
  
Abstract—Text classification is one of the important 

problems being solved in information retrieval. However, 
traditional single-label classifiers are no longer sufficient and 
multi-label approaches are becoming more relevant. There 
have been a lot of proposals for multi-label learners and in our 
work, we tried applying ensemble techniques, which have 
proven to be effective in solving other multi-label classification 
problems, to combine them. We implemented seven ensemble 
techniques presented in previous works and evaluated their 
performance. We have found that some of the ensemble 
classifiers outperform all of the individual classifiers, namely 
mean and top3 techniques. We have also found Calibrated 
Label Ranking to be a very useful multi-label learner for text 
classification with a small amount of labels. Ensemble 
techniques have thus proven themselves to be applicable and 
beneficial to the domain of text classification. 
 

Index Terms—Text classification, multi-label classification, 
ensemble techniques 
 

I. INTRODUCTION 
In many fields, the labeled data may be insufficient in 

quantity while the unlabeled may be vast. When it comes to 
the domain of textual data, the reasons for classification of 
newspaper articles, academic papers or aviation safety 
reports as in our work are obvious. Manual classification of 
existing documents or of the extensive amount of newly 
created documents is unfeasible. It is not only time 
consuming and expensive, manual annotators may also 
produce diverse and inadequate classifications. All these 
limitations have led to the development of automatic multi-
label classifiers. Using ensemble techniques Sanden and 
Zhang [4] were able to obtain better results in multi-label 
music genre classification than just using a single classifier. 
In this paper, our aim is to apply and evaluate various 
ensemble techniques on multi-label text classification. 

The data set examined in this paper is a subset of the 
Aviation Safety Reporting System (ASRS) data set. The 
collection tmc2007 contains 28596 NASA aviation safety 
reports in free text form with 49060 discrete attributes 
corresponding to terms in the collection. Each document is 
represented as a term incidence vector. The safety reports 
are provided with 22 labels, each of them representing a 
problem type that appears during flights. For our purposes, 
subset containing 2000 randomly selected instances was 
used. In order to reduce the computational costs of 
experiments, we used a set of 500 features. The 500 features 
were selected in compliance with Tsoumakas and Vlahavas 
[10]. For each label the χ 2

feature ranking method was 
used to obtain a ranking of all features for that label. The top 
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500 features were selected based on the their maximum rank 
over all labels [10]. Average cardinality in the collection is 
2.2. 

The rest of the paper is organized as follows. In the next 
section we provide a summary of related work. After that, 
we briefly describe multi-label classification algorithms, 
classifiers and ensemble techniques. In section 4 we present 
the experiment setup. In section 5 we discuss the results and 
finally, section 6 concludes our work. 

 

II. RELATED WORK 
Ensemble methods combine results of multiple predictive 

models to achieve better performance than using any of the 
predictive models separately. Ensemble techniques 
originated in bagging predictors [1], which is a method that 
trains multiple versions of a predictor and which relies on 
their plurality vote when predicting a class. Bagging 
predictors and other ensemble techniques [4] have shown a 
substantial increase in accuracy. The ensemble methods also 
tend to produce better results with models showing high 
diversity among each other. 

Some work on ensemble techniques has been done by Shi, 
Kong, Yu and Wang [5]. They give a study of multi-label 
ensemble learning with focus on building a set of learners. 
Their proposed solution can efficiently improve the 
generalization ability of multi-label learning system and 
hence enhance the predictive performance of the classifier. 

The work of Kubat, Sarinnapakorn and Dendamrongvit 
[3], deals with induction in multi-label text classification. 
They propose an induction technique of a set of 
subclassifiers that are applied on a same training set but use 
different features, and how to combine their outputs. 

Sanden and Zhang [4] propose a set of ensemble 
techniques to obtain better results as with individual multi-
label classification algorithms. These techniques also help to 
overcome the drawbacks of individual classifiers. Their 
experimental study deals with music genre classification but 
can be beneficial for other domains as well. 

 

III. MULTI-LABEL CLASSIFICATION ALGORITHMS 
The task of multi-label classification is to produce output 

of (d i , Li) from a collection of possible 
labels C= {c1 , c2 ,... , cN } for each document in the test 
dataset of Dt= {d 1 , d 2 , ... , d m} , given the training 
dataset Dr= {(d 1 , L1) ,(d 2 , L2) ,... ,(d n , Ln)} , 
where Li�C . The approaches performed to solve this task 
can be divided into two categories, problem transformation 
method and algorithm adaptation method [6].  

The problem transformation method works by 
transforming the multi-label classification problem into one 
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or multiple single label classification problems. Hence, 
using a single label classifier as a base of multi-label 
classifier. The algorithm adaptation method works by 
handling the multi-label classification problem directly, by 
extending the capability of a certain classification algorithm. 

We use five different multi-label classification algorithms 
as components for the ensemble techniques. The details of 
the algorithms can be found in [8] and [11]. 

Random k-Labelset (RAkEL) randomly creates n 

different subsets Ci�C of a label set C with each having k 

distinct labels. The classification model for each Ci is built 
using Label Powerset (LP) method that treats each 

member ci j of powerset 

of Ci , P (Ci)= {{} , {ci 1} , {ci 2} ,... , {ci 1 , ci 2 , ... , ci k }}
as a single label, and uses single label classifier to produce 
the model. The outputs from n different models of LP 
classifier are combined to get the final multi-label 
classification result. 

Calibrated Label Ranking (CLR) learns from the training 

data by creating a model for each distinct pair of (ci , c j) , 

where ci≠ c j . An additional virtual label v is added to the 
model, resulting in q (q+ 1)/2 models to be built, where q 
is the number of labels in C. The virtual label v is used to 
differentiate the positive and negative labels in the final 
classification results. A model is built for each pair using a 
single label classifier that only takes training data which 

contain ci or c j (but not both) as its label. The final 
classification result is produced by combining all models. 

Multi-label k-Nearest Neighbour (ML-kNN) extends the 
idea of kNN method to perform a multi-label classification. 
Given a test document d, we identify N(d) as the k nearest 

neighbours of d. The q-dimensional vector
�Cd is created 

where the i-th dimension of
�Cd represent the number of 

members in N(d) having the i-th label. The final 
classification result is calculated using Maximum A 
Posteriori (MAP) principle, that estimates how likely it is 
for d to have the i-th label given its j ( j< k ) nearest 
neighbours have the i-th label. 

Hierarchy of Multilabel Classifiers (HOMER) learns from 
training data by constructing a hierarchy tree of labels. The 
root of the tree contains all labels in C. Starting from the 
root node, the labels contained in the parent node are 
divided into k children nodes. Each children node contains a 

subset labels Ci , where Ci is a subset of the labels in its 
parent node. The process continues recursively in a top 
down and depth-first manner. A balanced clustering 
algorithm is proposed in [7] to perform the task of dividing 
the labels. For each internal (non-leaf) node, a meta-
label μ is created, to represent the node's label as a 
collection of labels of its children. The multi-label classifier 
is then trained at each node to create a model that classifies 
its children. In the classification process, a test document d 
is classified starting from the root to get the final resulting 
labels. 

Instance Based Logistic Regression (IBLR) combines the 

instance based learner algorithm with logistic regression 
method. The basic idea is to consider labels of neighbouring 
instances or documents as additional features. This approach 
is to ensure that the interdependencies between class labels 
are taken into the classification. More detailed explanation 
of this algorithm can be found in [2]. 

A. Ensemble Techniques 
In this paper, we adapt ensemble techniques presented in 

[4] into our experiment. For a test document d, a multi-label 
classifier Kj produces two kinds of N-dimensional vectors, a 
score vector and a bipartition vector. The score vector 
�S j= {s1

j , s2
j ,... sN

j } contains probability or confidence 

values si
j

for  i-th label assigned by a classifier Kj. The 

bipartition vector
�B j= {b1

j , b2
j ,... bN

j } contains binary 

prediction values bi
j

with value 1 if the classifier predicted 
document d  can be assigned to i-th label and 0 otherwise. 
The ensemble techniques presented below are categorized 
based on the type of the output of the classifier. 

B. Bipartition-Based Ensemble 
Bipartition-based ensemble takes bipartition 

vector �B j from each classification algorithm and combines 
them together to get the final multi-label classification. We 
denote the resulting bipartition vector 

as �Bens= {b1
ens ,b2

ens , ...bN
ens} . The operation to combine 

the vectors can use simple boolean operations or by simply 
calculating the number of occurrences of the positive 
classification for each label.  

The Intersection Rule uses the boolean AND on each 

column i of each vector
�B j

, denoted as
bi

ens=∧
j
bi

j

. This 
rule represents the agreement by all classifiers. 

The Union Rule uses the boolean OR. In order to get the 

result, each column i in vector
�B j

is combined 

as
bi

ens=∨
j
bi

j

A document will be assigned the i-th label if 
at least one of the classifiers gives value 1 for that label. 

The Majority Vote Rule takes the majority of the label 
assigned by the classifiers, and can be denoted 

as: bi
ens= 1 if A(1)>A(0) otherwise 0 where A(1) is the 

number of classifiers that give value 1 for i-th label and A(0) 
the number of classifiers that give value 0. 

C. Score-Based Ensemble 

Score-based ensemble works on score vector �S of the 
classification algorithms. We denote the resulting score-

based vector as
�Sens= {s1

ens , s2
ens , ... s N

ens} . The resulting 
classification is determined by using comparisons or by 
averaging the value for each label. 

The Minimum Rule takes the lowest score assigned by 
classifiers for each label. It is calculated as 
si

ens= min j(si
j) . 

Contrary to the Minimum Rule, the Maximum Rule takes 
the highest score assigned by classifiers for each label. It is 
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calculated as si
ens= max j(si

j) . 
The Mean Rule takes an average of the value for i-th label 

from all classifiers. For each column i, the value is 

calculated as
si

ens=∑
j

(si
j)/ M

, where M is the number of 
classifiers used. 

Top-k Rule is proposed in [4], the rule takes the average 
of the k largest values only. The value k is a constant 
determined in advance. Value is calculated 

as si
ens= avg (topk j(si

j)) . 
 

IV. EXPERIMENT SETUP 
To perform the evaluation, we used the Mulan [9] open 

source library. We implemented the ensemble techniques on 
top of the provided interfaces and used the included 
evaluation framework to perform 10-fold cross-validation 
for all the individual multi-label learners and the ensemble 
techniques. 

The dataset used was obtained from the Mulan website 
(http://mulan.sourceforge.net/datasets.html). The 28596 
instances of the TextMining Challenge were randomly 
stripped down to about 2000 instances to make running the 
experiments feasible on our equipment. Instead of the full 
data where every document is represented by 49060 term 
incidence booleans, we used a stripped down version 
processed by feature selection which uses only the 500 most 
important terms. Again, this was done to make the execution 
of the experiments viable on our machines. 

The 5 constituent classifiers were set up using provided 
default or customary settings. This means that RAkEL was 
using Label Powerset as the internal multi-label learner 
which in turn used J48 decision trees for single-label 
classification. CLR used SVM as the internal classifier, 
which was trained using the SMO learner with a linear 
kernel. ML-kNN and IBLR were initialized using the default 
implementation of their constructors. For HOMER, we used 
Binary Relevance as the internal classifier which in turn 
used SVMs for binary classification. The number of clusters 
was set to 2 and the balanced clustering method was used 
(these settings were taken from the evaluations done in [7]). 

 

V. RESULTS 
The results of our experiments can be seen in Tables I and 

II with the best achieved values highlighted in bold-face. 
First, we give an explanation of the measures and their 

abbreviations used in the two tables. HL (Hamming Loss), 
SA (Subset Accuracy), Recall (Example-based Recall), 
Accu. (Example-based Accuracy), MicroP (Micro-averaged 
Precision), MicroR (Micro-averaged Recall), MicroF1 
(Micro-averaged F1), AP (Average Precision), CO 
(Coverage), OE (One Error) and RL (Ranking Loss) are all 
evaluation measures described in [11]. IE (Is Error) is the 
relative frequency of the predicted label set being different 
from the true label set. ESS (Error Set Size) represents the 
number of label pairs where an irrelevant label was ranked 
above a relevant one and is thus basically isomorphic to the 

Ranking Loss measure. MicroAUC is the micro-averaged 
area under the ROC curve. 

Some expected statistics are conspicuously missing. 
Example-based precision is not given since for some 
examples, the positive rate of the classifier might be zero 
and precision is thus not defined. Therefore, the example-
based precision, which is meant to be the average of such 
precision values, is not defined either. The same goes for the 
example-based F1 measure which is a function of the 
precision and recall measures. 

Also missing are all macro-averaged measures. This 
follows from the fact that for some labels, the statistic 
cannot be defined due to the contingency tables being 
degenerate. Therefore, an average over undefined values 
stays undefined. Micro-averaged measures, on the other 
hand, are fine, as they average the contingency tables for all 
the labels and then compute the statistics from the final 
contingency table, which eliminates the probability of the 
contingency table being degenerate. 

A. Analyzing the Results 
Let us start with the bipartition-based classifiers whose 

results are posted in Table 1. For all the first four example-
based measures, CLR seems to be the best individual 
classifier, which might lead us to think that the ensemble 
techniques will fair worse as no measure would make us 
prefer any other method. The micro-averaged measures 
however reveal that some methods might be actually 
advantageous in some situations (see RAkEL's micro-
averaged precision, which is higher than that of CLR). This 
paints a different picture than [4] where CLR was not the 
best performer and if it excelled in something, it was 
precision. This goes to show that different classifiers end up 
being more or less useful given the data they are used on. 

When we consider the ensemble techniques, performance 
tends to increase in some measures and decrease in others. 
The majority vote technique ends up being better in 
Hamming Loss and Subset Accuracy, but loses to CLR in 
Accuracy and Micro-averaged F1. This leads us to believe 
that bipartition-based ensemble techniques do not offer a 
significant improvement in general performance. However, 
one-sided measures like precision and recall can be greatly 
improved by using the intersection and union techniques 
which might be handy for specific applications. 

Let us now turn to the results yielded by the score-based 
classifiers on display in Table 2. The individual classifiers 
are clearly dominated by CLR which offers the best 
performance for all the evaluation metrics, confirming its 
appropriateness for the problem at hand. In face of this one-
sided result, we might not expect the ensemble methods to 
provide much of an improvement. However, in all of the 
metrics but IE, the mean and top3 ensemble techniques offer 
better performance than CLR alone. This corroborates the 
results seen in [4], where the mean and top3 techniques 
consistently beat the individual classifiers as well. Similarly 
to [4], top3 seems to be the better of the two techniques. 

 
 

VI. CONCLUSION 
We have seen that the ensemble techniques presented in 
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[4] have universal applications and can be easily used for 
text classification. We have seen that the top3 and mean 
ensemble techniques are the best performers as in Sanden's 
and Zhang's research. In our situation, one of the preexisting 
classifiers dominated the other ones in performance, yet still 
the ensemble techniques benefited from including all of 
them. Finally, we have also discovered that CLR seems to 
be a very useful multi-label learner for text classification 

with a small amount of labels. 
This work could be continued by examining more 

sophisticated ways of integrating the individual classifiers 
into an ensemble classifier. We might also try adding 
different multi-label learners to the mix or try creating 
ensemble classifiers using only some learners which 
perform exceedingly well. Another direction might be to try 
and apply ensemble techniques to another problem or field. 
 

TABLE I: EXPERIMENT RESULTS FOR THE BIPARTITION-BASED ENSEMBLE TECHNIQUE 

 HL SA Recall Accu. MicroP MicroR MicroF1 

RAkEL 0.0702 0.2310 0.5976 0.4967 0.6811 0.5578 0.6127 

CLR 0.0699 0.2349 0.6841 0.5322 0.6503 0.6475 0.6485 

ML-kNN 0.0762 0.1697 0.5041 0.4335 0.6666 0.4720 0.5518 

HOMER 0.0799 0.2115 0.6604 0.5029 0.5958 0.6218 0.6081 

IBLR 0.0572 0.1772 0.5209 0.4429 0.6679 0.4890 0.5642 

Intersection 0.0772 0.1433 0.3173 0.3078 0.8354 0.2823 0.4214 

Union 0.0929 0.1513 0.8474 0.5202 0.5221 0.8194 0.6374 

Majority vote 0.0639 0.2559 0.6153 0.5300 0.7300 0.5709 0.6402 

 

TABLE II: EXPERIMENT RESULTS FOR THE BIPARTITION-BASED ENSEMBLE TECHNIQUES. 

 AP CO OE IE ESS RL MicroAUC 

RAkEL 0.7385 5.9043 0.2469 0.5898 5.9793 0.1263 0.8673 

CLR 0.8023 2.8701 0.2349 0.5067 2.2828 0.0507 0.9399 

ML-kNN 0.7204 4.2654 0.3126 0.6371 4.0329 0.0930 0.9048 

HOMER 0.6276 8.8283 0.3579 0.6805 10.7272 0.2261 0.7875 

ILBR 0.7317 4.0045 0.2972 0.6222 3.7347 0.0855 0.9098 

Minimum 0.6344 9.3977 0.2747 0.6765 11.5653 0.2450 0.7716 

Maximum 0.7535 2.9771 0.3484 0.5734 2.6181 0.0585 0.9328 

Mean 0.8039 2.8153 0.2314 0.5102 2.2100 0.0469 0.9477 

Top3 0.8082 2.8228 0.2140 0.5082 2.2085 0.0495 0.9475 
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