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Abstract—In soft object modeling, primitive soft objects can 

be used to construct a complex soft object by performing 

addition operations only. This is because a primitive soft object 

is defined as the iso-surface of a field function which is a 

composition of a potential function and a distance function. In 

fact, the distance function determines the shape of a soft object. 

To deform the shape of a primitive soft object, this paper 

proposes dilation and erosion operations, which can be viewed 

as distance function operations because they perform on the 

distance function of a primitive soft object to be deformed and a 

chosen dilating or eroding distance function. Thus, dilation 

operation can be used to dilate a primitive soft object through 

the chosen dilating distance function, and erosion operation can 

be used to erode a primitive soft object through the chosen 

eroding distance function. Briefly, these two operations can 

deform the iso-surface of an existing distance function and then 

can be applied as a new distance function to define a new field 

function. 

 
Index Terms—Field functions, distance functions, soft 

objects. 

 

I. INTRODUCTION 

In implicit surfaces, primitive implicit surfaces are defined 

each as an iso-surface of a defining function. A complex 

implicit surface is created by smoothly connecting primitive 

surfaces via blending operations [1], [2]. Among different 

representations of implicit surfaces [3], [4], [5], soft object 

modeling especially can blend primitive soft objects easily by 

soft blending [4], [5] which performs addition operations 

only. This is because field functions are used as defining 

functions and the value of a field function is designed to be 

decreasing from 1 to 0. More precisely, a field function is 

defined as a composition of a potential function and a 

distance function. Potential functions majorly ensure a field 

function  to be decreasing and controls the softness affect of 

soft blending such as those in [4], [5], [6], [7], and the one in 

[7] particularly offers blending range control. Distance 

function controls the shape of a primitive soft object. 

Existing distance functions include spheres [5], 

super-ellipsoids [6], [8], super-quadrics [3], generalized 

distance functions [9], skeletal primitives [10], and sweep 

objects [11]. 

Regarding existing distance functions, most of the 

researches focus directly on developing new distance 

functions with new shapes of iso-surfaces. However, 

different from their developing methods, this paper proposes 

a new method to develop a new distance function by 
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deforming the iso-surface of a distance function via another 

distance function via newly developed distance function 

operations on the above two distance functions. That is, this 

paper develops distance function operations and then existing 

distance functions are applied into them to create a new 

distance function for generating a new field function with 

deformed iso-surfaces. These distance function operations 

are described as follows:  

Erosion operation to erode the distance function of a soft 

object by an eroding distance function:  

When applied as a new distance function to deform a soft 

object, it can be used to shrink a soft object with different 

magnitudes for different directions determined by the 

eroding distance function, and it also offers a parameter to 

control the degree to which a soft object can be shrunk. 

Dilation operation to dilate the distance function of a soft 

object by a dilating distance function:  

When applied as a new distance function to deform a soft 

object, it can be used to enlarge a soft object with different 

magnitudes for different directions controlled by the dilating 

distance function, and it also offers a parameter to control the 

degree to which a soft object can be enlarged. 

The remainder of this paper is organized as follows. 

Section II reviews soft object modeling. Section III 

introduces erosion and dilation operations. Conclusion is 

given in Section IV. 

 

II. SOFT OBJECT MODELING 

This section presents some definitions about soft objects 

and implicit surfaces. 

A. Field Functions 

Let a field function be denoted as fi(x, y, z):R3R+ where 

R+  [0, ]. Then, a primitive soft object is represented as the 

point set  

{(x,y,z)R3| fi(x,y,z)=0.5, i=1,2,…,} 

In the following, the symbol fi(x, y, z)=0.5 denotes a soft 

object or its surface for short. To enable that fi(x, y, z)=0.5, 

i=1, 2,…, can be blended by summation operation, a fi(x, y, z) 

is usually defined as (P。di)(x,y,z) and is written by  

                    fi(x,y,z)=(P。di)(x,y,z)= P(di(x,y,z)).                     (1) 

In Eq. (1), P(d), called potential function, must decrease 

from 1 to 0 as d increases from 0 to 1 and P(0.5)=0.5, such as 

Eq. (2) in [6]: 
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where parameter s controls the softness affect. Fig. 1(a) shows  

the shape of p=P(d) of Eq. (2) in d-p plane. 

As for di(x, y, z), it is called distance function and is 

required to map R3 into [0, ]. In fact, it controls the shape 

and size of a soft object fi(x, y, z)=0.5. In addition, di(x, y, z) is 

usually defined by using a closed surface di(x, y, z)=1 as 

influential region and is calculated by  

di(x,y,z)= r / Rd  = oIoX / ,                         (3) 

where Rd = oI is  called the influential radius of (x, y, z), 

which is the distance from the origin to the intersecting point 

of the vector X=(x, y, z) with the influential region di(x, y, 

z)=1 as show= oI n in Fig. 1(b), and r= oX  is (x2+y2+z2)0.5. 

Subscript d symbolizes that Rd is the influential radius of di(x, 

y, z)=1 as the influential region. Due to P(0.5)=0.5, the shape 

of a soft object fi(x, y, z)=(P。di)(x, y, z)=0.5 is like the shape 

of di(x, y, z) =0.5, and consequently a soft object fi(x, y, z)=0.5 

is viewed as the influential region di(x, y, z)=1 scaled overall 

by 0.5. Thus, one can say that the size and shape of di(x, y, 

z)=1 determines the shape and size of a soft object fi(x, y, 

z)=0.5. Some famous distance functions are listed as follows: 
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Fig. 1. (a). The shape p=P(d) in Eq. (2), which becomes concave downward 

and upward gradually as softness parameter s increases. (b). The influential 

region di(x,y,z) =1, solid line, and the shape fi(x,y,z)=0.5, i.e. di(x,y,z)=0.5, 

dotted line. 

Superellipsoids: 

                  d(x,y,z)=(|x/a|p+|y/b|p+|z/c|p)1/p .                   (4) 

Superquadrics [3]: 

d(x,y,z)=((|x/a| p1+|y/b| p1) p2/ p1+|z/c| p2)1/p2 .              (5) 

B. Blending Operations 

Blending operations play a very important role in creating 

a complex soft object because they can smoothly connect k 

primitive soft objects fi(x, y, z)=0.5, i=1,2,…,k via a blending 

operator Bk(x1,...,xk):R+
k R+ . Precisely, they are written by 

{(x, y, z)R3 | Bk(f1(x, y, z),...,fk(x, y, z))=0.5}. 

Many blending operations have been developed and they 

include: 

Soft blending [4, 5]: 

Bk(x1,…,xk)=x1+x2+…+xk,  

Super-ellipsoidal union [12]: 

 Bk(x1,…,xk)=(x1
p+…+xk

p)1/p , 

Super-ellipsoidal intersection [12]:  

Bk(x1,…,xk)=(x1
-p +…+xk

-p)-1/p. 

Besides, sequential blending operations are also allowed 

and they can be represented as a CSG tree [13].  Fig. 2 

displays a wheel created from a union of two cylinders and a 

toroid. 

C. Ray-Linear Functions 

As shown in Eq. (3), a distance function is required to be 

rewritten by using influential radii. This subsection presents a 

theorem to check to see if a function is able to fulfill this 

requirement. Now, as stated in [14], the following definition 

is introduced first. 

 

Fig. 2. A wheel created from a union of two cylinders and a toroid. 

Definition 1: A function f(x, y, z):R3R+ is called 

non-negative ray-linear if f(ax, ay, az)=af(x, y, z) holds for 

any (x, y, z)R3 and a R+. For compactness, “ray-linear” is 

used to stand for “non-negative ray-linear”. Based on 

Definition 1, Theorem 1 was proposed in [1] and is listed 

below. 

Theorem 1: If f(x, y, z):RnR+ is ray-linear, then f(x, y, z) 

can be reformulated as r/Rf, where r=||(x, y, z)|| and Rf is the 

distance from the origin to the intersecting point of the vector 

(x, y, z) with the influential region f(x, y, z)=1. 

 According to Theorem 1, we obtain that one can adopt 

ray-linear f(x, y ,z) as a distance function because  it can be 

rewritten by r/Rf. Thus, based on Theorem 1, Theorem 2 is 

described below for helping check to see if a blending 

operation Bk(f1(x, y, z),..., fk(x, y, z))  can be a distance 

function. 

Theorem 2: If fi(x, y, z):R3R+, i=1,...,k, all are ray- linear 

and operator Bk(x1,...,xk):R+
kR+ is ray-linear, then operation 

Bk(f1(x, y, z),...,fk(x, y, z)) is ray-linear and is a distance 

function, too. 
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III. EROSION AND DILATION OPERATIONS OF DISTANCE 

FUNCTIONS  

This section explains why and how erosion and dilation 

operations can be used to deform a soft object. 

A. Erosion Operation 

Let d(x, y, z) and T(x, y, z) both be ray-linear distance 

functions, and surfaces d(x, y, z)=1 and T(x, y, z)=1 both be 

closed and satisfy the condition: 

{(x, y, z)R3|d(x, y, z)=1}{(x, y, z)R3|T(x, y, z)=1}.  

Thus, an operation of d(x, y, z) an T(x, y, z), denoted as 

(dT)(x, y, z) and called erosion operation, is given by 

                     (dT)(x, y, z) = (d(x, y, z)-n - T(x, y, z)-n)1/-n          (6) 

= Br2(d(x, y, z), T(x, y, z)),  

                                            Br2(x1,  x2)=(x1
-n - x2

-n) 1/-n, 

where T(x,y,z) is called eroding function and n1. It is trivial 

to show Br2(x1, x2) in Eq. (6) is ray-linear. Since d(x,y,z), 

T(x,y,z) and Br2(x1,x2) all are ray-linear, it follows from 

Theorem 2 that (dT)(x,y,z) is ray-linear, too and so (d 

T)(x,y,z) can be rewritten as (dT)(x,y,z)=r/RdT.  This means 

that (dT)(x,y,z) in Eq. (6) can be used as a new distance 

function to define a new soft object by   

                            (P。(dT)) (x, y, z)=0.5 

In fact, (P。(dT)) (x, y, z)=0.5 is viewed as (P。d) (x, y, 

z)= 0.5 eroded by the influential radii of T(x, y, z)=0.5. This is 

explained as follows. Due to d(x, y, z)=r/Rd and T(x, y, 

z)=r/RT from Theorem 1, putting r/Rd and r/RT intoEq. (6) 

yields 

(dT)(x, y, z)= r / (Rd
n -RT

n)1/n,                       (7) 

i.e.             (dT)(x, y, z)= d( Rd / (Rd
n -RT

n)1/n (x, y, z) ).   

From Eq. (7), the shape (dT)(x, y, z)=1 can be viewed as 

the shape d(x, y, z)=1 scaled overall with an individual 

scaling factor Rd /(Rd
n-RT

n)1/n for every point (x, y, z) in all 

directions. In fact, scale factor Rd /(Rd
n-RT

n)1/n is different for 

different (x, y, z) and depends on RT of T(x, y, z)=1 and Rd of 

d(x, y ,z)=1. Since the value of Rd /(Rd
n-RT

n)1/n is always 

greater than 1, operation (dT) (x, y, z) causes reduction in 

size on the deformed surface d(X)=1. From Eq. (7), it is also 

obtained that influential radius RdT becomes (Rd
n-RT

n)1/n after 

(dT)(x, y, z). Depending on parameter n, influential radii 

RdT are discussed as follows: 

In the case that when n=1, (dT) (x, y, z) becomes r/(Rd
 

-RT), which means the influential radius is reduced to (Rd
 -RT). 

As a result, the surface (dT) (x, y, z)=1 is like the surface 

d(x,y,z)=1 where every point (x, y, z) is moved RT inwards to 

the origin along the vector [x, y, z] and every (x, y, z) have 

different RT. This implies that the surface (dT) (x, y, z)=1 is 

like the surface d(x, y, z)=1 eroded (subtracted) by the 

influential radii RT of T(x, y, z)=1, which determines the 

erosion extent. For example, let d(x, y, z) be (|x/35|2+|y/35|2+ 

|z/35|2)1/2 and a eroding function T(x, y, z) be a super- 

ellipsoid (|x/5|2 +|y/5|2+|z/15|2)1/2. Then, when n=1, the soft 

object (P。(d T))(x, y, z)=0.5 in Fig. 3(c) can be viewed as 

the sphere (P。d) (x, y, z)=0.5 in Fig. 3(a) eroded by the 

object T(x, y, z)= 0.5 in Fig. 3(b). 

As n increases from 1 to , influential radius RdT increases 

from (Rd
 -RT) to Rd

 . Thus, the erosion effect caused by T(x, y, 

z) decreases as n increases. Therefore, the surface (dT)(x, y, 

z)=1 dilates from the surface (d(x, y, z)-1-T(x, y, z)-1)-1 =1 to 

the surface d(x, y, z)=1 while n increases from 1 to . This is 

demonstrated in Fig. 3(d), which follows the example in Fig. 

3. Fig. 3(d) shows the soft objects of (P。(dT)) (x, y, z) =0.5 

with n set 1, 1.3, 1.7, and 2.5, respectively, for the objects 

from left to right.  

Consider other cases as shown in Fig. (4) that when  d(x, y, 

z)=(|x/35|2+|y/35|2+|z/35|2)1/2, T1(x, y, z)=(|x/5|2+|y/15|2+|z 

/15|2)1/2 and T2(x, y, z)=((|x/10|7+|y/10|7)2/7+|z/25|2)1/2, then the 

erosions of (P。(dT1)) (x, y, z)=0.5 and (P。(dT2)) (x, y, 

z)= 0.5 are shown in Figs. 4(d)-(e). 

In addition, when the shape of T(x, y, z)=1 is asymmetric, 

then the shape of (P。(dT)) (x, y, z)=0.5 can be asymmetric. 

As shown in Fig. 5, the asymmetric super-ellipsoid in Fig. 

5(b) is used as T(x, y, z)=1 and the sphere in Fig. 5(a) as d(x, y, 

z)=1, so the shape of (P。(dT)) (x, y, z)=0.5 is asymmetric 

shown in Fig. 5(d). On the contrary, Fig. 5(e) is symmetric in 

two of the polar areas because the symmetric super-ellipsoid 

in Fig. 5(c) is used as T(x, y, z)=1 instead. 

                      

(a)                             (b)                             (c) 

 
(d) 

Fig. 3. (a). A soft object (P。d) (x, y, z)=0.5 before erosion. (b). An eroding 

object T(x, y, z)=1. (c). The erosion of the sphere in (a) by the object in (b) 

defined by (P。(dT)) (x, y, z)=0.5. (d). The soft objects of that in (c) with n 

in (dT) (x, y, z) is set 1, 1.3, 1.7, and 2.5, respectively, for the objects from 

left to right. 

          

(a)                       (b)                (c) 

            

(d)                                 (e) 

Fig. 4. The erosions of the sphere in (a) by the disk and the super-ellipsoid in 

(b) and (c) generate the two-ball object and the four-ball object respectively 

in (d) and (e). 

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

181



  

                 
(a)                             (b)                      (c) 

        
(d) 

         
(e) 

Fig. 5. (a). The shape of d(x, y, z)=0.5: a sphere. (b). The shape of T(x, y, 

z)=0.5: an asymmetric super-ellipsoid. (c). The shape of T(x, y, z)=0.5: a 

symmetric super-ellipsoid. (d). Soft objects (P。d) (x, y, z)=0.5 with an 

asymmetric concave shape because the object in (b) is used as T(x, y, z)=1, 

where the left one’s surface is transparent. (e). Soft objects (P。d) (x, y, z) 

=0.5 with two symmetric concave polar areas because the object in (c) is used 

as T(x, y, z)=1, where the left one’s surface is transparent. 

B. Dilation Operation 

Let d(x, y, z) and T(x, y, z) be ray-linear distance functions, 

and d(x, y, z)=1 and T(x, y, z) =1 both are closed surfaces. 

Thus, an operation of d(x, y, z) an T(x, y, z), denoted as (dT) 

(x, y, z) and called dilation operation, is given by  

                   (dT)(x, y, z)=(d(x, y, z)-n +T(x, y, z)-n)1/-n              (8) 

=Br2(d(x, y, z),T(x, y, z)) 

Br2(x1, x2)=(x1
-n + x2

-n) 1/-n  

where T(x, y, z) is called dilating function and n1. It is trivial 

to show Br2(x1, x2) in Eq. (8) is ray-linear. It follows from 

Theorem 1 that (dT) (x, y, z) is also ray-linear since d(x, y, 

z), T(x, y z, z) and Br2(x1, x2) all are ray-linear. As a result, (d 

T) (x, y, z) can be reformulated as (dT) (x, y, z)=r/RdT. This 

means that (dT) (x, y, z) in Eq. (8) can be used as a new 

distance function to define a new soft object by   

                           (P。(dT)) (x, y, z)=0.5               

Described geometrically, (P 。 (dT)) (x, y, z)=0.5 is 

viewed as (P。d) (x, y, z)=0.5 dilated by the influential radii 

of the surface T(x, y, z)=0.5. This is proved as follows. 

Substituting r/Rd and r/RT for d(x, y, z) and T(x, y, z) in Eq. (8) 

yields 

(dT)(x, y, z) = r / (Rd
n +RT

n)1/n                (9) 

  i.e.           (dT)(x, y, z) = d(Rd /(Rd
n + RT

n)1/n (x, y, z))         

Eq. (9) implies that the shape (dT)(x, y, z)=1 can be 

viewed as the shape d(x, y, z)=1 scaled overall with an 

individual scaling factor Rd /(Rd
n +RT

n)1/n for every point (x, y, 

z) in all directions. In fact, scale factor Rd /(Rd
n+RT

n)1/n is 

different for different (x, y, z) and depends on RT of T(x, y, 

z)=1 and Rd of d(x, y, z)=1. Since the value of Rd /(Rd
n +RT

n)1/n 

is always less than 1, (dT)(x, y, z) =1 causes enlargement in 

size of the deformed object d(x, y, z)=1. Eq. (9) indicates that 

RdT=(Rd
n +RT

n)1/n, that is, the influential radius is raised to 

(Rd
n+RT

n)1/n after (dT)(x, y, z). Some characteristics of (dT) 

(x, y, z) are described by varying the parameter n as follows. 

n=1, (dT) (x, y, z) becomes r/(Rd
 +RT). This 

means for any (x, y, z)R3, the influential radius raises to (Rd
 

+RT). Contrary to (dT)(x, y, z)=1, the surface (dT)(x, y, 

z)=1 is like the surface d(x, y, z)=1 where every point (x, y, z) 

is moved RT outwards from the origin along the vector [x, y, z] 

and every (x, y, z) in different directions have different RT. 

This implies that the surface (dT)(x, y, z)=1 is like the 

surface d(x, y, z)=1 dilated by the influential radii RT of T(x, y, 

z)=1, which determines the dilation extent.  

2 n increases from 1 to , the influential radius RdT 

decreases from (Rd+RT) to Rd
 . Consequently, the dilation 

effect caused by T(x, y, z) decreases as n increases. Hence, the 

surface (dT)(x, y, z)=1 shrinks from the surface (d(x, y, z)-1+ 

T(x, y, z)-1)-1=1 to the surface d(x, y, z)=1, while n increase 

from 1 to . For example, let d(x, y, 

z)=(|x/25|2+|y/25|2+|z/25|2)1/2 and T(x, y, 

z)=(|x/4|1.1+|y/4|1.1+|z/16|1.1)1/1.1. Thus, the dilation (P 。

(dT))(x, y, z)=0.5 of a sphere by the prism-shaped object in 

Fig. 6(b) with n=1, 1.4, 1.8, 2.6 and 5.2, is shown in Fig. 6(c), 

where the last object is almost like the original sphere in Fig. 

6(a). 

        

(a)                     (b) 

 
                                                (c) 

Fig. 6. The dilation (P。(dT))(x, y, z)=0.5 of the sphere in (a) by the 

prism-like object in (b) with n=1, 1.4, 1.8, 2.6, and 5.2, respectively, for the 

objects from left to right in (c). 

C. Erosion after Dilation Operation 

Let d(x, y, z), TE(x, y, z) and TD(x, y, z) be ray-linear 

distance functions, then a erosion after dilation operation in 

Subsections III A-B above is defined by using TE(x, y, z) and 

TD(x, y, z) as a eroding and a dilating functions, and is written 

by 

(P。((dTD)TE))(x,y,z)=0.5. 

Consider the example about the latter one where d(x, y, z) 

is (|x/20|2+|y/20|2+|z/20|2)1/2, and TD(x, y, z) is 

((|x/5|2+|y/5|2)1.5/2 +|z/15|1.5)1/1.5 to dilate d(x,y,z) around z-axis. 

The shapes (P。d)(x, y, z)=0.5 and TD(x,y,z)=0.5 are shown 

by the first two object in Fig. 7(a), and the dilation of (P。

(dTD))(x, y, z)= 0.5 is shown in Fig. 7(b), which is larger 

than the original one in Fig. 7(a). Thus, to keep unchanged 

the region (|x/5|2+ |y/5|2)1/2=0.5 around (P。(dTD))(x, y, 

z)=0.5, we can use ((|x/5|2+|y/5 |2)1.5/2+|z/5 |1.5)1/1.5 as TE(x, y, z), 

the third object in Fig. 12(a), to restore the size of (P。
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(dTD))(x, y, z)=0.5 by (P。((dTD) TE))(x, y, z)=0.5. This 

is shown in Fig. 7(c) and the resulting shape of (P 。

((dTD)TE))(x, y, z) =0.5 has more similar size around the 

region (|x/5|2+|y/5|2)1/2=0.5 to the original soft object (P。

d)(x, y, z)=0.5 in Fig.7(a) , compared to that in Fig. 7(b). 

 
(a) 

       
(b)                                                 (c) 

Fig. 7. (a) The shapes of (P。d) (x, y, z)=0.5, TE(x, y, z)=0.5 and TD(x, y, 

z)=0.5 from left to right, respectively. (b) The dilation (P。(dTD)) (x, y, 

z)=0.5. (c) The erosion after dilation (P。((dTD)TE))(x, y, z)=0.5. 

 

IV. CONCLUSION 

In soft object modeling, the distance function of a field 

function determines the shape and size of primitive soft 

objects. To develop distance functions with new shapes, 

unlike most of the existing researches focusing directly on 

developing new ones with new shapes of iso-surfaces, this 

paper has developed a new method that creates a new 

distance function by deforming the iso-surface of the distance 

function of a soft object via a ray-linear distance function and 

hence the soft object is also deformed. More precisely, this 

paper has developed the following distance function 

operations: 

Erosion distance function operation: It is an operation on 

the distance function of a soft object intended for 

deformation and an eroding distance function. It can erode 

the distance function of a soft object with the eroding 

distance function, which controls the extent to which every 

point in all direction of the soft object can be shrunk. 

Dilation distance function operation: It is an operation on 

the distance function of a soft object intended for 

deformation and a dilating distance function. It can dilate the 

distance function of a soft object with the dilating distance 

function, which controls the extent to which every point in all 

direction of the soft object can be enlarged. 

Thus, based on the two operations, one can freely choose 

two of any existing point-based distance functions and then 

develop a new distance function and a new field function for 

a new soft object with a more diverse shape.  

ACKNOWLEDGMENT 

The author would like to thank National Science Council 

of Taiwan for the support of Project No. NSC 101-2221-E- 

366-012. 

REFERENCES 

[1] P.-C. Hsu and C. Lee, “The scale method for blending operations in 

functionally based constructive geometry,” Computer Graphics Forum, 

vol. 22, no 2, pp. 143-158, 2003. 

[2] Q. Li, “Smooth piecewise polynomial blending operations for implicit 

shaped,” Computer Graphics Forum, vol. 26, no 2, pp. 143-158, 2007. 

[3] A. H. Barr, “Superquadrics,” IEEE Computer Graphics and 

Applications, vol. 1, no 1, pp. 11-23, 1981. 

[4] J. F. Blinn, “A generalization of algebraic surface drawing,” ACM 

Trans. on Graphics, vol. 1, no 3, pp. 235-256, 1982. 

[5] G. Wyvill, C. McPheeters, and B. Wyvill, “Data structure for soft 

objects,” The Visual Computer, vol.2, no 4, pp. 227-234, 1986. 

[6] C. Blanc and C. Schlick, “Extended field functions for soft objects,” in 

Implicit surfaces’95, pp. 21-32, April 1995. 

[7] P.-C. Hsu and C. Lee, “Field functions for blending range controls on 

soft objects,” Computer Graphics Forum, vol. 22, no 3, pp. 233-242, 

2003. 

[8] C. Blanc and C. Schlick, “Ratioquadrics: An alternative model to 

superquadrics”, The Visual Computer, vol. 12, pp. 420-428, 1996. 

[9] E. Akleman and J. Chen, “Generalized distance functions,” in Proc. 

Shape Modeling International '99, pp. 72-79, 1999. 

[10] J. Bloomenthal and B. Wyvill, “Interactive techniques for implicit 

modeling,” in SIGGRAPH Computer Graphics, vol. 24, no 2, pp. 

109-116, 1990. 

[11] B. Crespin, C. Blanc, and C. Schlick, “Implicit sweep objects,” in 

Eurographics’96, vol.15, no 3, pp. 165-175, 1996. 

[12] A. Ricii, “A constructive geometry for computer graphics,” The 

Computer Journal, vol.16, no 2, pp. 157-160, May 1973.  

[13] B. Wyvill, A Guy, and E Galin, “Extending the CSG tree: Warping, 

blending and boolean operations in an implicit surface modeling 

systems,” in Proc. Implicit Surfaces’98, pp. 128-136, 1998. 

[14] E. Akleman, “Interactive construction of smoothly blended star solids,” 

in Graphical Interface’96, pp. 159-167, May 1996. 

 

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

183


