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Abstract: Orthogonal frequency division multiplexing (OFDM) is regarded as a popular technique. 

Moreover, OFDM combined with multiple-input multiple-output systems (MIMO) has drawn many interests. 

However, OFDM-MIMO systems with continuous phase modulation have not been investigated extensively 

to date. In this paper, we propose an OFDM-MIMO system using convolution codes with continuous phase 

modulation (CPM). In the system, an interleaver is added between encoder and modulator. Moreover, 

iterative decoding and demodulation are combined together at receiver. To evaluate the performances, the 

comparisons between CPM and linear modulations in terms of bit error rate (BER), peak-to-average power 

ratio (PAPR) and power spectrum density (PSD) are given in the end.  
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1. Introduction 

Orthogonal frequency division multiplexing (OFDM) is a popular technique for transmission of signals 

over frequency-selective fading channel. In addition, OFDM offers good ability to combat multipath fading 

without complex equalization filters. In literatures, OFDM systems that employ linear and memory-less 

modulations such as PSK, QAM, etc, have been investigated extensively [1], [2]. On the other hand, 

continuous phase modulation (CPM) is a promising technology for its features such as constant envelope 

and phase continuity. Its constant envelope makes it more suitable for low cost non-linear power amplifier, 

its phase continuity makes it easily demodulated via phase trellis diagram. Moreover, the advantage that 

OFDM-CPM system brings to us is that adjacent OFDM symbols can be modulated by modulation index of 

CPM. Therefore, OFDM-CPM system has been proposed and studied owing to the above advantages [3]-[7]. 

The detection of OFDM-CPM signals is studied in [5], [6]. Peak-average power ratio (PAPR) is analyzed in 

OFDM-CPM systems [7]. 

Further, the performance of OFDM-CPM with multiple antennas is also studied [8]-[10]. The authors 

demonstrate that OFDM-MIMO with CPM offers considerable improvement relative to conventional 

OFDM-MIMO systems with linear modulations (PSK, QAM, etc.) [8]. To harness diversity gain, a kind of STBC 

scheme is introduced in OFDM-CPM systems [9]. To achieve low PAPR while maintaining robustness to 

frequency selective fading, the multiple modulation indices are introduced in OFDM-CPM system [10].  

To date, many literatures have proposed the combination of channel codes with CPM due to the inner 

coding of continuous phase encoding (CPE). One of the most popular schemes is to employ convolution 

codes [11]. Under the same condition, encoding in OFDM-MIMO systems can improve the performance 
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without extra transmission power [12]. In this paper, we proposed a kind of OFDM-MIMO system using 

convolution codes with CPM. Meanwhile, the interleaver is added into the system to mitigate the chance of 

burst error caused by channel. Generally, iterative decoding is mostly used in Turbo-CPM systems [13], [14]. 

To simplify the decoding algorithm without sacrificing the performance, iterative decoder and demodulator 

are combined together for convolution and CPM. In addition, multiple modulation indices are considered in 

CPM scheme to improve peak-to-average power ratio (PAPR). In the end, simulated results are given to 

validate our proposed system.  

The rest of this article is organized as follows. The proposed system is briefly described in Section II. The 

transmit model and receive model are introduced respectively. In Section III, simulated results are 

presented and discussed. Finally, the work is concluded in Section IV. 

2. System Model 

The system is described in Fig. 1. At the transmit side, serial input symbols are de-multiplexed into 

several parallel branches. Each branch is encoded with convolution. After convolution, these branches are 

multiplexed and interleaved. And then they are de-multiplexed again into several parallel branches. Finally, 

each branch is modulated as CPM signal, and further modulated as OFDM signal. The parallel signals are 

transmitted simultaneously from several antennas. At the receive side, the OFDM signals are de-multiplexed 

again into parallel branches. Then, each branch is demodulated into symbols. Finally, the symbols are 

de-interleaved and decoded into information stream. 

 

 

Fig. 1. System model of OFDM-MIMO with CPM. 

 

2.1. Transmitter Model 

We denote channel coefficients as HNr×Nt. And hnrnt denotes each entry of channel matrix HNr×Nt, where Nr 

is the number of receive antennas, Nt is the number of transmit antennas, w(t) denotes added white 

Gaussian noise (AWGN) with variance 2N0. With these assumptions, the received signals can be represented 

as 

tp k p k

1

( ) s( ) ( )
t

r r r

t

N

n , n n , n

n

r t;D h t;D w t
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As is well known, OFDM with linear modulations has been investigated extensively. In this paper, more 

attention is paid to CPM-OFDM modulated signals. Without loss of generality, the CPM mapper/modulator 

is hereby defined as [3] 
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where hp is modulation index, Dp,k is M-ary CPM symbol drawn from {±1,±3,…,±(M-1)}, p=1,2,…, and 

k=0,…,N-1. It is noted that p denotes the OFDM block number and k denotes the subcarrier number. φ is the 

initial phase. 

Further, the OFDM signals are given by  
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In (4) and (5), T is symbol duration of CPM, L=1 is for full response signaling. More specifically, hp=h/p 

where h and p are positive integer numbers and integer values for hp are forbidden [15]. Meanwhile, a 

correct definition of the modulation index requires that h and p are relative prime to have a minimal trellis 

representation. In multiple hp CPM, the value of hp is selected from [1/8, 7/8], depending on whether data 

bit is changed or not. For example, if data bit is not changed, e.g. from ‘0’ to ‘0’, or from ‘1’ to ‘1’, then hp=1/8, 

if data bit is changed from ‘0’ to ‘1’, or from ‘1’ to ‘0, then hp=7/8. Since m is odd, we know that the 

constellation distribution for hp=1/8 and hp=7/8 should be same [16], including the total number of 

constellation. In Fig. 2, we can see the number of constellation for hp=1/8 and hp=7/8 is 16. 
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Fig. 2. The constellation diagram of CPM symbols for hp=1/8 and hp=7/8. 

 

The PAPR of the transmitted signal in (4) can be defined as 

2

2

( )
PAPR

( )

max s t
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         (6) 

The theorem of convolution codes is to encode one or k bits and output n bits. Generally, it can be 

expressed as (n, l, m), where n denotes the number of encoder flag, l denotes the length of input symbols, m 

denotes the number of sequential registers. The coding rate R is hereby l/n. In Fig. 3, M=2 and M=4 are 

respectively denoted as binary and quaternary encoders. In (a), the encoder is comprised of one input port, 
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three shift registers, two modulo by 2 adders and two output ports, which can be expressed with generator 

matrix G(D)=[1+D+D2, 1+ D2]. In (b), the encoder is comprised of one input port, three shift registers, three 

modulo by 4 adders and three output ports, which can be expressed with generator matrix G(D)=[1+D+D2, 

1+D2, D+D2]. Hence, binary and quaternary encoders are compatible and linked with CPM with M=2 and 

M=4 respectively. 

 

 
Fig. 3. The structures of convolution coder for M=2 and M=4. 

 

The role of interleaver in communication systems is to solve the burst errors of sequences in the 

transmission process. The first function of interleaver is to scramble the data sequences, and then correct 

these errors by convolution codes. The second function of interleaver is to be put in the inner coder and the 

external coder. There will be potential errors in the output of the external decoder. The errors are randomly 

distributed by the interleaver, such that the errors of the inner decoder are random, hereby ensuring the 

effect of the inner coder. The performance of random interleaver is excellent, especially when the length of 

interleaver is longer. 

2.2. Receiver Model 

It is assumed that the channel state information (CSI) can be obtained via channel estimation. At the 

receiver, several detection algorithms, e.g. Zero-Forcing (ZF) or Minimum Mean Square Error (MMSE) can 

be employed. Hereby we choose MMSE and obtain the decoupled signals as follows 

 
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Then, we employ maximum likelihood (ML) detection to get Cp,k as follows 
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The pair wise probability (PEP) conditioned onto fading channel statistics can be written as follows [17] 
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Plugging the right terms of (8) into (9), we can obtain as follows 
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where Es is the power of OFDM signals, γ=Es/2N0 is the signal to noise ratio. Q(·) is the Q-function. In (9), the 
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PEP is determined by the Euclidean norm of OFDM signals. 

Generally, the de-convolution (DConv) or the de-modulation (DCPM) can be performed via Viterbi 

algorithm or BCJR algorithm [18]. In this paper, we mainly consider the later, and try to combine the DConv 

and the DCPM and perform iterative decoding and demodulation. In Fig. 4, the iterative decoder consists of 

one a posteriori probability (APP) algorithm for CPM and the convolution encoder. The iterative decoding 

and demodulation utilize a priori probabilities of both information symbols and code symbols, and 

calculates extrinsic APP of both information symbols and code symbols. It is worth noting that, Cp,k denotes 

the input of de-modulation, Ip,k denotes the output stream of de-convolution. λp,k denotes the soft 

information for the output of de-convolution, π(λp,k) denotes its interleaving. ηp,k denotes the soft 

information for the input of de-convolution, π(ηp,k) denotes its interleaving. For M=2, the soft information 

such as λp,k, ηp,k should fulfill as follows 

   
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For M=4, the soft information such as λp,k, ηp,k should fulfill as follows 
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Fig. 4. Iterative decoder and demodulator for convolution and CPM. 

 

3. Simulation and Analysis 

In this section, we give Monte-Carlo simulations for the OFDM-MIMO system using convolution with CPM. 

For convenience, the proposed system with Nt=4, Nr=4 is evaluated as an instance. Each spatial channel is 

modeled to be independent and Rayleigh fading. First, we assume that the channel is polluted by the noise w 

with zero-mean and variance 2N0.  

 

 
Fig. 5. Comparison among various modulations and detections in OFDM-MIMO systems. 
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We provide the comparison among various modulations and detections in OFDM-MIMO systems. The 

phase smoothing function of CPM signal takes the form of LRET full response (L=1) with hp=1/4 and M=2. 

In Fig. 5, it is shown that, CPM has the best bit error ratio (BER) performances among these modulations, 

and QPSK has 2dB performance over 16QAM via Viterbi algorithm. In addition, BCJR algorithm performs 

better than Viterbi algorithm. As the number of iteration increases, the BER performance improves a litter. 

We provide the comparison between interleaving and non-interleaving with modulations in OFDM-MIMO 

systems. The phase smoothing function of CPM signal takes the form of LRET full response (L=1) with 

hp=1/4 and M=2. In Fig. 6, it is shown that, CPM has the better BER performances than QPSK. The 

interleaver can bring the improvement of 1dB performance for both CPM and QPSK. In addition, BCJR 

algorithm performs better than Viterbi algorithm. 

 

 
Fig. 6. Comparison between interleaving and non-interleaving in OFDM-MIMO systems. 

 

We provide the comparison for CPM with various modulation formats in OFDM-MIMO systems. In Fig. 7, 

it is shown that CPM with hp=1/2 performs better than CPM with hp=1/4, which is attributed to the 

constellation of CPM symbols, since the Euclidean distance of CPM with hp=1/2 is bigger than its 

counterpart with hp=1/4. Likewise, it is shown that CPM with M=2 performs better than CPM with M=4, 

which can be inferred from (10) and (11).  

 

  
Fig. 7. Comparison for CPM with various modulation formats in OFDM-MIMO systems. 

 

We provide the comparison of complementary cumulative distribution (CCD) function of 256-subcarrier 

OFDM-MIMO system for various modulations. The simulation is run 1000 OFDM blocks and the transmitted 
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signal is oversampled by the factor of four, which is sufficient to capture the peaks. In Fig. 8, it can be seen 

that the PAPR for OFDM-MIMO with multi-hp CPM is better than that for OFDM-MIMO with BPSK. 

Meanwhile, the PAPR for OFDM-MIMO with hp=1/4 CPM is close to the OFDM-MIMO with QPSK. On the 

other hand, the PAPR for OFDM-MIMO with 16QAM is the worst among these modulations. 

 

 
Fig. 8. Complementary cumulative distribution function of 256-subcarrier OFDM-MIMO system for various 

modulations. 

 

We provide the comparison of the power spectrum density (PSD) of 256-subcarrier OFDM-MIMO system 

for various modulations. In Fig.9, it is shown that the main lobe of OFDM-MIMO with multi-hp CPM is flat 

than that of OFDM-MIMO with BPSK and 16QAM, while the side lobe of OFDM-MIMO with multi-hp CPM is 

lower than for OFDM-MIMO with hp=1/4 CPM. It is demonstrated that OFDM-MIMO with multi-hp CPM gives 

excellent bandwidth efficiency. 

 

 
Fig. 9. PSD of 256-subcarrier OFDM-MIMO system for various modulations. 

 

4. Conclusions 

In this paper, we propose the OFDM-MIMO system using convolution codes with continuous phase 

modulation. In the system, the interleaver is added between encoder and modulator. Moreover, iterative 

decoding and demodulation are combined together at receiver, where multiple format modulated signals 

are suitable for transmission without any complexity of hardware or computation. To evaluate the 

performances, we have provided the comparison between CPM and other linear modulations. It can further 
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be declared that, multiple modulation indices can improved the performances such as PAPR and PSD. In 

future, we would like to investigate the OFDM-MIMO systems using polar codes with CPM. As is well known, 

polar codes have been considered a good standard of channel coding for next generation of wireless 

communications [19]. 
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