



Abstract—TCP being the most widely used routing protocol

for wired network considers packet loss as an indicator of

congestion and calculates its congestion window according to

that, but this approach is not suitable for wireless network

where packet loss occurs due to various reasons other than

congestion. Taking into consideration heterogeneous network,

in this paper we explore a new variant of TCP, which has only

sender side modification, end-to-end reliability and dynamic

window calculation technique, which gives better result

compared to existing known variants of TCP. We call it TCP

Rcc. Here, we have used fixed window concept because it proves

to produce better result.

Index Terms—Adaptive window calculation, bandwidth

estimation, random waiting time, throughput comparison.

I. INTRODUCTION

TCP is a transport layer protocol used by applications that

require guaranteed delivery. It is a sliding window protocol

which provides both timeouts and retransmissions. TCP

establishes a full duplex, virtual connection between two

endpoints. Each endpoint is defined by an IP address and a

TCP port number. TCP provides a communication service at

an intermediate level -between an application program and

the Internet Protocol (IP). That is, when an application

program desires to send a large chunk of data across the

Internet using IP, instead of breaking the data into IP-sized

pieces and issuing a series of IP requests, the software can

issue a single request to TCP and let TCP handle the IP

packaging. The byte stream is transferred in segments. The

window size determines the number of bytes of data that can

be sent before an acknowledgement from the receiver is

received. TCP works particularly well in links with low error

rates. However situation is different in wireless links which

are characterized by high bit error rate, packet corruption or

link failure [1]. So, in wired links most packet losses occur

due to congestion, but in wireless links packet loss may not

always occur due congestion only. Older variants like TCP

Reno or TCP NewReno[2]cannot distinguish between

congestion loss and link loss. So blindly reduce congestion

window size when there is a packet loss. Newer variants of

TCP try to solve this problem by finding out techniques to

differentiate between packet loss owing to congestion and

due to link errors [3]. In conventional congestion control

schemes after a packet loss is detected the window is halved

or reinitialized to 1MSS (Maximum Segment Size) and enter

slow start again. This lead to unutilized bandwidth and

reduced throughput.

Manuscript received July 20, 2012; revised September 21, 2012.

The authors are with the Department of Information Technology,RCC

Institute of Information Technology Kolkata (e-mail: moudeb@gmail.com,

portkey1996@gmail.com, abhijit070590@gmail.com).

A fixed window approach [4] produces better throughput

and goodput compared to “blind” increase/decrease in

window sizes which is followed in TCP Reno.

In this paper we have suggested a variant of TCP keeping

focus on optimum bandwidth estimation and window

calculation. The goal is to explore possibility of a new

approach by mixing best approaches of different available

techniques.Constant window approach [5] is followed here

as long as there is no packet loss. Once a packet loss is

detected via timeout or any duplicate acknowledgement,

bandwidth is recalculated once again for the network and

window is reinitialized to continue with the data transfer. As

most TCP transmissions are short lived this scheme provides

considerable benefit in throughput compared to other

techniques. It is not intended to radically change the present

TCP. The technique proposed, adds some modules in the

sender side and the receiver side keeping the existing

techniques of congestion detection like timeout or duplicate

packets unchanged. Extensive analysis indicates that

compared to other techniques like link layer methods, split

connection based techniques which either leads to poor end

to end throughput due to shielding of the wireless from the

wired section of the network or leads to expensive changes in

the intermediate nodes; end-to-end solutions require changes

only to the sender and the receiver, and is the best method for

providing congestion control in TCP which has been utilized

in our variant.

This paper is organized as follows. In Section 2,provides a

brief description of the Related works done by other

people.TCP Rcc(the new variant) is introduced in Section 3

while the simulation and implementation details is given in

section 4.In section 5 an overall conclusion is provided.

II. RELATED WORKS

A number of TCP variants have been proposed by various

authors to control congestion problems. The first approach to

solve congestion control was proposed by Van Jacobson

named as TCP Tahoe [6]. TCP is based on a principle of

„conservation of packets‟, i.e. if the connection is running at

the available bandwidth capacity then a packet is not injected

into the network unless a packet is taken out as well. In TCP

an acknowledgement means that a packet was taken off the

wire by the receiver. It also maintains a congestion window

(CWD) to reflect the network capacity. However there are

certain issues, which need to be resolved to ensure this

equilibrium like determining present bandwidth,

maintaining astute equilibrium and reacting to congestion.

To meet all these criteria Tahoe suggested that whenever a

TCP connection starts or re-starts after a packet loss it should

go through a procedure called „slow-start‟ [7]. It sets the

congestion window to 1 and then for each ACK received it

A New Variant of TCP for Heterogeneous Networks

Moumita Deb, Soumya Sarkar, and Abhijit Bagchi

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

158

mailto:moudeb@gmail.com
mailto:portkey1996@gmail.com

increases the CWD by 1, so in the first round trip time (RTT),

one packet is sent, which is doubled in the second

transmission time and increased so forth. Thus window is

increased exponentially until a packet is lost which is a sign

of congestion. When congestion is encountered sending rate

is decreased and congestion window is reduced to one and

restarted again. For congestion avoidance Tahoe uses

„Additive Increase/ Multiplicative Decrease‟. A packet loss is

taken as a sign of congestion and Tahoe saves the half of the

current window as a threshold value. It then sets CWD to one

and starts slow start until it reaches the threshold value. After

that, it increments CWND linearly, until it encounters a

packet loss. Thus it increases its window slowly as it

approaches the bandwidth capacity. The problem with Tahoe

is that it takes a complete timeout interval to detect a packet

loss. In fact, in most implementations it takes even longer

because of the coarse grain timeout .This leads to a major cost

in high band-width delay product links.

In the solution to Tahoe‟s problems a new variant called

Tcp Reno was proposed. Reno depends on duplicate ACKs

and the timer associated with each packet Tcp sends. Reno

suggests a new algorithm called ‘Fast Re-Transmit’ in which

whenever 3 duplicate ACK‟s are received it is taken as a

sign that the segment was lost, so the segment is

re-transmitted without waiting for timeout. After Fast

Re-Transmit Reno enters into a stage called fast recovery

where instead of reinitialising the window size to 1MSS it is

initialised to half the current window .This is contrary to the

emptying of the pipe completely as done in Tahoe. Reno

however, faced problems in case of multiple packets drops

which was resolved in New Reno.Like Reno, New-Reno also

enters into fast-retransmit when it receives multiple duplicate

packets, however it differs from Reno by the fact that it

doesn‟t exit Fast-recovery until all the data which was out

standing at the time it entered fast recovery is acknowledged.

In a newer approach was found for congestion control

which was is known as proactive techniques. It was found

more suited to solve congestion problems compared to its

reactive counterpart. It does not depend solely on packet loss

as a sign of congestion. It detects congestion before the

packets losses occur via probing of the network .Such

approaches were implemented by TCP Vegas [8].Vegas

keeps track of each packet sent and monitor round trip times

and maintains an estimate of packet transmission times.

Whenever a duplicate acknowledgement packet is received it

compares packet transmission time with its own estimate to

decide on retransmissions.

TCP Westwood (TCPW) [9] is a sender-side modification

of the TCP congestion window algorithm that improves upon

the performance of TCP Reno in wired as well as wireless

networks. The improvement is most significant in wireless

networks with lossy links, since TCP Westwood relies on end

to-end bandwidth estimation to discriminate the cause of

packet loss (congestion or wireless channel effect) which is a

major problem in TCP Reno. An important distinguishing

feature of TCP Westwood with respect to previous wireless

TCP “extensions” is that it does not require inspection and/or

interception of TCP packets at intermediate (proxy) nodes.

Rather, it fully complies with the end-to-end TCP design

principle. The key innovative idea is to continuously measure

at the TCP source the rate of the connection by monitoring

the rate of returning ACKs. The estimate is then used to

compute congestion window and slow start threshold after a

congestion episode, that is, after three duplicate

acknowledgments or after a timeout [10]. The rationale of

this strategy is simple: in contrast with TCP Reno, which

"blindly" halves the congestion window after three duplicate

ACKs, TCP Westwood attempts to select a slow start

threshold and a congestion window which are consistent with

the effective bandwidth used at the time congestion is

experienced.

In Table I. We have summarized the basic properties of

these variants and their disadvantages.

TABLE I: COMPARISON OF SEVERAL VARIANTS OF TCP.

TCP Variants Characteristics Limitations

TCP Tahoe Implement Additive

increase and

Multiplicative

decrease technique.

i.Takes a Complete

Timeout interval to

detect congestion and

sometimes even longer

due to Coarse grain

timeouts.

ii.Pipeline Emptied

every time packet lost.

TCP Reno Implement

Fast-Re-Transmit

Cannot detect multiple

packet loss in the same

window.

TCP New Reno Modifies

Fast-Recovery phase.

Takes single RTT to

detect each packet loss.

TCP West wood i.Sender-side

modification.

ii.End-to-end band

width estimation.

iii.Continuously

monitor returning acks.

Since slow start is

used, a part of the

bandwidth remains

unutilized.

TCP Vegas i.Implement modified

Re-transmission

mechanism.

ii. It determines

congestion by a

decrease in sending

rate as compared to the

expected rate.

iii.Use Modified

Slow-Start.

i.Cannot compete with

more aggressive TCP

Reno connections.

ii.Vegas may not

stabilize if buffers are

small, leading to

behavior that is similar

to that of TCP Reno

III. PROPOSED ALGORITHM

TCP Rcc is sender side only modification of TCP Reno

where the congestion window is set according to the

bandwidth available in the network. The window is kept

fixed until any packet loss or duplicate acknowledgement.

After congestion is detected, a random amount of time is

waited before re-estimation of bandwidth and recalculation

of window.

 The algorithm used is as follows:-

 Step1. At first, the congestion window size is set to 1MSS

like TCP Reno here; MSS is meant by the maximum segment

size of a frame i.e. the byte of data that is allowed to be sent in

one frame.

Step2. After the acknowledgement for the 1st transmission

is received by the sender from the receiver, the sender would

be able to judge the bandwidth of the network. Every packet

sent by the sender contains a timestamp. The time required to

send the data (1MSS) from source to destination (γ) is

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

159

calculated from the timestamps. Finally, bandwidth

estimation (BWE) is done.

BWE= (data sent during the first transmission) / γ

Here BWE is nothing but throughput - the amount of data

that the network can transfer per unit of time.

Step3. Let, k=BWE  RTT

(Amount of traffic the network can transmit to the

destination throughout the entire round trip time)

Cwnd =k*β (0.5<β<1)

Here, cwnd is the congestion window set by the tcp. β is a

constant used here whose value may range from 0.5 to 1(In

the testing the value of β is ideally taken to be 0.9874) .K‟s

value is measured in MSS ,thus in bytes.

Step4. while (there is any message to sent)

 begin

 if(3 timeouts or 3 duplicate ACKs occur at point of time)

 wait for a random amount of time,

 then, cwnd=1MSS and recalculate the BWE,

 set, new cwnd again

 else

for each successful transmission of cwnd increase cwnd by

1MSS

 until complete transmission of data i.e.

 cwnd=cwnd+1MSS

end

The algorithm is put in a loop as seen above until all is sent.

Unlike approaches of other TCP variants no threshold of the

data packets to be sent to the receiver is maintained by the

sender. Adaptive window calculation is performed at each

stage of congestion detection to improve performance of the

sender .

IV. IMPLEMENTATION

There are two ways to establish the credibility of the

algorithm developed –either to simulate the algorithm in

some network simulator or to mathematically prove it. Since,

testing provides a more concrete evidence of the successful

running of the algorithm therefore, testing the algorithm in

network simulator ns2 is chosen over mathematical

estimation.

Fig. 1. Simulation scenario.

In the network simulator ns2, two domains one for wired

and one for wireless network is built like in Fig.1. The wired

domain and the wireless domain communicate with each

other via a base station which acts as the intermediate node as

well as the bottleneck link. The nodes act as traffic generators

following FTP application layer protocol and TCP as

transport layer protocol. The mobile nodes would relay

packets between each other following DSDV as routing

protocol. Up to four wired node and four wireless nodes have

been considered. The reason for this type of heterogeneous

topology is to simulate the condition faced by the TCP Rcc in

real life.

Performance comparisons with various existing tcp

variants have been performed at different error rates lying

between 5%, and 15% to suit dynamic needs of modern

network scenario.

V. RESULTS

The simulation on successful completion gave satisfactory

result of the superiority of the proposed algorithm over other

TCP variants like Tahoe, Reno, Vegas, New Reno and

Westwood.

Fig. 2. Throughput comparison of the TCP rcc vs TCP tahoe in the

simulation with 10% error rate.

Fig. 3. Throughput comparison of the TCP rcc vs TCP Reno in the simulation

with 15% eror rate.

Fig. 4. Throughput comparison of the TCP rcc vs TCP new Reno in the

simulation with 10% error rate.

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

160

Fig. 5. Throughput comparison of the TCP rcc vs. TCP westwood in the

simulation with 15% error rate.

Fig. 6. Throughput comparison of the TCP rcc vs TCP tahoe in the

simulation with 5% error in the 8 node topology.

Fig. 7. Throughput comparison of the TCP rcc vs TCP reno in the simulation

with 10% error rate.

Fig. 8. Throughput comparison of the TCP rcc vs TCP vegas in the

simulation with 2% error rate.

From the above results it can be concluded that tcp-rcc is

functioning equal or superiorly over some established

algorithms.

VI. CONCLUSION AND FUTURE WORK

We have used drop tail queue structure while designing

nodes with constant queue size. However in real world

various queue structures are followed and their sizes are not

fixed. We are presently working on this queuing problem.

Besides we are working on proving the merit of the algorithm

statistically particularly in terms of throughput and fairness.

We have not tested the situation if TCP Rcc is compatible

with other variants of TCP in same network.

REFERENCE

[1] R. Paul and L. Trajković, Selective-TCP for Wired/Wireless Networks.

[2] S. Floyd and T. Henderson, “The new Reno modification to TCPs fast

recovery algorithm,” IETF RFC 2582, Apr. 1999.

[3] V. N. Padmanabhan, S. Seshan and R. H. Katz, .A Comparison of

Mechanisms for Improving TCP Performance over Wireless Links

Hari Balakrishnan.

[4] A. K. Ghosh, A. Mukherjee and D. Saha, “Some simulation studies to

characterize TCP window control behavior in wired/wireless

internetworks,” Proceedings of IEEE International Conference on

Personal Wireless Communications (ICPWC) 2005, India. Jan. 23-25,

2005.

[5] A. K. Ghosh, S. Das, R. Roy, and A. Mukherjee, Constant Congestion

Window Approach for TCP Effect on Fairness.

[6] V. Jacobson, “Congestion avoidance and control,” the ACM

SIGCOMM, vol. 88.

[7] W. Stevens, “TCP slow start, congestion avoidance, fast retransmit,

and fast recovery algorithms,” RFC 2001, Jan. 1997.

[8] J. La, J. Walrand, and V. Anantharam, “Issues in TCP vegas richard,”

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley.

[9] S. Mascolo, P. D. Bari, C. Politecnico, D. Torino, M. Gerla, M. Y.

Sanadidi, and R.Wang, “TCP westwood: Bandwidth estimation for

enhanced transport over wireless links,” UCLA Computer Science.

[10] M. Valla, M. Y. Sanadidi, and M. Gerla, Adaptive Bandwidth Share

Estimation in TCP Westwood Ren Wang.

International Journal of Computer and Communication Engineering, Vol. 2, No. 2, March 2013

161

