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Abstract—TCP being the most widely used routing protocol 

for wired network considers packet loss as an indicator of 

congestion and calculates its congestion window according to 

that, but this approach is not suitable for wireless network 

where packet loss occurs due to various reasons other than 

congestion. Taking into consideration heterogeneous network, 

in this paper we explore a new variant of TCP, which has only 

sender side modification, end-to-end reliability and dynamic 

window calculation technique, which gives better result 

compared to existing known variants of TCP. We call it TCP 

Rcc. Here, we have used fixed window concept because it proves 

to produce better result. 

 
Index Terms—Adaptive window calculation, bandwidth 

estimation, random waiting time, throughput comparison. 

 

I. INTRODUCTION 

TCP is a transport layer protocol used by applications that 

require guaranteed delivery. It is a sliding window protocol 

which provides both timeouts and retransmissions. TCP 

establishes a full duplex, virtual connection between two 

endpoints. Each endpoint is defined by an IP address and a 

TCP port number. TCP provides a communication service at 

an intermediate level -between an application program and 

the Internet Protocol (IP). That is, when an application 

program desires to send a large chunk of data across the 

Internet using IP, instead of breaking the data into IP-sized 

pieces and issuing a series of IP requests, the software can 

issue a single request to TCP and let TCP handle the IP 

packaging. The byte stream is transferred in segments. The 

window size determines the number of bytes of data that can 

be sent before an acknowledgement from the receiver is 

received. TCP works particularly well in links with low error 

rates. However situation is different in wireless links which 

are characterized by high bit error rate, packet corruption or 

link failure [1]. So, in wired links most packet losses occur 

due to congestion, but  in wireless links packet loss may not 

always occur due congestion only. Older variants like TCP 

Reno or TCP NewReno[2]cannot distinguish between 

congestion loss and link loss. So blindly reduce congestion 

window size when there is a packet loss. Newer variants of 

TCP try to solve this problem by finding out techniques to 

differentiate between packet loss owing to congestion and 

due to link errors [3]. In conventional congestion control 

schemes after a packet loss is detected the window is halved 

or reinitialized to 1MSS (Maximum Segment Size) and enter 

slow start again. This lead to unutilized bandwidth and 

reduced throughput. 
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A fixed window approach [4] produces better throughput 

and goodput compared to “blind” increase/decrease in 

window sizes which is followed in TCP Reno. 

In this paper we have suggested a variant of TCP keeping 

focus on optimum bandwidth estimation and window 

calculation. The goal is to explore possibility of a new 

approach by mixing best approaches of different available 

techniques.Constant window approach [5] is followed here 

as long as there is no packet loss. Once a packet loss is 

detected via timeout or any duplicate acknowledgement, 

bandwidth is recalculated once again for the network and 

window is reinitialized to continue with the data transfer. As 

most TCP transmissions are short lived this scheme provides 

considerable benefit in throughput compared to other 

techniques. It is not intended to radically change the present 

TCP. The technique proposed, adds some modules in the 

sender side and the receiver side keeping the existing 

techniques of congestion detection like timeout or duplicate 

packets unchanged. Extensive analysis indicates that 

compared to other techniques like link layer methods, split 

connection based techniques which either leads to poor end 

to end throughput due to shielding of the wireless from the 

wired section of the network or leads to expensive changes in 

the intermediate nodes; end-to-end solutions require changes 

only to the sender and the receiver, and is the best method for 

providing congestion control in TCP which has been utilized 

in our variant.  

This paper is organized as follows. In Section 2,provides a 

brief description of the Related works done by other 

people.TCP Rcc(the new variant) is introduced in Section 3 

while the  simulation and implementation details is given in 

section 4.In section 5 an overall conclusion is provided.                                                                

 

II. RELATED WORKS 

A number of TCP variants have been proposed by various 

authors to control congestion problems. The first approach to 

solve congestion control was proposed by Van Jacobson 

named as TCP Tahoe [6]. TCP is based on a principle of 

„conservation of packets‟, i.e. if the connection is running at 

the available bandwidth capacity then a packet is not injected 

into the network unless a packet is taken out as well. In TCP 

an acknowledgement means that a packet was taken off the 

wire by the receiver. It also maintains a congestion window 

(CWD) to reflect the network capacity. However there are 

certain issues, which need to be resolved to ensure this 

equilibrium like determining present bandwidth,   

maintaining astute equilibrium and reacting to congestion. 

To meet all these criteria Tahoe suggested that whenever a 

TCP connection starts or re-starts after a packet loss it should 

go through a procedure called „slow-start‟ [7]. It sets the 

congestion window to 1 and then for each ACK received it 
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increases the CWD by 1, so in the first round trip time (RTT), 

one packet is sent, which is doubled in the second 

transmission time and increased so forth.  Thus window is 

increased exponentially until a packet is lost which is a sign 

of congestion. When congestion is encountered sending rate 

is decreased and congestion window is reduced to one and 

restarted again. For congestion avoidance Tahoe uses 

„Additive Increase/ Multiplicative Decrease‟. A packet loss is 

taken as a sign of congestion and Tahoe saves the half of the 

current window as a threshold value. It then sets CWD to one 

and starts slow start until it reaches the threshold value. After 

that, it increments CWND linearly, until it encounters a 

packet loss. Thus it increases its window slowly as it 

approaches the bandwidth capacity. The problem with Tahoe 

is that it takes a complete timeout interval to detect a packet 

loss. In fact, in most implementations it takes even longer 

because of the coarse grain timeout .This leads to a major cost 

in high band-width delay product links. 

In the solution to Tahoe‟s problems a new variant called 

Tcp Reno was proposed. Reno depends on duplicate ACKs 

and the timer associated with each packet Tcp sends. Reno 

suggests a new algorithm called ‘Fast Re-Transmit’ in which  

whenever 3 duplicate ACK‟s are received  it is taken as  a 

sign that the segment was lost, so the segment is 

re-transmitted without waiting for timeout. After Fast 

Re-Transmit Reno enters into a stage called fast recovery 

where instead of reinitialising the window size to 1MSS it is 

initialised   to half the current window .This is contrary to the 

emptying of the pipe completely as done in Tahoe. Reno 

however, faced problems in case of multiple packets drops 

which was resolved in New Reno.Like Reno, New-Reno also 

enters into fast-retransmit when it receives multiple duplicate 

packets, however it differs from Reno by the fact that it 

doesn‟t exit Fast-recovery until all the data which was out 

standing at the time it entered fast recovery is acknowledged.  

In a newer approach was found for congestion control 

which was is known as proactive techniques. It was found 

more suited to solve congestion problems compared to its 

reactive counterpart. It does not depend solely on packet loss 

as a sign of congestion. It detects congestion before the 

packets losses occur via probing of the network .Such 

approaches were implemented by TCP Vegas [8].Vegas 

keeps track of each packet sent and monitor round trip times 

and maintains an estimate of packet transmission times. 

Whenever a duplicate acknowledgement packet is received it 

compares packet transmission time with its own estimate to 

decide on retransmissions. 

TCP Westwood (TCPW) [9] is a sender-side modification 

of the TCP congestion window algorithm that improves upon 

the performance of TCP Reno in wired as well as wireless 

networks. The improvement is most significant in wireless 

networks with lossy links, since TCP Westwood relies on end 

to-end bandwidth estimation to discriminate the cause of 

packet loss (congestion or wireless channel effect) which is a 

major problem in TCP Reno. An important distinguishing 

feature of TCP Westwood with respect to previous wireless 

TCP “extensions” is that it does not require inspection and/or 

interception of TCP packets at intermediate (proxy) nodes. 

Rather, it fully complies with the end-to-end TCP design 

principle. The key innovative idea is to continuously measure 

at the TCP source the rate of the connection by monitoring 

the rate of returning ACKs. The estimate is then used to 

compute congestion window and slow start threshold after a 

congestion episode, that is, after three duplicate 

acknowledgments or after a timeout [10]. The rationale of 

this strategy is simple: in contrast with TCP Reno, which 

"blindly" halves the congestion window after three duplicate 

ACKs, TCP Westwood attempts to select a slow start 

threshold and a congestion window which are consistent with 

the effective bandwidth used at the time congestion is 

experienced. 

In Table I. We have summarized the basic properties of 

these variants and their disadvantages. 

TABLE I: COMPARISON OF SEVERAL VARIANTS OF TCP. 

TCP Variants Characteristics Limitations 

TCP Tahoe Implement Additive 

increase and 

Multiplicative 

decrease technique. 

i.Takes a Complete 

Timeout interval to 

detect congestion and 

sometimes even longer 

due to Coarse grain 

timeouts. 

 

ii.Pipeline Emptied 

every time packet lost. 

TCP Reno Implement 

Fast-Re-Transmit 

Cannot detect multiple 

packet loss in the same 

window. 

TCP New Reno Modifies 

Fast-Recovery phase. 

Takes single RTT to 

detect each packet loss. 

TCP West wood i.Sender-side 

modification. 

ii.End-to-end band 

width estimation. 

iii.Continuously 

monitor returning acks.  

Since slow start is 

used, a part of the 

bandwidth remains 

unutilized. 

TCP Vegas i.Implement modified 

Re-transmission 

mechanism. 

ii. It determines 

congestion by a 

decrease in sending 

rate as compared to the 

expected rate. 

iii.Use Modified 

Slow-Start. 

i.Cannot compete with 

more aggressive TCP 

Reno connections. 

ii.Vegas may not 

stabilize if buffers are 

small, leading to 

behavior that is similar 

to that of TCP Reno 

 

 

III. PROPOSED ALGORITHM 

TCP Rcc is sender side only modification of TCP Reno 

where   the congestion window is set according to the 

bandwidth available in the network. The window is kept 

fixed until any packet loss or duplicate acknowledgement. 

After congestion is detected, a random amount of time is 

waited before re-estimation of bandwidth and recalculation 

of window. 

 The algorithm used is as follows:- 

 Step1. At first, the congestion window size is set to 1MSS 

like TCP Reno here; MSS is meant by the maximum segment 

size of a frame i.e. the byte of data that is allowed to be sent in 

one frame. 

Step2. After the acknowledgement for the 1st transmission 

is received by the sender from the receiver, the sender would 

be able to judge the bandwidth of the network. Every packet 

sent by the sender contains a timestamp. The time required to 

send the data (1MSS) from source to destination (γ) is 
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calculated from the timestamps. Finally, bandwidth 

estimation (BWE) is done. 

 

BWE= (data sent during the first transmission) / γ 

 

Here BWE is nothing but throughput - the amount of data 

that the network can transfer per unit of time. 

Step3.  Let, k=BWE  RTT 

(Amount of traffic the network can transmit to the 

destination throughout the entire round trip time) 

 

Cwnd =k*β (0.5<β<1) 

 

Here, cwnd is the congestion window set by the tcp. β is a 

constant used here whose value may range from 0.5 to 1(In 

the testing the value of β is ideally taken to be 0.9874) .K‟s 

value is measured in MSS ,thus in bytes. 

 

Step4.  while (there is any message to sent) 

 begin 

       if(3 timeouts or 3 duplicate ACKs occur at point of time) 

          wait for a random amount of time, 

          then, cwnd=1MSS and recalculate the BWE,  

          set, new cwnd again 

      else 

for each successful transmission of cwnd increase cwnd by 

1MSS 

   until complete transmission of data i.e. 

   cwnd=cwnd+1MSS 

end 

 

The algorithm is put in a loop as seen above until all is sent. 

Unlike approaches of other TCP variants no threshold of the 

data packets to be sent to the receiver is maintained by the 

sender. Adaptive window calculation is performed at each 

stage of congestion detection to improve performance of the 

sender . 

 

IV. IMPLEMENTATION 

There are two ways to establish the credibility of the 

algorithm developed –either to simulate the algorithm in 

some network simulator or to mathematically prove it. Since, 

testing provides a more concrete evidence of the successful 

running of the algorithm therefore, testing the algorithm in 

network simulator ns2 is chosen over mathematical 

estimation. 

 

Fig. 1. Simulation scenario.  

In the network simulator ns2, two domains one for wired 

and one for wireless network is built like in Fig.1. The wired 

domain and the wireless domain communicate with each 

other via a base station which acts as the intermediate node as 

well as the bottleneck link. The nodes act as traffic generators 

following FTP application layer protocol and TCP as 

transport layer protocol. The mobile nodes would relay 

packets between each other following DSDV as routing 

protocol. Up to four wired node and four wireless nodes have 

been considered. The reason for this type of heterogeneous 

topology is to simulate the condition faced by the TCP Rcc in 

real life.        

Performance comparisons with various existing tcp 

variants have been performed at different error rates lying 

between 5%, and 15% to suit dynamic needs of modern 

network scenario. 

 

V. RESULTS 

The simulation on successful completion gave satisfactory 

result of the superiority of the proposed algorithm over other 

TCP variants like Tahoe, Reno, Vegas, New Reno and 

Westwood. 

 

Fig. 2. Throughput comparison of the TCP rcc vs TCP tahoe in the 

simulation with 10% error rate. 

 

Fig. 3. Throughput comparison of the TCP rcc vs TCP Reno in the simulation  

with 15% eror rate. 

 

Fig. 4. Throughput comparison of the TCP rcc vs TCP new Reno in the 

simulation with 10% error rate. 
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Fig. 5. Throughput comparison of the TCP rcc vs. TCP westwood in the 

simulation with 15% error rate. 

 

Fig. 6. Throughput comparison of the TCP rcc vs TCP tahoe in the 

simulation with 5% error in the 8 node topology. 

 

Fig. 7. Throughput comparison of the TCP rcc vs TCP reno in the simulation 

with 10% error rate. 

 

Fig. 8. Throughput comparison of the TCP rcc vs TCP vegas in the 

simulation with 2% error rate. 

From the above results it can be concluded that tcp-rcc is 

functioning equal or superiorly over some established 

algorithms. 

VI. CONCLUSION AND FUTURE WORK 

We have used drop tail queue structure while designing 

nodes with constant queue size. However in real world 

various queue structures are followed and their sizes are not 

fixed. We are presently working on this queuing problem. 

Besides we are working on proving the merit of the algorithm 

statistically particularly in terms of throughput and fairness. 

We have not tested the situation if TCP Rcc is compatible 

with other variants of TCP in same network.   
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