
Wireless Sensor and Actuator Network Deployment 
Optimization for a Lighting Control 

S. E. Bouzid1,2*, Y. Serrestou2, M. Mbarki1, K. Raoof2, M. N. Omri1, C. Dridi3 
1 MARS Research Laboratory, LR 17ES05, Sousse University, Technopole of Sousse, 4054, Sousse, Tunisia. 
2 LAUM Acoustics Laboratory of University of Le Mans, UMR CNRS 6613, Le Mans 72017 Cedex, France. 
3 NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology of 
Sousse, 4054, Sousse, Tunisia. 

* Corresponding author. Tel.: +33(0)766514098; email: Salah_Eddine.Bouzid.Etu@univ-lemans.fr
Manuscript submitted June 10, 2019; accepted September 6, 2019.
doi: 10.17706/ijcce.2020.9.2.64-77

Abstract: Wireless Sensor and Actuator Networks (WSANs) are widely used in smart control system as 

home automation, military service, etc. They consist of hundreds of heterogeneous nodes. Due to this high 

density, finding an optimal deployment becomes a NP-Hard task. So, determining different node positions, 

that ensure the highest QoS of these networks, is the most significant challenges. In this paper, we study this 

problem for light control application. We expose our models for coverage, connectivity and lighting metrics. 

These proposed models, are adapted and validated by real measurements. The optimization approach is 

based on Genetic Algorithm for both regular and random deployment. The proposed approach is evaluated 

for different lighting space shapes, and the results are presented and compared to other studies. 
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1. Introduction

A Wireless Sensor Network (WSN) consists of a set of sensors wirelessly interconnected. It is formed by a

hundred of deployed sensors nodes. Its evolution toward Wireless Sensor and Actuator Network (WSAN) 

has given a promising perspective for different applications such smart lighting control, smart surveillance, 

smart domestic application, etc. [1]. The integration of actuators nodes with sensors nodes, in WSAN, 

increases the density of network and adds others constraints for deployment task. Such high density leads 

to a highly complex network design process and makes finding optimal nodes placement a hard task [2].  

Traditionally, nodes deployment is based on a manual process by deploying nodes and iteratively 

changing the configuration until finding an optimal one. This approach is expensive and does not ensure the 

optimality of the deployed network. Thus, the need to automate the deployment process. This automation 

must assist network designers to find optimal architecture and topology in terms of network performance 

(connectivity, coverage, cost, energy consummation, etc.).  

In this work, we present a new approach that allows to automate WSAN deployment for smart lighting 

system control. Given a deployment environment, sensors and actuators specifications, user’s preferences 

and wireless communication protocols, the proposed approach finds optimal nodes placement that 

guarantees highest sensing coverage, highest connectivity and ensuring the required lighting level. In this 

approaches, coverage and connectivity are rigorously defined and modeled. The established models are 

experimentally validated. Moreover, the optimization task uses a new combination of weighted-sum method 
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and genetic algorithm.  

The remainder of this paper is organized as follows: in Section 2, we present related works of deployment 

problem. Our proposed optimization approach of WSAN deployment is presented in Section 3. Simulations 

and results analysis are presented in Section 4 Finally, Section 5 concludes the paper and presents some 

further researches. 

2. State-of-the Art 

Deployment problem, known by others names as placement or coverage, is to place sensors and actuators 

nodes in accurate way that ensures high network performance. This performance depends on design 

objective(s) [3]. Several researches have shown that this problem is NP-Hard [4]. Random deployment, 

regular deployment and scheduled deployment are the three knowns strategies [5]. In regular deployment, 

nodes are placed at specified positions. In scheduled deployment, sensors are placed with higher density in 

areas where the phenomenon and events are concentrated. 

To solve the deployment problem, many approaches and algorithms have been developed and proposed 

in literature. In this section, we draw up a non-exhaustive state of art, focused on models and optimization 

methods. From this survey we show the limitation of existence approach and the need for a new robust 

formulation and modeling of the deployment problem. 

For optimization, in [6], for example, a multi-objective optimization problem that aims to solve coverage 

and connectivity WSN problem subjected to node failures was studied. GA and local on-line algorithm were 

used to find optimal solution. In [7], authors dealt with WSN optimization based on particle swarm 

optimization and fuzzy logic. This problem aims to maximize coverage, connectivity and lifetime. 

Furthermore, Woehrle et al. have used evolutionary algorithm to minimize transmission failure probability 

and network cost [8]. We note that all of these optimization approaches are restricted to specific WSN 

application or deployment environment. 

While solving this problem, different optimized criteria are modeled. Coverage is an important criterion 

indicating the performance of the network [9]. It measures the ability to control physical events and useful 

information. In literature, two types of models exist: Boolean model and probabilistic model. In Boolean 

model, the area of interest is covered if it lies within sensor sensing radius. It is the most used sensing 

model [10]. Despite of its simplicity, this model does not consider degradation of sensing capacity. 

Probabilistic models consider realistic parameters of sensors [11]. There are several probabilistic detection 

models: asymptotic model (polynomial, exponential), Shadow-Fading model, Elfes model [12], etc. For 

coverage, real sensors do not provide the same sensing capability in every direction. Boolean sensing model 

do not represent the real sensing capability of sensors. Probabilistic models are more accurate. Therefore, 

to model the realistic sensing capacity of sensors, an adaptation of Elfes model can lead better results. 

The second important metric is network connectivity. Connectivity models are classified in three types: 

empirical models, deterministic models, and stochastic models. According to [13], the most used 

propagation models are the Boolean mode, the Free Space Path Loss model (FSPL) [14], the One-Slope 

model (1SM) [15], and the Multi-Wall-Floor model (MWF) [16]. As for coverage, the Boolean model is used 

because it facilitates analysis [17]. In [18], authors use binary model for both connectivity and coverage 

models. Both [19] and [20] assume that sensing range is at least the half of transmission range and then 

coverage can imply connectivity.  

Many approaches are considering metrics separately [19]–[21]. In literature, frequently rectangle 

environments are modeled [10], [22]. A number of papers consider the optimization of only one type of 

nodes (sinks or sensors). Many of above-mentioned works simplify the problem by using simplified models 

[10], [20]–[23]. Lot of works focused on WSN deployment but, for WSAN deployment optimization is not 
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well investigated. In [24], based on linear programming authors aim to optimize communication in terms of 

routing and sampling rate. An optimization of actor nodes deployment in WSAN using particle swarm 

optimization is proposed in [25]. Different from WSN deployment that aims to optimize the perceive areas, 

WSAN deployment aims to cover the area in terms not only perceiving but also being able to influence the 

environment. For that already existing WSN deployment approach cannot be used for WSAN. 

3. Proposed Approach 

In our approach, we propose a tool that takes as inputs the environment specifications, user preferences, 

nodes characteristics, communication protocol and importance of each metrics. It optimizes nodes position 

for a WSAN dedicated to lighting system. The first step is to determine lighting nodes positions, in regular 

deployment strategy, that satisfy lighting requirement. Then, we randomly deploy sensor and sink nodes to 

cover the area of interest and to link sensors, sinks and lighting nodes wirelessly. Fig. 1 illustrates the 

deployment process of WSAN. 

 

 

Fig. 1. Proposed approach. 

 

In this section, we start by giving a general description of the proposed approach. We model the 

deployment space and the WSAN. Moreover, we will study different models. Table 1 summarizes the 

important symbols used in this work. 

 

Table 1. List of Notations 

Notation Designation 

|A| Cardinality of the set A. 

℘(𝐀) The power set of A. 

𝟙(𝐀) The characteristic function of the set A. 

𝑪𝒓𝒐𝒔𝒔(𝑶, (𝒊, 𝒋), (𝒊′, 𝒋′)) Function that evaluate if the line between (i, j) and 

(i ,̈ j )̈ is obstructed by the obstacle O. 

𝐝((𝒊, 𝒋), (𝒊′, 𝒋′)) Euclidean distance between (i, j) and (i ,̈ j )̈. 

 

 Deployment Space and Network Modeling 3.1.

The real deployment space is divided into 1m2 squares called cells and denoted by 𝑐𝑖,𝑗 where (𝑖, 𝑗) are 

the coordinates of the cell's centroid in a bi-dimensional space. These cells form the modeled deployment 

space, denoted by 𝐶. Different wireless nodes will be deployed in these cells. Our WSAN have three node 
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types: sensor node 𝑠𝑖,𝑗 , sink node 𝑠𝑘𝑖,𝑗 or lighting node𝑙𝑖,𝑗 . 

Let 𝑅𝑥, 𝑇𝑥 , 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 be the reception sensitivity, the transmission power, the certainty detection 

radius and maximum detection radius. 𝑙𝑢𝑚 is the provided luminous flow by the lighting source. Sensor, 

sink and lighting nodes are defined as follows: 

 𝑠𝑖,𝑗 = (𝑅𝑥, 𝑇𝑥 , 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥)  

 𝑠𝑘𝑖,𝑗 = (𝑅𝑥, 𝑇𝑥) 

 𝑙𝑖,𝑗 = (𝑙𝑢𝑚, 𝑅𝑥, 𝑇𝑥) 

Each node has its own parameters which allows modeling of a heterogenous networks. We define 𝑆𝑘, 𝑆 

and 𝐿 the sets regrouping respectively sink nodes, sensor nodes and lighting nodes. Fig. 2 shows how a 

deployment space C is formed. 

 

 
Fig. 2. Deployment space conversion process. 

 

 Lighting Deployment Process 3.2.

An efficient installation design of lighting system begins by ensuring that lighting is not spread 

unnecessarily [26]. High quality lighting design includes determining lighting placement. To meet lighting 

recommendation, we calculate the required number of sources needed. By the next, we find nodes positions 

in the space to be enlightened uniformity. Number of nodes depends on space dimension and its 

characteristics (walls color, light loss, nature of activity, etc.) and used lighting sources (luminous flow in 

lumens). In this work, we calculate the number of sources denoted by 𝑁𝐵 according the lumen method: 

𝑁𝐵 =
𝐴.𝐵.𝐸

n.𝑀𝐹.𝑈𝑖.𝑓
 (1) 

where A and B are the width and the length of the room. 𝐸 is the required illuminance (lux). 𝑀𝐹 is the 

maintenance factor. 𝑛, 𝑈𝑖  𝑎𝑛𝑑 𝑓 are respectively the number of sources per luminary, the utilization factor 

and the lumen provided per each source. We implement these 𝑁𝐵 sources uniformly in the area of the 

interest. For this purpose, we estimate the allowed inter-distance between two sources as follows: 

𝐼𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √
𝐴. 𝐵

𝑁𝐵
         (2) 

Fig. 3 shows how lighting sources are installed in the deployment space. 
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Fig. 3. Lighting nodes inert-distance. 

 

 Modeling Metrics 3.3.

Sensing model: The main task is to detect events using its sensors. We choose the Elfes model because it 

introduces the detection uncertainty of a sensor and can be generalized to represent binary model. In this 

model a cell is considered as covered if the detection probability achieves a minimum threshold. The 

probability to detect an event at a distance less or equal to d, in this model, is given by equation (3): 

𝑝𝐸𝑙𝑓𝑒(𝑑) = {

1, 𝑖𝑓d ≤ Rmin

𝑒−𝛾(𝑑−𝑅min)
𝛽

𝑖𝑓 Rmin ≤ d ≤ Rmax
0 d ≥ Rmax

     (3) 

where 𝑑 is the upper bound of distance between the sensor and the event and γ and β are the hardware 

parameters of the sensor. 

To validate the coverage model, detection probabilities have been evaluated for different distances in 

order to determine the uncertainty radius 𝑅𝑚𝑖𝑛, maximum detection radius 𝑅𝑚𝑎𝑥  and then 𝛾 and 𝛽 

parameters. The motion sensor used is a VMA314 PIR sensor. For each distance, we measure 20 values and 

then determine the detection probability. Table 2 illustrates real measurements. Referring to this table, 

𝑅𝑚𝑖𝑛 = 4.5m and𝑅𝑚𝑎𝑥 = 8.5m. In order to match real measurements, 𝛾 must be fixed to 0.1 and 𝛽 to 2.2. 

 

Table 2. Sensing Capacity Evaluation 

d (m) Elfes Model Real Probability 

[0-4] 1 1 

4.5 0.99 1 

5 0.905 0.9 

5.5 0.783 0.8 

6 0.632 0.6 

6.5 0.472 0.5 

7 0.326 0.3 

7.5 0.207 0.2 

8 0.121 0.1 

8.5 0.065 0.1 

[9-+∞] 0.088 0 

 

To make our solution adaptable and more flexible to application specifications, we evaluate sensing 

capacity according to network designer preference. A cell in the deployment space 𝐶 is supposed to be 

covered if its center is covered by least one sensor node. Let 𝑝𝑠𝑒𝑛𝑠, 𝑝𝐸𝑙𝑓𝑒 (𝑑(c𝑖,𝑗 , s𝑖′,𝑗′)) be respectively the 
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acceptable sensing probability fixed by the network designer and the sensing probability of a cell ci,j by a 

sensor si′,j′ according to Elfes model (equation 2). A cell is said covered if it has a sensing probability 

greater than p𝑠𝑒𝑛𝑠 and there is no obstacle blocking sensing. Let 𝑐𝑖,𝑗 ,  𝑠𝑖′,𝑗′  and Ω 𝑂be respectively a cell 

from 𝐶, a sensor node and the set of obstacles present in 𝐶. The coverage of 𝑐𝑖,𝑗 by a sensor s𝑖′,𝑗′  can be 

defined by the following equation: 

 𝛼(ci,j, si′,j′) =

{
 
 

 
 1, 𝑖𝑓 (𝑝𝐸𝑙𝑓𝑒 (𝑑(c𝑖,𝑗 , s𝑖′,𝑗′))) ≥ 𝑝𝑠𝑒𝑛𝑠

𝑎𝑛𝑑 ∀𝑂 ∈ Ω𝑂,                       

𝐶𝑟𝑜𝑠𝑠(𝑂, (𝑖, 𝑗), (𝑖′, 𝑗′)) = 0

0, else                                       

      (3) 

We define the set of all covered cells in 𝐶 by the sensor 𝑠𝑖,𝑗 , denoted ϕ(𝑠𝑖,𝑗), by the equation (4). 

Φ: 𝑆  → ℘(𝐶)                                        

𝑠𝑖,𝑗 → {𝑐𝑖′,𝑗′ ∈ 𝐶, 𝛼(ci′,j′ , si,j) = 1}
    (4) 

Respectively, we define the set of sensors from S covering a given cell 𝑐𝑖,𝑗 by: 

𝜓: 𝐶   → ℘(𝑆)                                           

𝑐𝑖,𝑗 → {𝑠𝑖′,𝑗′ ∈ 𝑆, 𝛼(ci,j, s𝑖′,𝑗′) = 1} 
    (5) 

The coverage of the whole space 𝐶 denoted by 𝒞 is the ratio between all covered cells and the number 

of cells of 𝐶.  

𝒞(𝑆) =
1

|𝐶|
|∪𝑠𝑖,𝑗∈𝑆 𝜙(𝑠𝑖,𝑗)|   (6) 

A cell can be covered by more than one sensor. In this case, we have redundant coverage. In fact, high 

coverage redundancy means high energy consumption and more sensor nodes. In order to ensure coverage 

efficiency, we minimize coverage redundancy. Coverage redundancy, denoted by ℛ(𝐶)  is formally 

calculated as follows: 

ℛ(𝐶) =
1

|𝐶|
∑ ||𝜓(𝑐𝑖,𝑗)| − 1|𝑐𝑖,𝑗∈𝐶

   (7) 

Connectivity model: Detected event will be processed by lighting nodes. For this purpose, sensors, sinks 

and lighting nodes must be connected to each other’s. Connectivity evaluation depends on Received Signal 

Strength (or RSS) calculated at the receiving node. Let 𝑛𝑖,𝑗 and 𝑛𝑖′,𝑗′  be respectively the sender and the 

receiver nodes (sensor/sink/lighting node). 𝑇𝑥 is the transmission power of 𝑛𝑖,𝑗. 𝑃𝐿(𝑛𝑖,𝑗 , 𝑛𝑖′,𝑗′) is the 

path loss between 𝑛𝑖,𝑗 and 𝑛𝑖′,𝑗′  . The RSS is calculated as follows: 

𝑅𝑆𝑆(𝑛𝑖′,𝑗′) = 𝑇𝑥 − 𝑃𝐿(𝑛𝑖,𝑗 , 𝑛𝑖′,𝑗′)    (8) 

𝑃𝐿 depends on the connectivity model. The question then arises what model should be chosen. In order 

to have a reliable model, we performed RSS real measurements and we compared obtained results to the 

most used models in literature (FSPL, 1SM, MWF). Tests were done using ESP32 microcontroller and Wi-Fi 

transceiver with 2.4 GHz frequency. It provides a transmission power of 𝑇𝑥 = 0𝑑𝐵𝑚  and reception 

sensitivity 𝑅𝑥 = −92𝑑𝐵𝑚. We evaluated 13 different positions. All nodes are in the same floor. Fig. 4 

illustrates tested positions and installation environment. 

The point ‘A’ is defined as the transmitter node and all others nodes are receivers. We fix our transmitter 

at position (1,4). Then, we recuperate from the receiver the RSS value. The test environment contains 

obstacles. In order to have more accurate results, we measure different attenuation values caused by 

presents obstacles. Obtained attenuations values are given by Table 3. 
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Fig. 4. Tested position. 
 

Table 3. Obstacles Attenuation 

Obstacle Thickness Attenuation 

Wall 20 cm 2dBm 

Bolded wall 30 cm 4dBm 

Glass 4 cm 6dBm 

 

Fig. 5 illustrates predictions of the RSS (dBm) according models versus measured ones. 

 

 

Fig. 5. Models predictions vs. Measured values. 

 

Table 4 illustrates the mean measurements and mean error (%) of different tested models for each 

location. 

 

Table 4. Obtained RSS Values 

Location d (m) 
RSS 

(dBm) 

Error (%) 

FSPL 1SM MWF 

Ref 1 -34,1 0 0 0 

B 3 -55,4 21,31 0,46 12,22 

C 6 -55,9 11,25 23,97 3,30 

D 8 -55,35 5,85 35,41 1,71 

E 8,94 -65,95 19,51 16,98 1,18 

F 11,31 -66,75 17,42 22,50 0,38 

G 13,6 -70,05 19,02 21,91 1,99 

H 17 -64,35 8,85 39,51 10,62 

I 18,78 -78,55 24,22 16,80 8,37 

J 20,61 -79,45 24,06 17,78 0,31 

K 22,47 -79,35 23,02 20,06 1,28 

L 24,51 -83,8 26,21 15,73 3,28 

M 28,16 -81,35 22,50 22,56 0,95 

N 32,01 -75,9 15,48 34,70 9,53 
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The FSPL assumes propagation in ideal environment without considering obstacles. 1SM is adjusted 

according to empirical data but it fails to predict the RSS. It can be seen from Fig. 5 and Table 4 that the 

MWF model is the nearest model to the real obtained measurements. In our work, we adopted MWF model. 

We adjusted this model to consider all attenuation caused by any crossed obstacles. Formally, path loss 

between 𝑛𝑖,𝑗 and 𝑛𝑖′,𝑗′ , denoted by PL(𝑛𝑖,𝑗𝑛𝑖′,𝑗′) is calculated by equation (9). 

𝑃𝐿(𝑛𝑖,𝑗 , 𝑛𝑖′,𝑗′) = 𝑃𝐿0 + 10 𝜂 log (𝑑(𝑛𝑖,𝑗 , 𝑛𝑖′,𝑗′))

+ ∑ 𝐴𝑡𝑡(𝑂𝑘) 𝐶𝑟𝑜𝑠𝑠(𝑂𝑘 , (𝑖, 𝑗), (𝑖′, 𝑗′))
|Ω𝑂|
𝑘=0

− 𝐺𝑇𝑥 − 𝐺𝑅𝑥

       (9) 

where 𝜂=1.8 is the attenuation factor and 𝐴𝑡𝑡(𝑂𝑘)  is the attenuation due to 𝑘𝑡ℎ  obstacle (built 

empirically). 𝐺𝑇𝑥 , 𝐺𝑅𝑥 are respectively transmitter and receiver antenna gains.  

According to this model, we evaluate connectivity between two nodes. Two nodes are connected if the 

RSS calculated at the receiver is greater than its reception sensitivity. Let 𝑛𝑖,𝑗 and 𝑛𝑖′,𝑗′  be two wireless 

nodes. 𝑛𝑖,𝑗 and 𝑛𝑖′,𝑗′  are connected, if and only if RSS calculated at 𝑛𝑖,𝑗 is greater than its 𝑅𝑥 and vice 

versa. In order to evaluate connections between different nodes, we define for each node its neighbors. In a 

WSAN, neighbors of a node can be either a sensor, a sink or a lighting node.  

Let 𝑛𝑖,𝑗 be a node from 𝑁 where N is the set of all wireless nodes (𝑁 = 𝑆 ∪ 𝑆𝑘 ∪ 𝐿). Formally, 𝑛𝑖,𝑗's 

neighbors, denoted by 𝜇(𝑛𝑖,𝑗), can be defined as follows: 

𝜇:   𝑁 → 𝑃(𝑁)

        𝑛𝑖,𝑗 → {
𝑛𝑖′,𝑗′ ∈ 𝑁, 𝑅𝑆𝑆(𝑛𝑖′,𝑗′) > 𝑅

′
𝑥

𝑎𝑛𝑑 𝑅𝑆𝑆(𝑛𝑖,𝑗) > 𝑅𝑥
}

    (10) 

In our WSAN, nodes should be connected in a mesh topology where each node must have two or more 

neighbors and every pair of distinct nodes has a path between them. The connectivity of network N can be 

defined by the equation (11). 

∆(𝑁) =
1

|𝑁|
∑ 1[2,|N|[(|𝜇(𝑛𝑖,j )|)𝑛𝑖,j 𝜖𝑁        (11) 

To summarize, our goal consists on maximizing coverage and minimizing coverage redundancy while 

establishing connection between all nodes and ensuring the required lighting level in the deployment space. 

 Problem Formalization 3.4.

In order to find optimal WSAN, our problem is formulated as problem of maximization and minimization 

of these metrics. These defined objectives are counterbalanced. Increasing coverage requires using more 

nodes. Moreover, decreasing coverage redundancy can lead to connectivity hole. In order to address this 

counterbalance issue, we define a weighted-sum fitness function which allows us to set importance degree 

of each objective. A weighted-sum fitness function (equation 12) indicates how a solution can satisfy all 

objectives. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶, 𝑁) = 𝑤1  Δ(𝑁) + 𝑤2  𝒞(𝑆) + 𝑤3 ℛ(𝐶)      (12) 

where 𝑤𝑖  is the weight of 𝑖𝑡ℎ objective and it depends on user preferences which vary from one 

application to another. It indicates the importance of each objective in the evaluation of the final solution. 

 Genetic Algorithm Optimizer 3.5.

After formulating the problem, we solve it by using Genetic Algorithm (GA). GA has been proven to be an 

appropriate method to solve this kind of problems [2], [27]. In GA, possible solutions are called individuals. 

The set of individuals forms a population. The idea is to have an initial population and then apply natural 
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selection. Initially, we start with a set of randomly-created individuals. Then, we evaluate these individuals 

and we identify the optimal ones according to equation (12). The best individuals survive. Selected ones 

will be crossed and mutated to create a new generation. Old generation and the new ones are challenged to 

have a place in the next generation. By replacing the weakest individuals, we improve the average 

performance level. We iterate for a defined number of generations.  

 

 

Fig. 6. Genetic algorithm flow chart. 

 

4. Simulations and Results 

Before running simulation, the network designer must specify the indoor plan and specifications, nodes 

characteristics, nature of activity, the required illuminance (lux) and the importance of each metric (𝑤𝑖). 

Then, these data are formatted to represent individual which is the entry of our GA optimizer. Our 

optimization algorithm is developed in Python. We used Python DEAP library under "PyCharm" 

development environment. Our tool is executed in a PC with an Intel Core 7-5500U, 2.4 GHz processor and 8 

GB of RAM. Simulations are executed with the following parameters in Table 5: 

 

Table 5. Simulation Parameters 

Parameter Value 

𝑇𝑥(dBm) 0 

R𝑥(dBm) -90 

GT𝑥 0 

GR𝑥 0 

𝑝𝑐𝑜𝑣 1 

LED/luminary 4 

MF 0.98 

Lumen/source 700 lumens 

 

In order to evaluate the effectiveness of our approach, we configured our simulation tool to get the 

optimal WSAN of different deployment space shapes. We execute our tool for 10 instances (10-cross 

validations) for each described simulation. In the first simulation, the deployment space consists of a 
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corridor that has the shape of an ‘L’ that covers 225m2. It is a corridor in the National School of Engineering 

of Le Mans University, France (ENSIM). For this simulation, we assume that Rmin = 4. In the second one, we 

optimized WSAN in a square space (10x10m). The third simulation consists of optimizing WSAN 

deployment in a circular space having a radius of 9m. For these two simulations, Rmin = 1.5. Simulation 

results are presented in Table 6. 

 

Table 6. Different Space Shapes Simulations 
Sim° 𝜟(𝑵)(%) 𝓒(𝑺)(%) 𝓡𝒌(𝑪)(%) 

Avg Best Avg Best Avg Best 

1 100 100 94.27 98.22 0.97 0.66 

2 100 100 95.27 98 15 14 

3 100 100 91.17 96.31 13.52 17.62 

 

As can be concluded from Table 6, our tools ensure a high QoS in terms of connectivity, coverage, and 

coverage redundancy. Fig. 7 illustrate the result of regular deployment simulation of each previously 

described scenario. Green cross marks design lighting nodes. Blue dots are cells’ centroid. WASN QoS 

depends on the application nature. Accordingly, we evaluated weights impact on our solution. We varied 

weights of different objectives. We reproduced the same parameters as in Sim°2. 

  

    

(a) Sim°1       (b) Sim°2       (c) Sim°3 

Fig. 7. Lighting nodes deployment for Sim°1-3. 

 

Table 7. Different Weights Simulations 

𝒘𝒊 
𝜟(𝑵)(%) 𝓒(𝑺)(%) 𝓡𝒌(𝑪)(%) 

Avg Best Avg Best Avg Best 

𝒘𝟐 = 𝒘𝟑 100 100 95.27 98 15 14 

𝒘𝟑 =
𝒘𝟐
𝟐

 100 100 98.92 100 20 18 

 

From Table 7, it can be seen that simulation results are influenced by objectives weights.  

To validate our work, we compared our proposed approach to [18] and [22]. In these simulations, a 

similar network scenario is reproduced in order to facilitate comparison. We note that in these two works 

Boolean connectivity model was used. Table 8 shows a comparison of our work to those obtained results 

[18] and [22]. 
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Table 8. Results Comparison with Other Works 
Work 𝜟(𝑵)(%) 𝓒(𝑺)(%) 

Our tool 100 96.31 

[22] 96 91 

Our tool 100 94 

[18] MOFPO 100 82 

[18] PSO 100 76 

 

As illustrated in Table 7, our tool outperforms [18] and [22] in terms of connectivity. In addition, we have 

ensured higher coverage rate than the two other studies. Our used models are more real and accurate than 

the Boolean model adopted in [18] and [22]. Results show that our simulator is an efficient optimizer of 

WSAN in terms of lighting, connectivity, coverage and coverage redundancy. Our original modeling allowed 

to have a holistic solution for the different geometric forms of the deployment space. Moreover, it deals with 

real indoor environment specificity (obstacle, attenuations, sensing blocking, etc.). It takes into account 

different user preferences (minimal coverage probability, application nature, etc.). 

5. Conclusions 

In this paper, we have presented a new efficient approach and a tool that determines the optimal 

deployment for light control by a WSAN. Based on the combination of the regular and the random 

deployment, this tool automates the generation of optimal WSAN deployment that satisfy requirements and 

user preferences. We start by placing lighting nodes in a regular deployment. Afterward, sensor and sink 

nodes are deployed while aiming to maximize both coverage and connectivity and minimizing coverage 

redundancy.. The originality of this contribution lies in the fact that it is based on credible models which 

have been tested and evaluated by real measurements. Moreover, the problem was modeled in an original 

manner to allow incorporating multiple information: as coverage, connectivity, obstacles, sensing 

probability, application nature, etc. Numerous simulations were performed in this work to prove the 

effectiveness of our solution. Performance was evaluated under real factors and constraints. In comparison 

with results in [18] and [22], the proposed approach shows better performance.  

In our future research, we intend to concentrate on integrating lifetime and power consumption metrics 

which is a challenging issue for WSAN. Also, we plan to extend the deployment space from 2D to 3D 

representation. 
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