



Abstract—This paper presents a discussion of methods to

solve partitioning problems and advocates the use of multi-way

partitioning algorithms. The paper gives an implementation of

a multi-way partitioning algorithm based on partitioning

without size constraint and iterative improvement. A top-down

clustering technique is employed to deal with the local minima

problems faced in common heuristics and a primal-dual

approach is used to enhance the iterative improvement. The

Fiduccia-Mattheyses (FM) algorithm has been taken as the core

algorithm which has been subjected to iterations, clustering and

primal-dual iterations. The algorithm has been implemented in

a way that it gives netlist files for each partitioned block. These

netlists can further be used to implement actual hardware or

detailed analysis. The results obtained were compared to the

results obtained from the traditional FM algorithm. The results

show good improvements.

Index Terms—Benchmarks, Cells, Clustering, Hypergraph,

Net, Netlist, Nodes, Pads, Partitioning, Primal-Dual.

I. INTRODUCTION

The Electronic Design Automation (EDA) involves

automation of all those tasks that are used in fabrication of

electronic circuits on silicon. Circuit designers specify their

circuit requirements in programming languages like

Hardware Description Languages (HDL) (Commonly used

languages are VHDL, Verilog and Analog VHDL).

Specifications are analyzed and modifications are made

based on varying requirements. Once the requirements are

complete, the HDL based codes are synthesized into

gate-level netlist. The netlist mainly contains gates (such as

AND gates, OR gates etc.) widely called as cells, and the

interconnecting wires (that interconnect gates) widely called

as nets. This netlist is then subjected to physical design

automation (back-end flow), where cells are assigned

different areas on actual silicon (placement) and the actual

routes or paths that each connection (interconnecting wire)

should take to connect the cells are identified (routing).

During the placement various factors like wire length, path

delay, congestion (when a local region contains more nets

than the available routing tracks the region is said to be

congested) etc. are considered. Most of these factors can be

resolved using various hypergraph partitioning algorithms.

Consider a system; partitioning will divide the whole

circuit from the system level to the board level, from the

board level to the chip level, and from the chip level to the

macro-cell level. At each level, circuits are further divided

Manuscript received August 14, 2012; revised September 20, 2012.

Kulpreet S. Sikand and Sandeep S. Gill are with the Guru Nanak Dev

Engg. College, Ludhiana, Punjab, India (e-mail: kpsikand@gmail.com,

ssg@gndec.ac.in).

R. Chandel and A. Chandel are with the NIT Hamirpur, Hamirpur, India

(e-mail: rchandel@yahoo.com, ashwani@nithm.ac.in).

into smaller sub-circuits. A good partitioning will work to

significantly reduce the complexity of the problem and

improve both the reliability and the timing performance of

the system.

Historic research data reveals that the choice of the

objective function is usually set to minimize the number of

nets connecting the two final subsets (called blocks i.e in case

of a bi-partitioning method). In case of different designs of

multiple blocks partitioning, often the demand is for a

different objective function or functions. For example if we

consider silicon physical layout, the partitioning of a circuit

must guarantee that the resultant sub-circuits have a number

of IO pins (or pads etc.) that are within the physical limit

requirements. So, to ensure a feasible implementation one

objective function could be to minimize the maximum

number of IO pins. A second objective function that can be

considered for physical layout is to simplify the routing

problem. For example if a net is connected exactly to say x

blocks, then the cost function can be assigned a value of x.

The objective function in this case is to minimize the sum of

all costs assigned to each net. A third possible objective

function for silicon physical layout from the architectural

point of view is to have minimal interface signals among the

blocks resulting from partitioning. So, clearly the objective

function in this case is to minimize the number of nets

connecting more than two blocks. Many more objective

functions can be derived from the variable requirements and

problems. As all these problems and requirements optimize

on different objective functions the traditional two-way

partitioning algorithms cannot be applied directly to solve

them. Hence the need for multi-way and multi-objective

partitioning algorithm is evident. In this paper an attempt has

been made to advocate the use of multi-way partitioning

algorithms over the two-way partitioning algorithms based

on their performance. The only addition to the existing

multi-way partitioning algorithm which this paper proposes

is the addition of pads to the output netlist files to make them

self-revealing standalone files, this easies further analysis of

these files. The organization of the paper is as follows:

Section 2 gives a brief review of previous research.

Section 3 introduces a formal definition of the problem.

This section presents an iterative improvement algorithm

for partitioning. The algorithm utilizes a top-down clustering

technique and a Primal-Dual iteration to enhance the

partitioning result.

Section 4 contains experimental results & discussions.

Section 5 contains the conclusion.

II. PREVIOUS WORK

Attempts have been made to solve graph and network

related partitioning problems with specified bound on the

Implementation of Multi-Way Partitioning Algorithm

Kulpreet S. Sikand, Sandeep S. Gill, R. Chandel, and A. Chandel

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

28

sizes of the resulting subsets. These attempts have

concentrated on finding approximate solutions in polynomial

time. Several approaches and several algorithms have been

devised to find out approximate solutions. B. W. Kernighan

and S. Lin [1] proposed a two-way partitioning algorithm

with constraints on the final subset sizes. The algorithm

applied swapping iterations on all pairs of nodes to find the

best improvement on the existing partition, the swapping was

done pair-wise. D. G. Schweikert and B. W. Kernighan [3]

proposed a net cut model for two-way partitioning. The

concept of multi-pin nets was defined and used for

partitioning. C. M. Fiduccia and R. M. Mattheyses [4] further

improved this algorithm. They were able to developed useful

data structures that helped in reducing time complexity of the

algorithm. The complexity was reduced to O(P), where P is

the total number of pins. Much of the research was directed to

the problem of multi-pin net models. C. Sechen and D. Chen

[7] proposed the net crossing model derived from row-based

layout where probability analysis is used to estimate the gain

of a move. B. Krishnamurthy [5] introduced the multiple

level gain model for multi-pin nets. L. A. Sanchis [9] used the

multiple level gain concepts to introduce a new model of

multiple-way partitioning. C. W. Yeh, C. K Cheng and T. T.

Lin [11] further suggested an improved multi-way

partitioning algorithm based on traditional two-way

portioning algorithm.

III. PROBLEM FORMULATION

Let us consider a Hypergraph denoted by H(V, E), where H

stands for Hypergraph, V stands for set of nodes (V = {vi | i =

1, 2, …, n}) and E stands for set of nets (E = {eu | u= 1, 2, …,

m}). Each net eu is a subset of V with cardinality | eu | ≥ 2. A

k-way partition is a partition that assigns vi into k non-empty

blocks as V1, V2, …., Vk. Let us consider a term “SPAN” of a

net, which is zero if the net connects exactly to one block and

say s if it connects exactly to s blocks. (consider s ≥ 2).

Different objectives [11, 13, 15] can be considered for this

k-way partitioning problem:

Objective 1:

min
),.....1(

max

ks

imum


| {eu | span(eu) ≥ 2, eu  Vs ≠  (1)

Objective 2:

min | {eu | span(eu) ≥ 2}| (2)

Objective 3:

min
 E eu 

 span(eu) (3)

Subject to: Cm ≤ |Vb| ≤ CM (4)

where Cm , CM are two constants that set the size limit of each

block, 0 < Cm < CM < |V|.

So the objective is not only to reduce the net cut but to

reduce the span of each net and its cardinality. As mentioned

earlier in the abstract that the core algorithm used is FM

algorithm [4], some of its basic equations are:

 gi = Dai + Dbi – 2c ai bi (5)

where ai and bi are the nodes of two partitions A and B

respectively, caibi is the cost function. D is the difference

between the external and internal edge cost.

 Dx = Ex – Ix (6)

E is the external edge cost, which measures the

connections from node a to b or vice-versa.

 



By

aya cE
 (7)

I is the internal edge cost to measure the internal

connections to a (or internal connections to b).

 



az

aza cI
 (8)

Pseudocode for updating gain is given as [4]:

1) Begin /* Move Base cell and update neighbors’ gains */

2) F :- the Front Block of the base cell.

3) T :- the To Block of the base cell.

4) Lock the base cell and complement its block.

5) For each net n on the base cell do /* check critical nets

before the move */

6) If T(n)=0 then increment gains of all free cells on n;

elseif T(n) = 1 then decrement gain of the only T cell on n,

if it is free /* change F(n) and T(n) to reflect the move */

7) F(n) <= F(n) - 1; T(n) <= T(n) + 1; /* check critical nets

after the move */

8) If F(n) = 0 the decrement gains of all free cells on n elseif

F(n) =1 then increment gain of the only F cell on n, if it is

free.

9) End.

Data structures are used for updating gain. As traditional

FM algorithm is a bi-partitioning algorithm hence it gives

only two partitions as output. Clustering and iterations are

used to obtain multi-way and multi-objective partitions.

The primal dual approach is based upon the concept of

duality and consists of three major parts: Top-Down

clustering, Uniform Multi-pin net model and primal iteration.

A. Top Down Clustering

The Kernighan-Lin (KL) based algorithms share the

common weakness that they are often trapped by local

minima when the size of the circuit is very large. One way to

overcome this difficulty is to group highly connected

sub-circuits into clusters and then condense these clusters

into single nodes prior to the execution of the KL based

algorithms. The complexity of the problem is thus

dramatically reduced, which in turn improves the

performance of the algorithm [5]. Traditionally, clustering

has been carried out in a bottom-up fashion. This approach

lacks the global view of the entire network and so is prone to

produce incorrect grouping. Recently, top-down clustering

technique has been introduced by employing the clustering

nature of a ratio-cut and repeatedly applying the two-way

ratio-cut algorithm to partition the network into highly

connected groups. The top-down clustering procedure [11] is

as follows:

Consider a hypergraph H(V, E), and a predefined cluster

size limit Cs,
 Consider α = {V} where V is set of nodes.

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

29

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

30

 Chose a subset V* ϵ α such that | V*| =
Vi

max
|Vi| If

(|V*| ≤ Cs) then exit.
 Set α = α – { V*}
 Apply Ratio cut algorithm to V* to get a cut (A, A’)

where V* = A A’

Set α = α  {A, A’}, and go to step2.

B. Multi-Pin Net Model

As mentioned earlier most of the traditional algorithms

(KL algorithm etc.) were based on multi-pin net model. A

good multi-pin net model can not only correctly reflect the

immediate gain of a move but it can also calculate and give

the potential gain of a move. The calculation of the potential

move forms the basis of the multi-pin net model. This

look-ahead mechanism increases the probability of choosing

the best move. If we consider a hypergraph, then each net

connecting to more than two nodes in a hypergraph

corresponds to a multi-pin net and this hypergraph model is

called multi-pin net model.

All the existing multi-pin net models intend to estimate the

“goodness” or “badness” of moving one single node at a time,

and they have achieved excellent results, but in some cases

this still is not satisfactory. For example consider a situation

as shown in Fig. 1. Suppose that during the execution of the

algorithm, node D, A and B have not been locked, i.e., they

are allowed to be moved to the other blocks. Suppose the nets

on D, A, and B are as shown as in Fig. 1. Moving D would

remove nets ei, ek and el from the cut set and would introduce

net en to be cut. When calculated the gain for this move come

out to 2. Moving A would not remove any net. But if we

move node B and node A together, it would help in removing

the nets ek, ej, and ei. But various other models like the net cut

model, the level gain model or the probabilistic model will

always the support the step of moving D and definitely stop

the movement of A and B.

ei

ej

ek

el

e
n

A

B C

D

Fig. 1. Multi-pin net model example.

Let’s say if a freedom of choosing a node among node D,

node A and node B is given or it is allowed to form a cluster

of the nodes A and B and further it is allowed to move them

as a cluster. Then the latter move (i.e move A and B as cluster)

will always be preferred. In other words, the algorithm would

have a better judgment if it had the freedom to move more

than one node at a time. The question then arises as which

nodes should be clubbed together to form a cluster and then

the cluster is moved. The answer lies in the positioning of

nets, the focus should be on removing nets and not on

removing nodes. If net ej needs to be eliminated from the cut

set, nodes A and B have to be moved together. This would

also remove the nets ei, and ek at the same time. Thus the

calculated gain would be 3. On the other hand, if it’s decided

to remove net el from the cut-set only D will be moved, and

the calculated gain would be 2. A comparison of the gains of

the nets shows that net ej has the largest gain among all of the

nets. This supports that A and B should be moved together.

Therefore the ambiguity associated with selecting moves

would be greatly reduced, if a “move” is viewed as initiated

by a net instead of a node. Consider a net eu and a block b. Let

us define two sets, the first one critical set of eu and the

second complimentary critical set of eu. Critical set is given

as [11]:

 Sub = { v | v ϵ eu and v ϵ Vb } (9)

Complimentary critical set is given as:

 Su
b = {v | v ϵ eu and v ϵ V

b} (10)

The objectives mentioned earlier can be explained using

the critical and complimentary critical sets. Objective 1 and 3

can be understood as placing the critical set Sub into a block

other than b. In objective 2 a move associated with eu is

defined by placing the complimentary critical set Su
b into

block b. The gain of each move can be calculated based on

the change in cost brought by the movement of critical and

complimentary critical sets.

C. The Iteration

As mentioned earlier the FM algorithm is utilized as primal

process. The adaptations [11], [13], [15] of the algorithm to

multiple-way partitioning problem consist of the following:

1) For each block b, a sorted list of moves is kept which

shifts nodes from block b to each of the other blocks.

This sorted list is called a “bucket” and bears the same

structure as that in the FM algorithm. The gains of moves

are computed according to the objective function.

2) In order to assure the convergence of the algorithm, a

“rejecting” mechanism is imposed which prohibits a

node from being moved to a block if this node had

resided in the same block before.

3) During each trial of move, the best move among all

buckets is selected and performed. This procedure

continues until either all possible moves are “rejected, or

none of the remaining moves will satisfy the size

constraint.

The Dual process [11] is similar to the primal process

except instead of shifting a single node, the whole critical or

complimentary critical sets are shifted as explained in

multi-pin net model. The flow chart [11] of the whole

algorithm is shown in Fig. 2.

The last step is to make netlist files of the partitions created

by the algorithm. First consider there are only two partitions.

The total net cut can be found from the gain data structure.

The total net cut is the total no. of nets being cut after final

partitioning, as shown in Fig. 4. Only for further analysis

sometimes these partitions may be required as standalone

partitions as if they represent a complete circuit. A circuit

which is complete in itself shall not have any net cuts, hence

for a partition to represent a complete circuit the net cuts have

to be replaced by pins or pads (external IOs) as shown in Fig.

3 extra pads P4, P5, P6 have been added. So, two partitions

will represent two independent circuits. Similar thing can be

repeated for other partitions that have been formed by a multi

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

31

way partitioning algorithm.

IV. RESULTS AND DISCUSSIONS

Use A number of benchmark circuits like IC67.net,

IBM0.net, IBM1.net and one randomly generated circuit

form a VHDL file Test_kp.net (sample.net) were used to

compare the algorithm outputs. The algorithms were

implemented in c/c++ and run on a dual core Turion machine.

The algorithms were run for atleast 20 times for each netlist

file and there averages were tabulated (the objective

considered was: minimize the connections between the

partitions/blocks i.e min cut).

The data in the Table I show much greater improvement

for primal approach then for the traditional FM algorithm.

The algorithms were run for 2 partitions, 4 partitions, 8

partitions (shown as 0 level, 1 level, 2 level partitions). The

average improvements are .058%, 26.8%, 29.43%

respectively. For zero level partition all the algorithms show

identical results, as both algorithms are based on same

traditional algorithm i.e FM. Except for 0-level partitioning,

where both algorithms reach the same value for most of the

cases, almost all cases experience a noticeable improvement.

A multiple-way network partitioning algorithm was

implemented which covered multiple objectives and showed

improved results. Standalone partitions were made useful for

further analysis.

TABLE I: COMPARISON OF TRADITION ALGORITHM AND MULTI-WAY

PARTITIONING ALGORITHM

Level 0 Partitioning

Netlist

File

Traditional

Algorithm

Primal Dual

Approach
Improvement %

IC 67 38 38 0

IBM0 574 573 .174

Sample 3 3 0

Level 1 Partitioning

Netlist

File

Traditional

Algorithm

Primal Dual

Approach
Improvement %

IC 67 48 42 12.5

IBM0 646 530 17.9

Sample 4 2 50

Level 2 Partitioning

Netlist

File

Traditional

Algorithm

Primal Dual

Approach
Improvement %

IC 67 44 31 29.54

IBM0 704 524 25.56

Sample 3 2 33.33

Fig. 4. Netlist graph representation with cutline.

In p u t

T o p - D o w n C lu s te r in g

C o u n te r := 0

R a n d o m P a r t i t io n in g

C o u n te r := C o u n te r + 1

C o u n te r = T ?

F la tte rn B e s t R e s u l t

O u tp u t

N o

Y e s

P r im a l I te ra t io n

P r im a l I te ra t io n

Fig. 2. Primal iteration algorithm.

a0

a2

P1

a3

Cut line

BLOCK 0 BLOCK 1

P2

a1

Single net cut
Replace by P4

Double net cut
Replace by P5 & P6

P3

P4

P5

P6

Fig. 3. Partitioning and netlist generation example.

International Journal of Computer and Communication Engineering, Vol. 2, No. 1, January 2013

32

V. CONCLUSIONS

FM algorithm is primarily a bi-partitioning technique; it is

capable of dividing a single netlist file into two equally sized

partitions. With the advancements in the technology we are

coming up with more & more complex IC’s day by day, this

creates bigger circuits which in hand requires the circuit to be

partitioned into more than two partitions with more than one

objectives and constraints; this is not possible with the core

FM technique.

A multiple-way network partitioning algorithm unlike FM

algorithm can handle & cover more than one objective

function. It is very evident that the field of circuit design has

tremendously grown, the performance now not only depends

on nets (link between modules) but it depends on various

factors & partitioning constraints like the time delay, thermal

constraint, and noise isolation etc. These constraints can only

be handled by a multi-way & multi-objective algorithm. FM

algorithm can only act as aid but is insufficient to meet all the

constraints of partitioning.

REFERENCES

 B. W. Kernighan and S. Lin, “An efficient heuristic procedure for

partitioning graphs,” Bell System Technical Journal, vol. 49, no. 2, Feb.

1970, pp. 291-307.

 M. A. Breuer, “Recent developments in automated design and analysis

of digital systems,” Proc. IEEE, vol. 60, January, 1972, pp. 12-27.

 D. G. Schweikert and B. W. Kernighan, “A proper model for the

partitioning of electrical circuits,” 9th Design Automation Workshop,

1972, pp. 57-62.

 C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for

improving network partitions,” Proc 19th ACM/IEEE Design

Automation Conference, 1982, pp. 175-181.

 B. Krishnamurthy, “An improved min-cut algorithm for partitioning

VLSI networks,” IEEE Trans. on Computers, vol. C-33, May 1984. pp.

438-446.

 S. Meyer, “A data structure for circuit netlists,” in proceedings of 25th

ACM/IEEE Design Automation Conference, vol. 39, no. 1, 1988.

 C. Sechen and D. Chen, “An improved objective function for mincut

circuit partitioning,” Proc. Int Conf. on Computer-Aided Design, 1988.

pp. 502-505.

 A. B. Kahng, “Fast Hypergraph partitioning,” Proc. of 26th ACM/IEEE

Design Automation Conference, vol. 43, no. 2, 1989.

 L. A. Sanchis, “Multi-way network partitioning,” IEEE Trans. on

Computers. vo1.38, no.1. Jan 1989. pp. 62-81.

 Y.-C. Wei and C.-K. Cheng, “A two-level two-way partitioning

algorithm,” Proc. Of IEEE conference 1990.

 C. W. Yeh, C. K. Cheng, and T. T. Lin, “A general purpose

multiple-way partitioning algorithm,” in Proceedings of the Design

Automation Conference, pp. 421-426. 1991.

 J. Cong, L. Hagen, and A. Kahng, “Net partitions yield better module

partitions,” in Proceedings of 29th ACM/IEEE Design Automation

Conference, vol. 5, no. 1, 1992.

 J. Cong, W. Labio, and N. Shivkumar, “Multi-way VLSI circuit

partitioning based on dual net representation,” Proc. of International

Conference for Computer Aided Design, pp. 56-62, Nov. 1994.

 Y.-P. Chen, “Algorithms for VLSI partitioning and routing,”

Dissertation for the Degree of Doctor of Philosophy, August, 1996.

 X. Tan, J. Tong, P. Tan, N. Park, and F. Lombardi, “An efficient

multi-way algorithm for balanced partitioning of VLSI circuits,”

Proceedings of International Conference on Computer Design, 1997.

 G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”

in Proceedings of the Design and Automation Conference, 1999.

 S.-J. Chen and C.-K. Cheng, “Tutorial on VLSI partitioning,” VLSI

Design, vol. 11, no. 3, pp. 175-218, 2000.

 Z. Zhao, L. Tao, and Y. Zhao, “An effective algorithm for multi-way

hypergraph partitioning,” IEEE Transactions on Circuits and

Systems-I: Fundamental Theory and Applications, vol. 49, no. 8,

August 2002.

 S. N. Adya, M. C. Yildiz, I. L. Markov, P. G. Villarrubia, P. N. Parakh,

and P. H. Madden, “Benchmarking for large-scale placement and

beyond,” Paper in Proc. of ISPD, April 2003.

