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Abstract: Smart cities are considered to be one of the most important applications of the IoT notion. Most 

smart city applications rely fundamentally on ubiquitous sensing, enabled by Wireless Sensor Network 

(WSN) technologies. These sensor networks are vulnerable to different challenges that cause failures in 

some parts of the network, which in turn interfere with the availability of network services and weaken the 

user experience. In this paper, we introduce a graph-theoretic model of wireless sensor networks used in 

smart cities. Moreover, we present several challenges, such as natural disasters and random failures and 

evaluate the system's performance in terms of data delivery, end to end delay, and energy consumption. The 

evaluation results show that fire is the challenge that causes the most damage among the three challenges 

examined, while random failure has the least effect on network performance. The results also show that the 

modeled WSN's can cope well with the challenge of random failures. 
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1. Introduction and Motivation 

The Internet of Things (IoT) is starting a new wave of the networked computing era. Many objects around 

us can be incorporated as part of smart systems that collect information and serve us in many ways [1]. The 

vision of IoT is becoming more realistic over the years due to the exponential increase of devices equipped 

with networking capabilities. The IoT area of research is gaining more potential, impact, and growth [2]; it 

promises to change the future of people's lives around the world. It can be used to enhance the quality of life. 

Smart cities are considered to be one of the most important applications of the notion of IoT [3]. 

The main goal of smart city initiatives is to improve urban performance by using information and 

communication technologies in order to provide more efficient services to citizens and to monitor and 

enhance existing infrastructure [4]. There are a vast number of applications that can be utilized in smart 

cities to achieve this goal [5]-[8]. These applications include smart streetlights, intelligent traffic 

management, smart buildings, smart grids, smart water distribution, smart farming, pollution detection, 

smart surveillance, smart fire control, smart emergency services, and natural disaster alarms. Some of these 

applications are depicted in Fig. 1. 

Most of the smart city applications rely fundamentally on ubiquitous sensing enabled by Wireless Sensor 

Network (WSN) technologies [5], [8]. These sensor networks are vulnerable to challenges when 

implemented in real life in smart cities. A challenge is an event that impacts the normal operation of the 

network [9], [10]. It triggers faults. Failure management is one of the critical concerns of any smart city 
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development project. Failures can occur during natural challenges, i.e., storms, fires, floods, tornadoes, 

earthquakes, volcanoes, etc., or they can happen due to system challenges, such as infrastructure 

breakdown and network unavailability [3]. Challenges may either permanently or temporarily block the 

reporting of sensor information in smart cities. However, some of the applications provided in smart cities 

are critical and should maintain their availability during these disasters to monitor the disaster and help in 

decision-making during the recovery process. The sensory information acquired from the WSN, in this case, 

might help in controlling the disasters or limiting their danger. That is why, it is extremely vital to work on 

ensuring that these sensor networks have the resilience to work under challenges. 

Modeling smart city networks is an important step to evaluate their performance in the face of challenges. 

This step can help in studying the best topology design in terms of the number of nodes or node placements.  

The main contribution of the paper is to model the WSNs of smart cities and to evaluate their resilience 

against different types of challenges. The network resilience is evaluated based on three metrics: network 

throughput, end to end delay, and energy consumption. 

The rest of the paper is outlined as follows. In Section 2, a brief technical background is presented, and 

the related work is discussed. After that, Section 3 is dedicated to describing the modeling of the system and 

challenges. The evaluation details and results are discussed in Section 4. Finally, we conclude our work and 

discuss future directions in the last section. 

 

 
Fig. 1. Smart city applications. 

 

2. Background and Related Work 

In this section, we define our notation from a graph-theoretic perspective. Then, we introduce related 

works and discuss their contributions 

 WSN Graph Model 

In smart cities, WSN sensor nodes are distributed within a specified area to gather particular information, 

such as surveillance videos, temperature values, or pollution readings [11], [12]. In general, these nodes can 

be divided into two groups: sensors and sinks. Sensor nodes are equipped with sensors or cameras to 
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collect data and send them to a sink. The sink nodes are responsible for gathering the sensed data and 

process them.  Both sensors and sinks are equipped with wireless transceivers, with a certain range, to 

exchange data with each other. Two sensors can communicate if they are within radio range of each other. 

To model this environment using the graph-theoretic approach [13], let 𝐺 = {𝑁, 𝐿}, where 𝑁 is a set of 

WSN nodes and 𝐿 is a set of links. 𝑁 is divided into two subsets 𝑁 = {𝑆, 𝑇}, 𝑆 represents the set of 

sensor nodes and T represents the set of sink nodes. 𝐿 represents the wireless links, such that if the 

distance between two nodes 𝑛1 and 𝑛2 is less than their transmission range, then the link (𝑛1, 𝑛2) is in 

the set 𝐿 . 

 Related Work 

The performance evaluation of different communication networks that are commonly used in smart city 

scenarios has been studied by a number of researchers. In [14], the authors studied the delay that a device 

may undergo while accessing a Long Term Evolution (LTE) cellular network in the case of a massive number 

of access requests in real deployment in smart cities. They used the network simulator (ns–3, [15]) to 

address a Smart City scenario. The results show that if a few hundred smart sensors concurrently require 

network access, e.g., to report a certain failure, an extremely long delay will be experienced to complete the 

access procedure; this would be completely unacceptable in critical applications in smart cities, such as in 

disaster alarms.  

In addition, Magrin et al. studied the performance of Long-Range Low-Power Wide Area Networks 

(LoRa-PWANs) in a typical smart city scenario [16]. They also use the network simulator (ns-3) to simulate 

a whole network consisting of tens of thousands of end devices. The simulation results show that the 

network can scale well, achieving packet delivery rates above 95% in the presence of that huge number of 

end devices.  Also, it has been shown that the increase in the number of gateways in the architecture of 

(LoRa-PWANs) noticeably enhances the coverage and reliability of the uplink. 

Other researchers also studied the resilience of different communication networks. The authors of [17] 

described a methodology to evaluate resilience using a combination of analytic and simulation techniques. 

They provide a comprehensive framework consisting of a resilience strategy, metrics for quantifying 

resilience, and evaluation techniques. Also, they added later, in [18], a topology generation and 

experimental emulation techniques to the framework.  

Further, the authors of [19] worked on a simulation-based approach to analyze the effects of 

perturbations on the normal operation of networks in general. They described how challenges could be 

categorized, and they presented a framework to evaluate network performance when faced by stationary or 

evolving challenges. The results show that network performance varies, depending on the type and severity 

of the challenge applied. Additionally, the authors of [20] used the graph theory to model transportation 

and communication networks and analyze their resilience in a multilevel framework. They confirmed that 

dynamic routing helps lighten the impact of perturbations. They also show that adaptive challenges worsen 

the multilevel network performance more than non-adaptive challenges. 

Our work differs from these studies as it targets a different network, the wireless sensor network (WSN), 

which is recognized as one of the most used technologies in many applications in smart cities [6]. Our work 

also provides modeling of the network and an analysis of its resilience by evaluating its performance under 

different challenging scenarios that are commonly faced by networks in real deployment in smart cities. 

Moreover, it uses three different metrics to evaluate the network's resilience. 

3. System Model 

In this section, we present our graph-theoretic WSN model in the context of smart cities. Then, we 

introduce three models to emulate the effect of natural disasters in our WSN model. 
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3.1. Modeling the Sensor Network 

We introduce a system to emulate WSN networks using the graph-theoretic model, discussed in Section 

2.1. This model includes several components, as shown in Fig. 2. These components include: system 

parameters, application data, challenge mode, performance metrics, and tracers. The system parameters 

are used to define input values for building the WSN such as the area, number of nodes, and transmission 

range. The application data is used to define the data properties gathered by the sensor, such as the data 

rate, packet size, and sensing rate. The challenge mode is used to define the type of challenge and the 

covered area. This component is explained in detail in the next section. The performance metrics 

component is used to define what metrics are measured during each challenge and to determine the 

sampling rate. Finally, the tracer component defines the process that is used to obtain the output results. 

 

 
Fig. 2. System model. 

 

 
Fig. 3. WSN Graph. 

 

Fig. 3 shows a general, abstract view of the modeled WSN as a graph. The graph consists of a set of nodes 

and edges that represent sensors and their connections. Sensors are responsible for collecting the sensory 

information, then reporting it to one of the available sinks. Sinks are responsible for receiving the collected 

information and processing them to be used later in different smart city applications. The traffic generated 

by the sensors includes their own sensed information, as well as some forwarded information from other 
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sensors from different locations. More specifically, a sensor node is not only responsible for sending its own 

collected sensor information to the nearest sink; it is also responsible for forwarding the sensor information 

that is collected by other nodes if it falls within the shortest path to the nearest sink. 

3.2. Modeling the Challenges 

In our system, we target the modeling of three different types of challenges: storm challenge, fire 

challenge, and random failures. The storm challenge is modeled as a circle with a given radius that specifies 

a velocity. Nodes that are covered by the circle cannot generate or forward data. We assume that nodes that 

cease to be covered by the circle can recover their ability to communicate. Fig. 4 shows an example of a 

storm challenge moving through a WSN.  At time 0, the storm challenge starts to enter the sensing area, 

but only node 20 is affected, as shown in Fig. 4. Therefore, node 20 cannot communicate with other nodes. 

However, at t=50, the challenge is completely inside the sensing area, covering more sensors. Now, node 20 

is uncovered, and other nodes are covered, i.e., nodes 7, 10, 11, and 15. Thus, the sensors of the covered 

nodes are blocked and cannot communicate with other nodes in the network, as shown in Fig. 4. 

 

 
Fig. 4. The storm challenge. 

 

 
Fig. 5. The fire challenge. 

 

Similarly, the fire challenge has been modeled as a circle, but it keeps expanding with a certain speed, 

rather than moving. The sensors under the fire challenge are assumed to be completely destroyed by the 

fire; there is no chance these sensors can work again. Fig. 5. shows how the fire challenge is modeled in 

detail. At t=0, the fire starts between sensor 15 and sensor 19. At that time, the fire is very small and does 

not affect any sensor. At t=50, the fire has destroyed sensors 15 and 19, and it starts to hit other sensors. At 

t=99, about five sensors have already been destroyed. 

The random challenge represents failures that occur due to power outage in some regions of the city, or 

battery shortage when wireless sensors are used or any physical problems in the sensors. To represent this 
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challenge, it has been assumed that there is a chance of failure at any time. Four scenarios were modeled. 

The first scenario is when none of the sensors fail. The second scenario is when a single sensor fails for any 

reason. It has been modeled such that any sensor in the sensor networks has a probability of failing. The 

third scenario is when any two sensors fail at the same time. All sensors in the sensor network have an 

equal chance to be one of the two failed sensors. The fourth scenario represents an extreme random 

challenge when three sensors randomly fail at the same time. Fig. 6 illustrates some of these scenarios. 

 

 
Fig. 6. The random failures challenge. 

 

4. Evaluation 

In this section, the details of the implementation and evaluation of the modeled system are presented. 

Also, the performance metrics that are used to measure the system resilience under challenges are stated 

and the ways they have been obtained are described. Most importantly, the results of the evaluation of the 

system under the different types of challenges are illustrated and discussed. 

 Environmental Setup 

 

Table 1. The Modeling Parameters 

Parameter Value 

Sensing Area Length 1000 m 

Sensing Area Width 1000 m 

Storm Challenge Radius 280 m 

Storm Challenge Speed 10 m/s 

Fire Challenge Expanding rate 2 m/s 

Random Challenge Probability 0% to 10% 

Number of Sensors 24 

Number of Sinks 2 

Communication Range 300  m 

 

Python programming language is used to implement and evaluate the system. NetworkX [13] library is 

utilized to create and process graphs. In addition, Shapely library is used to model geometric objects for 

geometrical modeling and analysis [21]. The sensing area has been assumed to be a 2D square of 1000 by 

1000 meters and the challenge is assumed to be a circle with a radius of 280 m. At time 0, the storm 

challenge is centered at the point (0,0) and it moves towards the top right of the area at a speed of 10 m/s 

until the challenge center reaches the point (1000,1000). The fire challenge starts at point (300,400). It 
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expands at a rate of 2 m/s. For the random challenge, it has been assumed that the sensor network has a 

probability of node failures that varies between 0% of its nodes fail to 10% of its nodes fail. The number of 

sensors used in the experiment is 24, all of which report to any of two available sinks. The communication 

range between any two sensors is assumed to be 300m. Table 1 lists all the parameters that are used to 

perform the experiment. 

 Performance Metrics 

Three performance metrics have been used to evaluate the resilience of the network: network throughput, 

end to end delay, and energy consumption. 

4.2.1. Network throughput 
The network throughput is the most important metric when examining the resilience of a network, as it 

shows the amount of data delivered per unit of time. In our experimental evaluation, the network 

throughput is calculated by averaging the throughput of all alive nodes. It is assumed that each node 

produces a Constant Bit Rate (CBR) of 16 Kbps. Sensors under the challenge are assumed to be out of 

service, generating no traffic. 

4.2.2. End to end delay  
In many critical smart city applications, the sensed information should reach the control center with the 

minimum possible delay [22]. The end to end delay is considered an important parameter for quality of 

service (QoS) guarantees [23]. In this paper, it has been used as one of the metrics to evaluate the network's 

ability to continue to work under challenges. The end to end delay is defined as the amount of time needed 

to deliver a packet of data from a sensor to the nearest sink. This delay is affected by four factors: queuing 

delay, processing delay, transmission delay, and propagation delay. 

The queuing delay is the waiting time of packets in the buffer of the sensor node before transmitting, 

while the processing delay is the time needed to process a packet at each node to prepare it for 

transmission. In turn, the transmission delay is defined as the time needed to transmit a complete packet 

from the first bit to the last bit over the communication link. Finally, the propagation delay is defined as the 

time needed to propagate a bit through the link. It is determined by the travel time of the electromagnetic 

wave through the physical channel of the communication path [24]. 

In this experiment, we assume that queuing, processing, and transmission delays are constant for all 

sensor nodes and for all packets; thus,  the main factor in calculating the end to end delay is the 

prorogation delay, which is a function of the distance between the source and destination nodes; the longer 

the distance is between them, the longer is the delay. The propagation delay is obtained by tracking one 

packet that is to be sent from node 0 to the nearest available sink. The packet is supposed to follow the 

shortest possible path. After determining the path, the path distance is calculated. Then, the delay is 

determined by multiplying the path distance by the time the packet takes to be transferred for one meter, 

which is assumed to be 0.5 ms for each meter. 

4.2.3. Energy consumption 
Energy consumption is also a significant metric when evaluating the resilience of WSN under challenges 

in smart cities. It is considered one of the key factors in WSN [25]. Energy consumption significantly affects 

the lifetime of the sensors and the whole network. Lower energy consumption leads to a longer period of 

network survival under a challenge. This survival is extremely important, especially in the case of natural 

disaster control and alarm applications in smart cities. In the experiment, the energy consumption for a 

given pair of source and destination nodes located at multihop h, using the path L, is calculated according to 

this equation: 

𝐸(𝑙) = ∑ 𝐸𝑘,𝑐𝑘𝑡
𝑟𝑥ℎ−1

𝑘=1 + ∑ (𝐸𝑘,𝑐𝑘𝑡
𝑡𝑥 +

Є

𝜂
𝑑ℎ

𝜎)ℎ
𝑘=1        (1) 
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where: 

𝐸(𝑙)   = energy for the complete path 
h     = number of hops    
𝐸𝑘,𝑐𝑘𝑡

𝑟𝑥   = circuitry energy consumption in transmission 

𝐸𝑘,𝑐𝑘𝑡
𝑡𝑥   = circuitry energy consumption in reception 

𝑑ℎ          = distance between two nodes 
η      = drain efficiency 
Є     = constant energy   
σ      = path loss exponent 
The number of hops that are considered when calculating the circuitry energy consumption in reception 

is (ℎ − 1) hops. This is because usually, the destination node is powered by an external source [26]. For a 

single node, the circuitry energy consumption in reception is assumed to be 1 µW. Similarly, the circuitry 

energy consumption in the transmission is assumed to be 1 µW. 

The value of the path loss exponent (σ) usually varies between 2 for free space to 4 or 6 for obstructed 

areas in building propagation [27]. For simplicity in the experiment, it has been assumed to be always 

constant and equal to 3. The drain or rectifier efficiency is the ratio of the output radio frequency (RF) 

power to the input direct current (DC) power [28]. It is a measure of how much DC power is converted to RF 

power. The value of the drain efficiency (η) is always less than or equal to 1, as the maximum drainage 

efficiency is 100. For the experiment, it has been chosen to be 0.80. Finally, the constant energy (Є) is 

assumed to be 0.1 µW. 

 Results and Discussions 

In this section, we apply the three challenges presented in Section 3.2 to the WSN network explained in 

Section 4.1 to study its network resilience against such challenges. The results are discussed based on the 

performance metrics: network throughput, end to end delay, and energy consumption. 

4.3.1. Network throughput 
 

 
Fig. 7. The change in the network throughput over time under the three challenges. 

 

Fig. 7 shows the results of measuring data traffic throughput during the three challenges. For the storm 

challenge, the network throughput begins high as the storm starts to hit the sensing area, and most of the 

sensors are not affected by the challenge yet. As the storm goes inside the sensing area, more sensors are 

affected. This is reflected as a gradual decrease in network throughput until it reaches its minimum value at 

t=57 and t=77 when the storm covers the maximum number of sensors. Then, we observe that the 

throughput recovers to its normal high value at the end of the experiment as the storm is about to leave the 

sensing area. Similarly, the network throughput under the fire challenge starts with its highest value at t=0, 

when the fire is too small to affect any sensor. After that, the throughput keeps decreasing as time passes, 
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without returning to its normal high value. This is because the fire keeps expanding and affecting more 

sensors, and the affected sensors do not recover to their normal operation. The network throughput under 

the random challenge decreases when more sensors are affected by the challenge. When there is no failure, 

the throughput reaches its maximum. 

 

 
Fig. 8. Total network throughput under the three challenges. 

 

Fig. 8 shows the total data delivered by the network through the whole simulation time under the three 

challenges. By studying all challenges, we observe that the storm challenge is the most destructive since it 

covers the largest number of nodes. The fire challenge ranks second in lowering the throughput since nodes 

do not recover after they are burned. The random challenge has the least effect on the network resilience 

since failed nodes are not necessarily close to each other. Thus, there exist alternative paths for delivering 

data to sinks as one or two affected nodes fail. 

4.3.2. End to end delay 
 

 
Fig. 9. The change in the end to end delay over time under the three challenges. 

 

Fig. 9 shows the result of measuring the end to end delay over time under the three challenges. Under the 

storm challenge, the end to end delay starts at its minimum value at t=0, as the storm does not yet affect the 

shortest path between node 0 and the nearest sink. When the storm reaches the shortest path area, the 

delay is dramatically increased from 550 ms to 710 ms at t=17.  Then, it goes to its maximum when the 

storm challenge fully covers the sensing area. This is because the network starts to use alternative paths 

that are longer than the shortest path, which is temporarily blocked by the challenge. As the storm leaves 

the sensing area, the blocked sensors return to work and the delay decreases again. Similarly, the end to end 

delay under the fire challenge starts with its minimum value at the beginning as the fire does not reach the 
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shortest path region yet. As time passes, the fire expands and keeps affecting more sensors, resulting in 

increasing the delay. This is because the network searches for alternative longer paths to be used instead of 

the shortest path affected by the fire. The delay keeps increasing each time the network has been forced to 

use a longer path. Under the random challenge, the end to end delay increases when more nodes fail. When 

no node fails, the delay is at its minimum value. 

 

 
Fig. 10. Average end to end delay under the challenges. 

 

Fig. 10 shows the average end to end delay during the whole simulation time under the three challenges. 

The fire challenge has the worst effect on the network as it has the highest average end to end delay among 

the three challenges. The storm challenge comes in second place. The calculated average end to end delay 

under the storm challenge is less than the average end to end delay under the fire challenge but it is higher 

than the average end to end delay under the random failure challenge.  The random failure challenge has 

the least effect on the network end to end delay. 

4.3.3. Energy consumption 
 

 
Fig. 11. The change in energy consumption over time under the three challenges. 

 

Fig 11. shows the result of measuring the energy consumption over time under the three challenges. 

Under the storm challenge, the energy consumption starts at its minimum value as the storm is not entirely 

inside the sensing area. However, when the challenge starts cutting the shortest path to the nearest sink, the 

energy consumption increases. This is because, in this case, the network should find an alternative longer 

path that needs more energy to transmit packets through it. Once the challenge leaves the shortest path 

area, the energy consumption returns to its standard value. In the case of the fire challenge, the energy 
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consumption increases each time the network is being forced to find alternative longer paths to be used 

instead of the shorter ones. However, the shortest paths are never available again once the fire reaches them. 

This why energy consumption under the fire challenge keeps increasing without returning to normal values, 

in contrast to the energy consumption under the storm challenge. The energy consumption under the 

random challenge increases as more nodes fail, following a random pattern as the node failure is modeled 

to be random. 

Fig. 12 shows the total energy consumed by all sensors during the whole simulation time under the three 

different challenges. The fire challenge caused the most destructive effect on energy consumption among 

the three challenges as the network consumed the most energy under this challenge in comparison to the 

other two challenges. The storm challenge ranks second in increasing energy consumption, while the 

random challenge has the least effect on energy consumption. 

 

 
Fig. 12. Total energy consumption under the three challenges. 

 

5. Conclusions and Future Work 

Applications of the IoT notion are gaining more importance over the years. Smart cities are supposed to 

bring together critical applications of IoT. Most smart city applications strongly depend on ubiquitous 

sensing that is enabled by sensor networks, such as Wireless Sensor Networks (WSN). Modeling smart city 

networks is an important step to evaluate their performance in the face of the unavoidable challenges that 

always exist in real implementations. This step can help in studying the best topology design in terms of the 

number of nodes or node placements. In this research, the resilience of sensor networks has been evaluated 

under different types of challenges, based on network throughput, end-to-end delay, and energy 

consumption.  

The results show that the storm challenge has the most destructive effect on network throughput, while 

the random failure challenge has the least. The effect on the network throughput that is caused by the fire 

challenge is less than that of the storm challenge but more than the effect of the random failure challenge.  

However, the worst effect on both end-to-end delay and energy consumption is caused by the fire challenge. 

The storm challenge ranks second in increasing energy consumption and end-to-end delay. Under all cases, 

the random failure challenge has the least effect on the performance of the sensor networks.  

For future work, we plan to use our model with different topologies to show the effect on small-, medium-, 

and large-scale networks. Moreover, we will use network simulators such as ns-3 to simulate the studied 

scenarios and compare modeling and simulation results. Besides, other performance metrics can be 

considered, such as the packet delivery ratio. Additionally, an efficient routing protocol in case of the 

challenges could be proposed.  
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