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Abstract: Sentiment analysis systems can handle social media images by interpreting the embedded 

emotional responses in those images. This represents an interesting and challenging problem that tries to 

figure out the high-level content of large-scale visual data based on algorithms devised from computer 

vision. This paper presents a system to analyze social media images and visualize the implied emotions 

from each image as (Happy, Sad, and Neutral). The objective of this work is to introduce a system model 

with features extraction basis utilizing some adequate technique of machine learning. The applied 

methodology is pivoted on implementing the required system through several steps of processing. This 

involves social media image displaying and video frames grabbing, image features extraction, then 

embedded emotions patterns classification and recognition utilizing a proper convolutional neural network 

(CNN). Flickr and Twitter datasets were utilized while the pertinent algorithm was developed using 

“Matlab2017b” platform. This can help social media users visualizing their interests besides forming a 

better scope of visualization. It will further assist companies in envisaging the mood of users/costumers 

towards their stock prices in order to set competitive prices for both sides. We design a Deep Attention 

Network Mechanisms (DANM) to achieve a higher level of social media sentiment image analysis and 

classify them as (Highly positive mood and highly negative mood). The DANM produces features maps basis 

utilizing the adequate focusing technique of machine learning based on a proper convolutional neural 

network (CNN). The proposed CNN training system has proven better results with respect to accuracy and 

efficiency in comparison with some other similar works. When experimentations on both real and synthetic 

datasets were conducted, the system showed a percentile improvement of about 14.2%. This system is 

applicable to a broad horizon of applications such as studying the emotional response of humans on visual 

stimuli, visual sentiment analysis algorithms and modeling, building machine learning-based robust visual 

sentiment classifier, as well as in most online websites that involve visual data mining for business 

intelligence, e-commerce, stock market prediction, political vote forecasts, and video gaming. 

 
Keywords: Deep learning, sentiment analysis, attention neural network, convolutional neural network, 
visualization. 

 
 

1. Introduction 

Sentiment visualization techniques have evolved and spread to deal with complex multidimensional data 

sets, including geospatial, temporal, and relational aspects. The issue of visual sentiment analysis in social 
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media involving images is hereby quite new and challenging.  

As a matter of fact, images represent the easiest medium through which people can express their 

emotions on social networking sites. Social media users are thereby increasingly using images and videos to 

express their opinions and share their experiences. Sentiment analysis of such large-scale visual content 

can better help the user to extract sentiments towards events or topics such as those in image tweets. So 

that prediction of sentiments from visual content is complementing textual sentiment analysis. 

Several recent works in this regard are there using initially pixel-level features, then mid-level attributes 

(change between neighboring pixels), and more recently deep-level visual features. This was reached 

through adopting some adequate computer vision algorithms acclimatized towards visual sentiment 

analysis utilizing some unsupervised ANN machine learning frameworks. Deep-level learning has made 

significant advances in tasks related to both vision and language. Consequently, the task of higher-level 

semantic understanding, such as machine translation, image aesthetic analysis, and visual sentiment 

analysis have become more amenable. A more interesting yet difficult task is to bridge the semantic gap 

between computer vision and visual sentiment analysis, and thereby helps in to solve more challenging 

problems. These orientated activities have thus achieved some reasonable performance in visual sentiment 

analysis. 

Nonetheless, due to the complex nature of visual content, the performance of visual sentiment analysis is 

still unsatisfactory. 

Furthermore, there are some other works on analyzing sentiments using multi-modalities, such as text 

and image. Late fusion is whereby employed to combine the prediction results of using n-gram textual 

features and mid-level visual features. More recently a cross-modality consistent regression (CCR) schemes 

have been proposed for joint textual-visual sentiment analysis. In fact, this approach is employing deep-

level visual and textual features to develop a regression model. The successes of deep-level learning make 

the understanding and jointly modeling vision and visual content a feasible and attractive research topic.  

In order to introduce a system model that is capable of analyzing social media images and visualizing the 

implied emotions from each image as (Happy, Sad, and Neutral) it is inevitable to resort to an adequate 

technique of ‘Machine Learning’. Machine learning is an essential part of artificial intelligence where 

techniques and algorithms can be investigated with the aim of permitting computers to be trained. It is a 

procedure that replicates/simulates the manner in which the brain of human being functions, aiming to 

furnish computers with intelligence. Comprehensively revised approaches for machine learning often 

incorporate artificial neural network (ANN) with its most famous technique named support vector machine 

(SVM). For any machine learning models, the ‘datasets’ consist of two parts, the input part, and the output 

part. The output is often the features of attention, means the part that is aimed to be predicted or 

categorized, whereas the input is the set of constituents that might have effects upon the output. Machine 

learning tries to set correlations between the outputs with the input, through setting functions that 

approximate between the two parts with formulations yet to be estimated. Thereby, a ‘convolutional neural 

network’ (CNN, or ConvNet) is a class of deep-level, feed-forward artificial neural networks, most 

commonly applied in analyzing visual imagery. CNN's use a variation of multilayer perceptron’s designed to 

require minimal preprocessing [1]. They are also known as shift invariant or space invariant artificial 

neural networks (SIANN), based on their shared-weights 

Architecture and translation invariance characteristics [2], [3] CNN’s were inspired by biological 

processes in that the connectivity pattern between neurons resembles the animal visual cortex 

organization [4]. Individual cortical neurons respond to stimuli only in a restricted zone of the visible field 

known as the receptive field. The receptive fields of different neurons partially overlap such that they lid 

the whole visual field. CNN's use relatively little preprocessing compared to other image classification 
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algorithms. This means that the network can be trained in a way which makes it similar to the filters that 

are hand-engineered in traditional algorithms. [5] 

To presents a system that aims to analyze social media human images and visualize the implied emotions 

for each image, the presented system model inevitably needs to resort to some adequate techniques for 

features extraction and classification, followed by facial expression analysis. This practically means to 

obtain a set of measured data (samples) in the image under consideration. It is then required to derive 

values of some aspects in that image (called features) intended to be informative and non-redundant (i.e., 

to be discriminative information). So the feature is some valued aspect that would possibly be different 

among those samples in order to make a decision on it. Therefore, ‘feature extraction’ is the process of 

collecting that feature from a set of samples. Whereas, ‘features classification’ denotes the grouping of 

features based on some criteria like similarity (clustering) [6]. When the input data to an algorithm is huge 

to be processed, and it is suspected to be redundant (e.g., the repetitiveness of images presented as pixels), 

then it can be turned into a reduced subset of features called feature vector. Determining such a subset of 

the initially extracted features is called feature selection. The chosen features are expected to include the 

relevant information from the input data so that the required task can be performed by using this reduced 

representation instead of the complete initial data. Features classification is thus often related to features 

selection as this would optimize the machine learning algorithm and possibly assist noise removal of 

unrelated features. This will further facilitate the subsequent learning and generalization steps, and in 

some cases will lead to better human interpretations. Feature extraction is therefore related to 

dimensionality reduction; many machine learning practitioners believe that properly optimized features 

extraction is the key to effective model construction. Some very important areas of application hereby are 

computer vision, image processing, and machine vision where various features, such as the desired parts or 

shapes of a digitized image and video stream, can be isolated and detected using algorithms. 

Facial expressions are the facial changes in response to a person’s inner sentimental states, intentions, or 

social communications. ‘Facial expression analysis’ is an active research topic for behavioral scientists since 

the relevant work of Darwin in 1872. In 1978 an early attempt was done to automatically analyze facial 

expressions through tracking the motion of 20 identified spots on an image sequence [7]. Afterward, much 

progress has been made to build computer systems to help us understand and use this natural form of 

human communication. Facial expression analysis indicates to computer systems that try to analyze 

automatically and Computer systems rely on facial expression analysis to automatically analyze and 

understand both facial motions and facial feature changes from visual information. For sentiment or 

emotion analysis, higher-level knowledge is required. For example, although facial expressions can transfer 

emotion, they can also express intention, cognitive processes, physical effort, or other interpersonal 

expressions. Interpretation is assisted by context, body gesture, voice, individual differences, and cultural 

factors as well as by facial configuration and timing. Computer facial expression analysis systems need to 

analyze the facial actions in any case of context, culture, gender, and so on. The accomplishments in related 

areas such as psychological studies, human movement analysis, face detection, face tracking, and face 

recognition make the automatic facial expression analysis possible. It can be applied in many areas such as 

emotion and paralinguistic communication, clinical psychology, psychiatry, neurology, pain assessment, lie 

detection, intelligent environments, and multimodal human-computer interface (HCI).  

This paper aims to articulate the significant sides of implementing an efficient-accurate system for image 

sentiment analysis and visualization based on the concepts of utilizing Attention convolutional neural 

network (ACNN) technique. 
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2. Related Works 

The spectrum of related works in the pertinent arena involves pretty good participation. One of them is 

the work presented by You et al. (2017) regarding visual sentiment analysis through attending local image 

regions. They have studied the impact of local image regions on visual sentiment analysis. The proposed 

model utilizes the recently studied attention mechanism to jointly discover the relevant local regions and 

build a sentiment classifier on top of these local regions. Their model is capable of automatically 

discovering sentimental local regions of given images [1]. Jindal and Singh (2015) introduced their work 

about image sentiment analysis using deep-level convolutional neural networks (CNN) with domain-

specific fine-tuning. In this work presented an image sentiment prediction framework that is maintained 

with a CNN. Specifically, this framework is pertained to large-scale data for object recognition to further 

perform transfer learning. Extensive experiments were proceeded on manually labeled Flickr image data. 

To make use of such labeled data, they employed a progressive strategy of domain-specific fine-tuning of 

the deep-level CNN [2]. Islam and Zhang (2016) published their work concerning visual sentiment analysis 

for social images using transfer learning approach. They used hyper-parameters learned from a very deep-

level convolutional neural network to initialize the network model to prevent overfitting. They conduct 

extensive experiments on a Twitter image dataset [3]. You et al. (2015) exhibited some robust image 

sentiment analysis using progressively trained, and domain transferred deep-level networks. As motivated 

by the needs in leveraging large scale yet noisy training data to solve the extremely challenging problem of 

image sentiment analysis, they employed the convolutional neural network (CNNs). They have first 

designed a suitable CNN architecture for image sentiment analysis. They obtained half. By using a baseline 

sentiment algorithm, a million training samples have been used to label Flickr images; they employed a 

progressive strategy to fine-tune the deep-level network. Furthermore, they improved the performance on 

Twitter images by inducing domain transfer with a small number of manually labeled Twitter images [4]. 

Gupta and Gajarla (2016) published their work about emotion detection and sentiment analysis of images. 

The possibility of using deep-level learning to predict the emotion depicted by an image has been explored. 

Their results look promising and indicate that neural nets are capable of learning the emotions essayed by 

an image and in automatic tag predictions for images uploaded on social media websites [8]. Wang and Li 

(2015) revealed their work about sentiment analysis for social media images. They showed that neither 

visual features nor the textual features are by themselves sufficient for accurate sentiment labeling. Thus, 

they provided a way of using both of them, and formulate sentiment prediction problem in two scenarios: 

supervised and unsupervised. They developed an optimization algorithm for finding a local-optima solution 

under the proposed framework [5]. Yuan et al. (2015) presented their work regarding sentiment analysis 

using social multimedia. They introduced a comprehensive review of sentiment analysis based on visual 

content and textual content [6]. Jin et al. (2018) published their paper regarding a novel approach to 

analyze the facial expressions from images through the learning of a 3D morphable face model and a 

quantitative information visualization scheme for exploring this type of visual data. A 3D face database with 

various facial expressions was employed to build a nonnegative matrix factorization (NMF), part-based 

morphable 3D face model. From an input image, a 3D face with expression could be reconstructed 

iteratively by using the NMF morphable 3D face model as a priori knowledge. Whereby, basic parameters 

and a displacement map were extracted as features for facial emotion analysis and visualization. Based on 

the features, two support vector regressions were trained to determine the fuzzy valence–arousal (VA) 

values to quantify the emotions. The continuously changing emotion status could be intuitively analyzed by 

visualizing the VA values in VA space [7]. Kucher et al. (2018) presented their review paper about the state 

of the art in sentiment visualization. They presented a survey of sentiment visualization techniques based 

on a detailed categorization [8]. They described the background of sentiment analysis, and they further 
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introduced the categorization for sentiment visualization techniques [9]. Siersdorfer et al. (2010) presented 

analyzing and predicting the sentiment of images on the social web. They studied the connection between 

the sentiment of images expressed in metadata and their visual content in the social photo-sharing 

environment Flickr. They thereby considered the bag-of-visual-words representation as well as the color 

distribution of images and make use of the SentiWordNet thesaurus to extract numerical values for their 

sentiment from accompanying textual metadata. They, therefore, perform a discriminative feature analysis 

based on information-theoretic methods and apply machine learning techniques to predict the sentiment of 

images [10]. Chen et al. (2014) presented their work about predicting viewer affective comments based on 

image content in social media. While current studies are busy in analyzing visual effect, concepts intended 

by the media content publisher, their work, in contrast, focuses on predicting what viewer affect concepts 

(VAC) would be triggered when the image is perceived by the viewers [11]. Last but not least, Mandhyani et 

al. (2017) have introduced a novel model for image sentiment analysis. They proposed a model based on 

the mid-level features of the images that combines the techniques of SentiBank, CNN (Regions with CNN) 

and Senti Strength. Results of their extensive experiments conducted on Flickr image dataset showed that 

this approach achieved better sentiment classification accuracy [12]. 

3. Background Theory 

Deep learning approaches have demonstrated incredible execution in computer vision and pattern 

recognition assignments. Deep learning allows automated learning of feature sets for particular problems 

alternatively of hand-crafted design. Convolutional Neural Network (CNN) example is one of the most 

popular types of deep learning methods [13]-[15] utilized in image processing. Convolutional neural 

network (CNN) can be regarded as a specific type of ANN which is of feed-forward basis. One of the 

characteristic features of this network is that It can ‘learn’; permitting abstraction besides representation in 

several (multiple) levels. Actually, CNN is nothing but a perceptron of multi-layers; it is precisely composed 

of four distinct layers. The 1st is the input layer, the 2nd is the convolution layer, the 3rd is the 

downsampling layer, and the 4th is the output layer [15]. 

Furthermore, with respect to the architectural point of view, the second (convolution) layer and the third 

(downsampling) layer could, in turn, be composed of several (multiple) layers. As its structure is so simple, 

and due to its limited training parameters number, besides its adaptability, the architecture of the 

convolutional neural networks is widely preferred. One can find two main extensions of the general CNN 

version; namely the Region-based Convolutional Network (with acronym R-CNN) besides the Fully 

Convolutional Network (with the acronym FCN). FCN [16], [17] substitutes the fully connected layers in 

CNNs by full convolution layers and assigns class labels to each pixel in the image instead of one label per 

image block [17].  

Assume that the network input which is presented by the     , and the network outputs are, 

            . Where each output                is deeply computed from the previous output     by 

applying the function    with the parameters of    [17]. The data flowing through the network represents a 

feature field;             . Since the data x has a spatial structure,    and    are spatial coordinates, and 

   is the depth of channels. The function s the the    act as local and translation invariant operators, 

therefore, the network is called con; volitional [18]. CNNs are applied to distinguish between different 

classes by producing such as a vector of probabilities that denoted by  ̂       for all tested image. If   is 

the true label of image  , CNN performance of true label y of image x is measured by a loss function 

    ̂    which assigns a penalty to classification errors [18]. 
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3.1. Mathematical Approach of the Deep Convolutional Neural Network 

Assume that we have some     square neuron layer which is followed by the convolutional layer. If we 

to use an     filter with kernel size    , in this case, the convolutional layer output will be of size 

                                In order to compute the pre-nonlinearity input to 

some unit    
 the next layer that we need to sum up the contributions (weighted by the filter components) 

from the previous layer cells [18], [19]: 

   
  ∑ ∑               

   

   

   

   

   

 (1) 

Then, the convolutional layer applies its nonlinearity [20]: 

   
   (   

 ) (2) 

Also, pooling layer reduces the size of their input and allows multi-scale analysis. Carpooling and 

average-pooling are the most popular pooling operators. These operators calculate the highest or the 

average value within a small spatial block [17]. It has been deemed to consider the case as ‘ideal’ whenever 

the pooling is of a 2 × 2 filter size having a step (stride) of 2 [18]. Finally, the fully-connected layer connects 

to all the neurons of the previous layer. Fully connected layers are typically used as the last layer of the 

network and perform the classification [19]. 

3.2. Attention Learning Mechanisms 

The Attention term is defined as a type of action that guide directly to the object. In other words, it is 

defined as “giving need” which is the ability mind to allocate the uneven consideration across a field of 

sensation [21]. Moreover, it helps to focus and bring certain input to the core of the attention. In the same, 

diminishing or ignoring the others [20]. 

Technically, in the neural network, the attention action helps in term of the credit assignment. The main 

challenge of that action is a long-range dependency. In another word, the prediction is to become more 

impacting and affected by other facts [22]. The core probability model of the attention network is based on 

the Markov Assumption [20], [21] which is aimed to introduce a model that consists of different probability 

numbers [23]. 

           ∏               

 

 (3) 

 

 

Fig. 1. The attention learning mechanisms. The red line shows the attention layer feed batch for each epoch 

to combine each weight and bias for each layer, as well the black lines illustrate the regular feed epoch 

during each iteration for the whole deep learning attention model [23]. 
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At a high-level, the attention network enables the neural network to focus on relevant parts of your input 

more than the irrelevant parts when doing a prediction task. However, the attention network, in this case, 

can capture information in a human level [22].  

Attention network mechanism is based basically on the sequence-to-sequence models which in this case 

the design model can capture the essence of the entire input sequence in a single hidden state as is shown 

in Fig. 1 [23].  

4. Proposed System 

Based on the complexity of the sentiment image analysis in the social network, we propose a Deep 

Attention model that bases on design a deep network that has the attention learning-based mechanism 

which we called Deep Attention Model for sentiment images analysis (DAM). The whole framework of the 

proposed network is illustrated in Fig. 2. We can notice that the main design of the deep network has been 

based on the attention mechanism feedback. In our design, the feed attention mechanism has two main 

parts. The first one is the feedforward attention stage and feed backward stage. In the first stage, the deep 

model learns and focusing on the high-level image features that will be extracted from the low-level image 

features. Those features acquired from the image details and the feedforward stage abstracts them to 

discriminative features. However, the follows stage (feed backward) try to acquire the low-level features in 

which the high-level features are returned to learned to extract more learned low-level features.  

 

 
Fig. 2. System flowchart of the deep attention-mechanism for sentiment image classification. 

 

In more details, the image features (high and low-levels) are extracted based on using a stack of CNN 

blocks (convolutional layers). The CNN blocks (red and gray) are stacked together in which features are 

comprises based on the convolution, pooling, and non-linear transformation. In another word, the red 

blocks in our design illustrate the original CNN blocks that are used mainly for high-level feature extraction 

during the first feature extraction stage (feedforward pass), while the gray blocks illustrate the second 

stage (feed backward). In more details, the gray blocks (CNN’s) use the high-level features that are 

extracted from the red blocks (CNN’s) and stack together based on the attention mechanism, convolution, 

pooling, and non-linear transformation. 

5. Structure of the Deep Attention Network Model  

The whole structure of our Deep Attention network has nine double layers in total (18 layers). The first 

feedforward structure has nine deep layers, in addition to the backward feed layers which also has a total of 

nine layers. The first five layers from our structure are convolutional layers followed by the next three fully 

connected layers. The SoftMax function is the main learning-based model that is used last fully connected 

layer. The main SoftMax function is given in Equation (4) [24]. 
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The reason for using the SoftMax is that the SoftMax model can provide a significant distribution that is 

able to distinguish between the two classes (highly positive/highly negative) in our binary classification 

problem. The whole structure of our Deep Attention Model fundmantily maximizes the essential logistic 

objective of the multinomial regression in which equivalent to maximizing the log-probability by 

maximizing average attained of the logistic-function in the last fully connected layer. In this case, the 

performance of the Deep Attention network based on the across of the final distribution that is an 

arrangement for the final prediction which is done based on achieving the final labels of each problem class. 

The original image input size that was feeding to the first layer is (224×224×3). Each image is 227 by 227 

width and height and three channels since the dataset has colored images. The first convolutional layer of 

our Deep Attention model is constructed based on using 256 kernels the density features map that is 

constructed from the first layer is 5×5×48. The ReLU (non-linearity) scheme is applied to the output of the 

first layer (wholly-connected). The second convolutional is constructed based on using 256 kernels the 

density features map that is constructed from the first layer is 5×5×48. The output map from the first layer 

is 11×11×3 based on using stride 4 and padding 0. 

Moreover, the second layer is the same first convolutional layer using the same block based on the 

attention mechanism (feed backward) convolutional layer. The second layer is another convolutional layer 

followed by the normalization layer (pooled and normalization layers). The output of the second 

convolutional layer is connected to the third convolutional layer base on using 384 kernels. Each kernel is 3 

×3×256. Then, the fourth convolutional layer has also 384 kernels of size 3×3×192 while the final fifth 

convolutional layer has 256 kernels. Each kernel size is 3×3×192.  

The full structure of our proposed system (Deep Attention Model) for image sentiment analysis and 

classification are described in Table 1 below: 

 

Table 1. Propose Deep Learning Structure Description 

Layer Number Layer Type Ker. Size Description 

I1 Image Input - 227x227x3 
images 

normalization 

C1 Convolution 96 11x11x3 
stride [4 4], 

padding [0 0 0 0] 
R1 ReLU - - ReLU 

A1 Attention Model 1 - Attention 

N1 Normalization - - normalization  

P1 Max Pooling 1 3x3 
stride [2 2] and 

padding [0 0 0 0] 

C2 Convolution 256 5x5x48 
stride [1 1], 

padding [2 2 2 2] 
R2 ReLU - - ReLU 

A2 Attention Model 1 - Attention 

N2 Normalization - - normalization  

P2 Max Pooling 1 3x3 
stride [2 2] and 

padding [0 0 0 0] 

C3 Convolution 384 3x3x256 
stride [1 1], 

padding [2 2 2 2] 
R3 ReLU - - ReLU 

A3 Attention Model 1 - Attention 

C4 Convolution 384 3x3x192 
stride [1 1], 

padding [2 2 2 2] 
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R4 ReLU - - ReLU 

A4 Attention Model 1 - Attention 

C5 Convolution 256 3x3x192 
stride [1 1], 

padding [2 2 2 2] 
R5 ReLU - - ReLU 

A5 Attention Model 1 - Attention 

P6 Max Pooling 1 3x3 
stride [2 2], 

padding [0 0 0 0] 

F7 Fully Connected 1 4096 
fully connected 

layer 
R7 ReLU - - ReLU 

A7 Attention Model 1 - Attention 

D7 Dropout - - dropout 

F8 Fully Connected 1 4096 
fully connected 

layer 
R8 ReLU - - ReLU 

A8 Attention Model 1 - Attention 

D8 Dropout - - dropout 

F9 Fully Connected 1 4096 
fully connected 

layer 
R9 ReLU - - ReLU 

A9 Attention Model 1 - Attention 

D9 Dropout - - dropout 
 

6. Experimental Results 

6.1. Dataset 

The data set contains over fifteen thousand sentiment-scored images on typical positive/negative 

sentiment. Data set contains URL of images, sentiment scores of highly positive, positive, neutral, negative, 

and highly negative, and contributor agreement. Some samples of the training and testing dataset are 

shown in Fig. 3 [25]: 

 

   
Highly Negative Sentiment Image Samples 

   
highly positive Sentiment Image Samples 

Fig. 3. Samples of the sentiment images dataset, the first row shows some samples from the highly positive 

sentiment images, while the second row shows the highly negative image samples.  

 

The whole dataset consists of 4000 images have been divided into 2000 images as a highly negative 

image and 2000 images as a highly positive image. The dataset is divided into 70% of images per category 
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to train (1399 images for training) and specify 30% as a validation set to test (601 images for testing).  

Our network after it has been trained by specifying training options (parameters) as is shown in Table 2.  

 
Table 2. Training Function Parameters 

Function Parameter 

Training Function Sigmoid Function 
MiniBatchSize 10 

MaxEpochs 6 
Shuffle 'every-epoch 

InitialLearnRate 1e-4 
ValidationData Used 

ValidationFrequency 3 
Max Epochs Number 20 

MaxIterations Number 3360 
Iteration per Epoch 168 

 

The initial learning rate is set to a small value to slow down the learning. Also, specify the validation data 

and a small validation frequency. For fine-tuning, we want to change the network ever so slightly. The 

network is changed during training is constrained by the learning rates. Here we do not change the learning 

rates of the original layers, i.e., the ones preceding the last 3. The rates of these layers are already small, so 

they are not required to be decreased more. It is further possible to fix the weights of the early layers 

frozen through setting them all to zero. In this case, instead, we boost the learning rates of the new layers 

we added so that they change faster than the rest of the network. This way previous layers do does not 

change that much, and we quickly learn the weights of the newer layer. 

6.2. Evaluation Criteria 

The performance of the proposed framework can be evaluated using various parameters including 

classification accuracy, detection rate, and false positive rate, the given parameters True Positive (TP) 

which refers to correct detection of positive cases. True Negative (TN) which refers to the correct detection 

of negative cases. False Positive (FP) which refers to incorrect detection of positive cases into negative class. 

Finally, the False Negative (FN) which refers to the incorrect detection of negative cases into a class positive. 

The evaluating performance of emotion detection system is calculated by using three measures called 

Recognition Rate (RR), Precision (PR), Sensitivity (SE), Specificity (SP) [26]. The formula for calculating 

these measures are given as in Eq. (5), (6), (7), and (8) respectively. The first performance result is the 

Recognition Rate which is defined as the ratio between the numbers of correct recognition decision to the 

total number of attempts as it is given in Eq. (5) [27]. 

         
  

     
     (5) 

Secondly, the sensitivity is defined as the ratio between the numbers of retrieved prediction that are 

relevant to the number of retrieved detections as itis given in Eq. (6) [25]: 

          
  

     
 (6) 

Thirdly, the specificity is defined as the ratio between the numbers of true negative prediction and the 

total number of negative detection as it is given in Eq. (7) [27]: 

            
  

     
 (7) 
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Finally, the precision is defined as the ratio between the numbers of true negative prediction and the 

total number of negative detection as it is given in Eq. (8) [27]: 

          
  

     
 (8) 

6.3. Training Experimental Results 

Fig. 4 shows the training accuracy and the lost function score. It is apparent that the loss score started 

from a higher score and described till reached the lowest loss score by achieving 10% loss score. However, 

the accuracy starts from the lower score 30% and keep increasing till reached the highest accuracy after 

consuming 150 iterations to reach the highest score which is almost 90% on the training dataset. 
 

 

 
Fig. 4. The overall performance of the training accuracy and the lost function score during the training 

phase. The blue plot illustrates the training accuracy while the read plot illustrates the loss function, in both 

plots, the dash lines show the average training score and the average loss function for each epoch.  
 

 
Fig. 5. Illustrates the mini-batch training accuracy for each iteration during the training phase.  

 

Fig. 5 illustrates the mini-batch accuracy based on each iteration during the training step. Table 3 also 

shows the mini-batch accuracy achieved the highest accuracy of 100% and the lost score is very low by 
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reaching 0.0093. The different parameter has been tuned during the training phase, the most stable and the 

appropriate parameters. 

Table 2 illustrates the performance of the training results based on reporting the accuracy and the loss 

function for each epoch. It shows that the total iterations for each epoch and the time consuming for each 

one. Although, it illustrates the mini-batch accuracy based on each epoch and the mini-batch loss function 

score. Finally, Table 2 illustrates fine-tuned parameters that have been used based on each epoch. 

 
Table 2. Performance Results of the Training Accuracy and the Loss Function Score for each Iteration 

Epoch Iteration Time Elapsed 
Mini-match 

accuracy 
Mini-batchLoss Base Learning Rate 

1 1-150 00:00:17 75.00% 0.5830 1.0000e-04 

2 200-300 00:00:33 75.00% 0.6243 1.0000e-04 

3 350-500 00:00:54 100.00% 0.0031 1.0000e-04 

4 550-650 00:01:10 100.00% 0.0033 1.0000e-04 

5 700-800 00:01:26 93.75% 0.1597 1.0000e-04 

6 850-1000 00:01:47 93.75% 0.4944 1.0000e-04 

7 1050-1150 00:02:04 100.00% 0.1246 1.0000e-04 

8 1200-1300 00:02:20 93.75% 0.0479 1.0000e-04 

9 1350-1500 00:02:43 100.00% 0.0800 1.0000e-04 

10 4501550-1650 00:02:59 100.00% 0.0154 1.0000e-04 

11 5001700-1800 00:03:15 93.75% 0.1471 1.0000e-04 

12 1850-2000 00:03:39 100.00% 0.0073 1.0000e-04 

13 2050-2150 00:03:56 100.00% 0.0075 1.0000e-04 

14 2200-2350 00:04:19 100.00% 0.0220 1.0000e-04 

15 2400-2500 00:04:38 100.00% 0.001 1.0000e-04 

16 2550-2650 00:04:56 100.00% 0.0448 1.0000e-04 

17 2750-2768 00:05:09 100.00% 8.3442e-05 1.0000e-04 

 

6.4. Testing Performance and Experimental Results 

Fig. 4 shows the training progress of the proposed model where the blue line illustrates training progress 

on the training dataset while the orange line illustrates the loss score on the training dataset. Total of 20 

epochs has been used to train our model with a total of 3500 iterations. We can notice that the proposed 

system can reach the 90’s during the first epoch and the lost function has been dramatically decreased in 

the same epoch. 

 

 
Fig. 6. The confusion matrix of the experimental testing result. 

 

Fig. 6 illustrates the confusion matrix of the testing dataset. It is noticed that the proposed approach 

(Deep attention network) achieves 92.31% In contrast, the most recent approach for sentiment image 

classification using regular deep learning approach achieved 78.1% on the same dataset.  
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The whole performance results of the testing results are shown in Table 3. We can notice that the 

proposed system achieves 93.44% Sensitivity, 91.25%Specificity, and 91.02% precision. In the other hand, 

the proposed system achieves 93.61% on the negative predictive, 87.50% on the false positive rate of 89.80% 

on the false discovery rate, 65.60% on the false-negative rate. Finally, the deep attention network achieves 

92.31% accuracy, 92.21% Fi-score measurement, and 84.66% Matthews Correlation Coefficient. 

 

Table 3. The Experimental Results on the Testing Dataset 

Measure Value 

Sensitivity 0.9344 
Specificity 0.9125 
Precision 0.9102 

Negative Predictive Value 0.9361 
False Positive Rate 0.0875 

False Discovery Rate 0.0898 
False Negative Rate 0.0656 

Accuracy 0.9231 
F1 Score 0.9221 

Matthews Correlation Coefficient 0.8466 

 

Fig. 7 shows some random examples that have been randomly selected from the testing dataset. In this 

case, the proposed approach can predict a confident prediction score to assign the image to the correct 

label. It is also showing that some cases have less confident scores than the other based on the color 

variation and the complexity of the tested images. Fig. 7 also shows the high protective probability for each 

testing image that has randomly chosen to form the testing dataset. It also shows the correct label 

prediction as well as the final score compared with the other label and its prediction score too. Some testing 

image cases got very high confident score by predict the correct label using 1 or 100% confidante score as 

is shown in Fig. 7 (e) and (f) also in Fig. 7 (g) and (h) while some other cases get between the 60’s and 80’s 

as is shown in Fig. 7 (a) and (b), also in Fig. 7 (c) and (d). 

 

    
(a)       (b) 

    
(c)       (d) 
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(e)       (f) 

    
(g)       (h) 

Fig. 7. Some examples of the sentiment analysis testing experimental results using deep attention network. 

 

7. Conclusion 

Sentiment analysis is a challenging problem that tries to figure out the high-level content of large-scale 

visual data based on algorithms devised from computer vision. In this paper, we design a Deep Attention 

Network Mechanisms (DANM) to achieve a higher level of social media sentiment image analysis and 

classify them as (Highly positive mood and highly negative mood). The DANM produces features maps basis 

utilizing the adequate focusing technique of machine learning based on a proper convolutional neural 

network (CNN). The proposed network presents a higher accuracy and efficiency in the performance 

results by achieving 92.31%higher than the most recent work by achieving 78.1% that has been tested in 

the same dataset. 
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