the application specified by the
character 4,3,2,1. E.g. If the user selects Previous from the
Interface “Road Map” then the following code is generated:
aaabc Here aaab is for Road map and c stands for Previous.

VI. SERVER PROGRAM
The “Server Program” has been implemented using J2SE.
Interfaces of Server Program
The server has only one interface, which is to be used by

the user to select the virtual COM port where the Bluetooth
serial port server is running.

The interface is shown below.

 Fig. 2. Server
As soon as the user selects a COM port and presses the

Open Port button the server will start and will run in the
system tray hereafter. The system tray interface of server is
shown in Fig. 3.

Fig. 3. Server in windows tray

VII. OPERATIONS
The commands received from the client will be decoded

and the corresponding action will be performed by the
server. The server has four classes namely Blue,
TrayInterface, W32Util, AlertDialog.

Blue class is the main class of server. This class uses
driver “com.sun.comm.Win32Driver” to access various
functionality of the Virtual serial ports. The available COM
port list is then read using a separate module of the Blue
class. To open a port for reading, on selected COM port an
independent module is executed. In this module a module is
used for reading command on this port. In order to avoid
errors exception-handling [3] has been very efficiently used.
Errors are reported to the user using class AlertDialog.

To start reading commands in a stream an object of
InputStream [4] class is build by calling getInpuStream [5]
on an object of SerialPort class. The parameters are set on
serial port using setSerialPortParams. The string received
on serial port will be passed on to decode module of
W32Util class.

In the decode module of W32Util class, command is
decoded and the desired action is performed. The characters
4,3,2,1 of command are used to set the focus on the
specified application window utilizing open source package
org.jawin. The character 0 will specify the task to be
performed on the application window by performing virtual
key press using Robot [6] class. To open executable file the
exec module of Runtime class is used [7]. To map the
window handles with their title, the Map data structure of
java.util library is used [8]. Taking an example of “Road
map”, when user selects the Road map in Remote Control
(in interface three), the client will send command “aaaaz”
through Bluetooth to the server.

When the server will receive the command, it will decode
it and upon decoding it will open Google Map using URL
command of class Runtime. When the server will receive

International Journal of Computer and Communication Engineering, Vol. 1, No. 1, May 2012

67

the command
aaaaa it will decode it and recognize that it is the search

command for Google map. The server will activate the
window and bring it on top of all other windows. Then it
will generate Ctrl+P using keyPress module of Robot class.

VIII. HARDWARE INTERFACING
It is also possible to control the devices connected to the

LPT parallel port using Bluetooth enabled Remote Control.
The data pins are turned low or high through an application
made in Visual Basic.

“Inp” and “Out” are used to receive and output signals on
the LPT.

Fig. 4. Circuit to control traffic signal devices

Server calls the executables to send high and low signals
to parallel port. Circuit to glow LED is shown in figure 5 [8].
The circuit to control Traffic Signals such as “Emergency”
is shown in figure 4 [9]. The load will be connected to
Communication Devices.

Fig. 5. Simple LED circuit diagram.

IX. CONCLUSIONS
This problem can be solved in two ways COM based

solution: The COM-based solution is based on virtual COM
ports created by both communicating devices. From the
programmer’s point of view, using a virtual COM port is
similar to using a normal COM port [3].

JSR-82 based solution: This solution is based on JSR-
82[10], which is the Java API defined for using Bluetooth in
Java ™ ME devices. J2SE™ [11] used in Personal
Computers does not support the JSR-82 API by default.
There are third-party implementations for the JSR-82 API to
be used with J2SE. These third party JSR-82
implementations are based on existing Bluetooth stacks in
computers and usually only implement the API over

Bluetooth stacks [14] services. One example of JSR-82
implementation for J2SE is BlueCove
(http://bluecove.sourceforge.net/). BlueCove works with the
Windows XP Service Pack 2 Bluetooth stack (and all
Bluetooth devices it supports). The COM-based solution is
not Bluetooth stack specific and hence could be used on a
variety of Bluetooth stacks such as IVT Bluesoleil,
Microsoft Bluetooth Stack (Windows XP Service Pack 2
Bluetooth stack), and Widcomm [15] Bluetooth Stack etc.
This was the reason for choosing it as the solution to
problem one.

We have used NOKIA 6600 as the Mobile Phone to run
client. The server was tested over IVT Bluesoleil and
Microsoft Bluetooth stacks. Both the components of the
Bluetooth enabled Remote Control worked as expected. The
operations were executed in real time. All the work was
tested on Microsoft Windows 2000 and Microsoft Windows
XP SP2 operating systems.

The following is list of phones which are expected to
support the Client Program: Nokia 6600, 6681, 6682, 6680,
9500, 9300, 6620, 7610, 6630, 6260, 6670, 3230, 6230,
6255, Motorola A1000, Sendo X2, Siemens SK 65, Siemens
S65 / S66, Panasonic X700, Sony Ericsson P900, Sony
Ericsson P910, BenQ P30, BenQ P31.

X. FUTURE WORK
In the future, Bluetooth enabled Remote Control could

include the capability to control the serial port [12] and USB
[13] of the computer system. It could also display the
Personal Computer screen on the Mobile Phone using object
push service.

REFERENCES
[1] M. A. Mazlan, “Stress Test on J2ME Compatible Mobile Device,”

Innovations in Information Technology, pp. 1 – 5, 2006.
[2] H. Schildt, “The Complete Reference J2SE 5,” Tata McGraw Hill,

2005.
[3] P. A. Buhr and W. Y. R. Mok, “Advanced exception handling

mechanisms,” in IEEE Transactions on Software Engineering,
Volume 26, pp. 820 – 836, 2000.

[4] S. Microsystems, “InputStream (Java 2 Platform SE v1.4.2),”
modified on June 21, 2005, Retrieved on December 26, 2006, from
ttp://java.sun.com/j2se/1.4.2/docs/api/java/io/InputStream.html.

[5] Sun Microsystems, Inc, “CommPort,” Modified on July 02, 2005,
Retrieved on December 26, 2006, from
http://java.sun.com/products/javacomm/
reference/api/javax/comm/CommPort.html

[6] Sun Microsystems, Inc (2003), “Robot (Java 2 Platform SE v1.4.2)”,
Modified on June 21, 2005, Retrieved on
January10,2007,from,http://java.sun.com/j2se/1.4.2/docs/api/java/awt/
Robot.html

[7] Sun Microsystems, Inc (2003), “java.util(Java 2 Platform SE v1.4.2)”,
Modified on June 21, 2005, Retrieved on January 10, 2007, from
http://java.sun.com/j2se/1.4.2/docs/api/java/util/package-
summary.html

[8] S. Nathan, N. Shammas, and S. Grainger, “The future of high-power
conventional semiconductor based Light Emitting Diodes (LEDS)
against Organic Light Emitting Diodes (OLEDS),” in 42nd
International Universities Power Engineering Conference, UPEC
2007, pp. 697 – 700.2007.

[9] R. Li ,“Home- Electrical- Control.pdf,” Modified on June 10, 2004.
[10] P. D. Garner, “Mobile Bluetooth networking: technical

considerations and applications” in 4th International Conference on
3G Mobile Communication Technologies, pp. 274 – 276.2003.

[11] S. Vinoski, “Java Business Integration,” in IEEE Internet Computing,
Vol. 9, pp. 89 – 91.2005.

[12] M. R. Samady, M. R. Movahedin, M. Fakhraie, A. Zakeri, and G.
Dezfuli, “A Implementation of serial port interconnections for

International Journal of Computer and Communication Engineering, Vol. 1, No. 1, May 2012

68

integrated circuits,” The Eleventh International Conference on
Microelectronics, pp. 291 – 294, 1999.

[13] X. K. Zhu; L. X. Xu, and H. J. Yong, “USB Interface Data
Acquisition System Hardware Design,” in Chinese Control
Conference, pp. 1405 – 1410, 2006.

[14] D. Groten and J. R. Schmidt, “Bluetooth-based mobile ad hoc
networks: opportunities and challenges for a telecommunications

operator,” IEEE VTS 53rd Vehicular Technology Conference, Vol. 2,
pp. 1134 – 1138, 2001.

[15] C. Wang; Z. Shao, and M. Fujise, “Design of upper-layer protocol
emulator for SDR prototype of IEEE 802.11g and Bluetooth,” in
IEEE International Symposium on Communications and Information
Technology, Vol. 2, pp. 1118 - 1121 , 2004.

International Journal of Computer and Communication Engineering, Vol. 1, No. 1, May 2012

69

