

Enhancing Particle Swarm Optimization Using Opposite
Gradient Search for Travelling Salesman Problem

Thirachit Saenphon*

Faculty of Information and Communication Technology, Silpakorn University, Nonthaburi 11120, Thailand.

* Corresponding author. Tel.: +668-4950-5101; email: thirachits@gmail.com
Manuscript submitted June 14, 2018; accepted September 10, 2018.
doi: 10.17706/ijcce.2018.7.4.167-177

Abstract: The evolutionary computing based on Particle Swarm Optimization (PSO) technique has been

proposed to obtain better performance for solving travelling salesman problems. Basically, the original PSO

encounters a problem of convergence before tackling the best among local optimal solutions. To eliminate

such problem, this paper presents an enhanced PSO algorithm called FOGS-PSO, which is a combination of

PSO and Fast Opposite Gradient Search (FOGS) under benefits from the exploration ability of PSO and the

ability to generate effective candidate solutions of FOGS. This algorithm is divided into two phases. Firstly,

FOGS is applied to generate the best candidate solutions locating on the manifold of objective. Secondly, PSO

is then applied to improve the searching result and speed. Travelling salesman problem was experimented

as well as the objective function according to Hopfield-Tanks network. The proposed algorithm is compared

with a variety of algorithms based on PSO techniques. The results of the test problems show that the

algorithm performs well in terms of distance and number of generations.

Key words: Opposite gradient search, optimization, particle swarm optimization, travelling salesman
problem.

1. Introduction

One of the well-studied combinatorial problem is the Travelling salesman problem (TSP). The problem

has been given this name because it can be described concern in a salesman who has to travel a long

distance on one tour to visit his customers. The salesman start from his home and he bids to inflict all the

customers in different cities exactly once before turning back to his home as the solution to minimize the

entire length of the tour. Two interesting issues of travelling salesman problem are the shortest travelling

distance and the order of cities which are traversed. To solve the problem, most evolutionary algorithm

used random technique to generate different sets of solutions and filter only solutions which minimal value

of the objective function. These algorithms are not interested in the geometrical structure of the objective

function as a part of the solution finding process. Considering the geometric structure of the objective

function can reduce the search area and find the results quickly.

TSP concerns the sequence of cities and the total travelling distance. The sequence of the cities is

important and involves the shortest distance. Hence, a set of travelling sequences must be used as a set of

generating points scattered throughout the manifold of Hopfield-Tank’s energy function [1], [2] that is the

objective function for optimizing the function [3]. There are several algorithms to solve travelling salesman

problems. Some of the techniques are Ant Colony Optimization (ACO) [3], [4], Particle Swarm Optimization

(PSO) [5]-[7], Genetic Algorithm (GA) [8]. GPSO was proposed to solve TSP [7]. This algorithm includes two

167 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

phases, the first phase is applied Fuzzy C-Means clustering, and a rule-based route permutation, a random

swap strategy and a cluster merge procedure. This approach firstly generates an initial non-crossing route.

The second phase combined Genetic-based PSO procedure to solve the TSP with better efficiency. An

efficient method based on hybrid genetic algorithm-particle swarm optimization (GA-PSO) is presented for

various types of economic dispatch (ED) problem [9]. Despite PSO having been successfully applied to some

complex problems such as TSP, there are still some problems. For instance, PSO might fall into local optimal

solutions because of the faster loss of diversity on some problems [10].

To overcome PSO problems, this approach emphasized on how to define the objective function involving

the sequences of travelling as well as the total distance of each sequence and how to apply the manifold of

the objective function for searching the better solution in PSO technique. FOGS was a manifold search

algorithm to find the locations with zero gradients and minimum values of the objective function which first

introduced in [3]. Therefore, combining FOGS with PSO is unlike other PSO based method. The paper has

four sections. In section II, a new method named novel two-stage hybrid FOGS-PSO algorithm is presented.

In section III, TSP examples are used to experimental results with the proposed algorithms that have been

used to solve the problems. Finally, the conclusions are given in Section IV.

2. The Framework of Hybrid Fogs-Pso Algorithm

In the previous parts, the PSO algorithm should be used as a powerful technique for managing various

forms of optimization problems. Original PSO is based on social adaptation of knowledge for working, and

all individuals in the population are considered for generating a new population in the next generation. For

generating new population, I combined the concept of searching for the best solution on the manifold of

objective function or FOGS with PSO. The algorithm of FOGS-PSO is described in the following sections.

Fig. 1. A flowchart of FOGS-PSO described the combining of FOGS and PSO algorithm.

168 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

Many candidate solutions are generated by the FOGS algorithm. These solutions are spread throughout

the surface of the energy function 𝐸(𝑆(∗)) in a first part of proposed algorithm. The generated candidate

solutions and their locations may not be evenly distributed enough to find the best solution because the

structure and the geometric properties of the energy function use in high-dimensional space can not be

visualized easily. To solve the defect of this distributed problem, the other evolutionary algorithm was

combined with FOGS for enhancing the better solution. In this paper, the PSO algorithm was combined to

generate some additional solutions besides the candidate solutions already generated by FOGS algorithm.

The flowchart of the total algorithm named FOGS-PSO is shown in Fig. 1.

2.1. Generate the Initialize Swarm Population

The initialization swarm is an important population for the PSO algorithm to solve an optimization

problem. In this proposed algorithm, the distribution of generated populations along the constraints stated

as above- mentioned equations are concerned. To resolve these aspects, the values of some 𝑆𝑖,𝑗
(∗)

 are set to

zeros. Suppose each 𝑆(∗) is of size × 𝑛, where n is the number of cities and N is the number of populations.

Given 𝐺+ and 𝐺−to represent gradients of energy function are positive and negative value respectively.

After this step is processed, the output is the first generation 𝑁 swarm population that divided into two

different sign gradient set. The algorithm 1 is described the generating new population of swarm.

Algorithm 1. The proposed algorithm begins with generating an initial population of swarm.

 1: 𝐺+ = ∅ and 𝐺− = ∅

 2: For 1 ≤ 𝑘 ≤ 2𝑁 do

 3: Generate 𝑆(𝑘) such that ∀𝑖, 𝑗: 𝑆𝑖,𝑗
(𝑘)

= 1

 4: End for

 5: For 1 ≤ 𝑘 ≤ 2𝑁do

 6: For 1 ≤ 𝑞 ≤ 2𝑁do

 7: Randomly set the values of 𝑖 and 𝑗 such that 1 ≤ 𝑖, 𝑗 ≤ 𝑛

 8: 𝑆𝑖,𝑗
(𝑘)

= 0

 9: End for

 10: End for

 11: Sort all 𝑆(𝑘), 1 ≤ 𝑘 ≤ 2𝑁, in ascending order according to 𝐸(𝑆(𝑘))

 12: Select the first 𝑁 populations of 𝑆(𝑘)

 13: For 1 ≤ 𝑘 ≤ 𝑁 do

 14: If ∇𝐸(𝑆(𝑘)) ≥ 0 then

 15: Insert 𝑆(𝑘) into 𝐺+

 16: Else

 17: Insert 𝑆(𝑘) into 𝐺−

 18: End if

 19: End for

2.2. Brief Concept of Particle Swarm Optimization

The original Particle Swarm Optimization (PSO) algorithm was first presented by Kennedy and Eberhart

in 1995. This optimization algorithm was inspired by the behaviors of a flock of birds or the sociological

behavior of a group of people. Nowadays, the PSO is widely used in many fields, such as the continuous

169 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

optimization problems, the discrete optimization problems, Fuzzy system control, etc. PSO algorithm has

been widely used for applying with other techniques to solve TSP problem [9], [11]. Suppose that the

number of dimensions of search space is 𝐷 and 𝑚 particles from the colony. The 𝑖th particle is

represented by a 𝐷 -dimensional 𝑥𝑖 (𝑖 = 1, 2, … , 𝑚) vector which means that the particle locates at

𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝐷) in the search space. The fitness of particle is calculated by putting its position into

an objective function. When the fitness is lower in minimum optimization problem, the corresponding

𝑥𝑖 become better. The velocity of 𝑖th particle is also a 𝐷-dimensional vector, 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷)(𝑖 =

1,2, … , 𝑚). The best position of the 𝑖𝑡ℎ particle is also a defined by 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝐷) while the best

position of the colony of the current generation is denoted by 𝑃𝑔 = (𝑝𝑔1, 𝑝𝑔2, … , 𝑝𝑔𝐷). The PSO algorithm

could be performed by the following equations:

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑉𝑖(𝑘 + 1) (1)

𝑉𝑖(𝑘 + 1) = 𝜔𝑉𝑖(𝑘) + 𝑐1𝑟1(𝑃𝑖 − 𝑥𝑖(𝑘)) + 𝑐2𝑟2 (𝑃𝑔 − 𝑥𝑖(𝑘)) (2)

where 𝑖 = 1,2, … , 𝑚; 𝜔 is the inertia coefficient which is a constant in [0, 1]. It represents how much the

current velocity at 𝑥𝑖(𝑘) 𝑐1 𝑎𝑛𝑑 𝑐2 are learning rates; 𝑟1 𝑎𝑛𝑑 𝑟2 are random numbers uniformly

distributed [0, 1].

2.3. Adapt Fast Opposite Gradient Search

From the second generation, two new vectors are putting down in between two old vectors of opposite

gradients in the first generation are computed to reduce the searching area when one of them gives a better

result. And so this new vector along with another element in the first generation whose value of energy

function is in an acceptable scope and its gradient that is opposite to the new vector, so the selected vector

in the first generation is used to get a new vector in the third generation. Otherwise, any two vectors in the

first generation, whose values of energy function are in an acceptable scope and their gradients are

opposite to each other, are chosen to generate two new vectors in the second generation.

Given 𝐺+ and 𝐺− to represent the vectors which their gradients are positive and negative value

respectively. All vectors in 𝐺+ and 𝐺− are already sorted in ascending order by their energy cost function

values. Given 𝑀𝑎𝑥 be the maximum number of iterations. When the algorithm terminates after the

iteration criteria 𝑀𝑎𝑥 is found, the locations with zero gradients will be obtained. This location is a global

optimum solution for the problem. The description of this step is shown in Algorithm 3. Details of how to

calculate the weight value (ω) for iteration 𝑡 of 𝑀, the maximum number of iterations, is described in

Algorithm 2 bellow.

Algorithm 2. The algorithm show how to calculate weight value, ω.

 1: Initialization: 𝜔 = 1, 𝐹1 = 0, 𝐹2 = 0

 2: Find a new vector using FOGS algorithm (algorithm 3)

 3: If no city of 𝑆(𝜃) is travelled in any step then

 4: 𝐹1 = 1

 5: End if

 6: If no city of 𝑆(𝛾) is travelled in any step then

 7: 𝐹2 = 1

 8: End if

 9: If 𝐹1 = 1, 𝐹2 = 1 then

170 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

 10: Reduce 𝜔, 𝜔 = 𝜔 ×
𝑀

𝑡
× 0.05

 11: A new vector that out of the scope is ignored and discarded.

 12: Go to step 2 for finding other new vector with the new 𝜔

 13: Else

 14: Let 𝜔 be a current weight value

 15: Go to step 2 for finding a new vector again

 16: End if

Algorithm 3. Adapted Fast Opposite Gradient Search.

 1: Set 𝜔 = 1 and 𝑐𝑜𝑢𝑛𝑡 = 1
 2: While 𝑐𝑜𝑢𝑛𝑡 ≤ 𝑀𝑎𝑥 do
 3: Let 𝑆(𝜃) 𝑎𝑛𝑑 𝑆(𝛾) are the first vector of 𝐺+and 𝐺− respectively
 4: Compute two new vectors 𝑆(1) from 𝑆(𝜃) 𝑎𝑛𝑑 𝑆(2) from 𝑆(𝛾)
 5: Calculate the new weight value 𝜔 using algorithm 2
 6: For 1 ≤ 𝑖, 𝑗 ≤ 𝑛 do

 7: If new 𝑆𝑖,𝑗
(1)

< 0 then

 8: Set 𝑆𝑖,𝑗
(1)

= 0

 9: Else

 10: Set 𝑆𝑖,𝑗
(1)

= |𝑆𝑖,𝑗
(1)

− 1|

 11: End if

 12: If new 𝑆𝑖,𝑗
(2)

< 0 then

 13: Set 𝑆𝑖,𝑗
(2)

= 0

 14: Else

 15: Set 𝑆𝑖,𝑗
(2)

= |𝑆𝑖,𝑗
(2)

− 1|

 16: End if
 17: End for
 18: For 1 ≤ 𝑖 ≤ 𝑛 do

 19: Given 𝑗 = 𝑎𝑟𝑔1≤𝑘≤𝑛 min(𝑆𝑖,𝑘
(1)

)

 20: Set 𝑆𝑖,𝑗
(1)

= 1; ∀𝑘 ≠ 𝑗: 𝑆𝑖,𝑘
(1)

= 0; ∀𝑘 ≠ 𝑖: 𝑆𝑘,𝑗
(1)

= 0

 21: End for
 22: For 1 ≤ 𝑖 ≤ 𝑛 do

 23: Let 𝑗 = 𝑎𝑟𝑔1≤𝑘≤𝑛 min(𝑆𝑖,𝑘
(2)

)

 24: Set 𝑆𝑖,𝑗
(1)

= 1; ∀𝑘 ≠ 𝑗: 𝑆𝑖,𝑘
(2)

= 0; ∀𝑘 ≠ 𝑖: 𝑆𝑘,𝑗
(2)

= 0

 25: End for

2.4. Compute Additional Better Solution: FOGS-PSO

The PSO algorithm is based on vector updates and supports itself well for optimization in continuous

vector spaces.

Therefore, when the PSO used to find the solution in the TSP problem which is a combinatorial problem,

this algorithm still had limitation. The aim of combining PSO algorithm with FOGS in this paper is to find the

better solution searching process. The possibly best solution can be found out in a few generations. A

sequence of cities in term of vector 𝑆 (𝜃) obtained from Algorithm 3 is a path for some particle to travel

during the optimization process.

PSO was used to generate additional paths 𝑆 (𝛾) to find better solutions. The sequence obtained from

FOGS will accordingly set to the best position for a first particle. The beginning positions of the particles

corresponding to travelling sequence 𝑆 (𝜃)are set the best position of the first 0.1 × 𝑀 particles.

171 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

Given 𝑀 to represent the maximum number of iterations and 𝑆(𝑖) be the 𝑖𝑡ℎ travelling sequence. The

travelling sequence obtained from Algorithm 3 is denoted by 𝑆 (𝜃). Suppose 𝑚 particles are given. The

detail of combining the PSO algorithm is shown in Algorithm 4.

Algorithm 4. Combining Particle Swarm Optimization Algorithm with FOGS.

 1: Set generation 𝑡 = 0
 2: While 𝑡 < 𝑀 do
 3: Initialize the first 0.1 × 𝑀 of particles 𝑃 using its initial position from 𝑅 computed in
Algorithm 3
 4: Set learning factors 𝐶1, 𝐶2
 5: If 𝑃𝑏𝑒𝑠𝑡 < 𝑃𝑔𝑏𝑒𝑠𝑡 then

 6: 𝑃𝑔𝑏𝑒𝑠𝑡 = 𝑃𝑏𝑒𝑠𝑡

 7: End if
 8: Calculating the current inertia weight coefficient 𝜔 and 𝑟1, 𝑟2 randomly
 9: Updating the velocity and position according equation (1) and (2) from [8]
 10: Updating for the 𝑃𝑔𝑏𝑒𝑠𝑡

 11: 𝑡 = 𝑡 + 1
 12: End while
 13: 𝑃𝑔𝑏𝑒𝑠𝑡 is the best solution

2.5. Enhance Other Evolutionary Algorithm with FOGS

By working to reduce the solution space quickly and easily create new generation points of FOGS nearby

the optimum solution over another evolutionary which a new population created by a random method. I

study that FOGS can combine other evolutionary algorithms to enhance the performance of them. A

following flowchart in Fig. 2 shows the step of combining FOGS with alternative evolutionary algorithms.

FOGS will replace the random initialize population and generate the new population in the second forwards

convergence to the optimum solution quickly.

Fig. 2. A flowchart represents combination of FOGS with other evolutionary algorithm.

172 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

3. Experimental Studies

3.1. Parameter Set-up

In order to evaluate the performance of proposed algorithm, ten TSP test problems were selected: Att48,

Eil51, Berlin52, St70, Eil76, Pr76, KroA100, Rd100, Eil101, and KroA200. These test cases and their results

were compared with the other four techniques (PSO, ESTPSO [11], IESTPSO [12], FOGSACO[3]) based on the

benchmark problems from TSP library(TSPLIB). The parameters in PSO, and ESTPSO were adopted from

the report of Yan et al. [11] and IESTPSO were adopted from Zhang et al. [12]. The following parameters

were taken after exhaustive testing. The chosen ones were those that made the best computing solutions

concerning both the quality of the solutions and the computational time. The optimal solution can be

obtained within 500 iterations as same as the previous works of PSO, ESTPSO, IESTPSO and FOGSACO.

Therefore, the parameters selected for FOGS-PSO are summarized in Table 1.

Table 1. Parameter Setting of FOGS-PSO Algorithm
Parameters Values

𝛽1 500
𝛽2 500

𝛽3 200

𝛽4 1

𝑁 in algorithm 1 100

𝑀𝑎𝑥 in algorithm 3 500

𝑐1 0.08

𝑐2 0.12

𝑀 population size in algorithm 4 100

Archive 𝑅 size in Algorithm 3 0.1 × 𝑀

Number of experimental runs in each benchmark 50

3.2. Experimental Results

In the experiments, each of these algorithms, i.e. PSO, ESTPSO and IESTPSO was run 50 times for each

benchmark problem. Our performance evaluation emphasized the total travelling distance, the execution

time, and the mean number of generations used to find the possibly best solutions.

The possibly best travelling distances of the test cases found by the algorithms are shown in Tables 2-11.

The number of cities in these test cases varies from 48 to 200. Each number denotes the total distance

found for each problem by each algorithm. From Tables 2-11, these results are better than the results from

the other compared especially traditional PSO algorithm. Especially, the results show that all algorithms

combined with FOGS yield better results than original algorithms.

Table 2. For Problem Att48 with 48 Cities. The Optimal Result Is 33,522

Algorithms Best Result Average S.D. Error

PSO 34,810 36,058.82 1330.07 3.84

ESTPSO 34,286 35,090.44 297.77 2.28

IETPSO 33,842 34,741.95 299.53 0.95

FOGS-ACO 33,561 34,205.04 282.09 0.12

FOGS-PSO 33,561 34,321.62 289.53 0.12

Table 3. For Problem Eil51 with 51 Cities. The Optimal Result Is 426

Algorithms Best Result Average S.D. Error

PSO 450 467.85 20.19 5.76

ESTPSO 429 444.56 6.37 0.82

173 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

IETPSO 428 441.76 5.94 0.70

FOGS-ACO 426 436.25 5.31 0.00

FOGS-PSO 426 434.52 5.27 0.00

Table 4. For Problem Berlin52 with 52 Cities. The Optimal Result Is 7,542

Algorithms Best Result Average S.D. Error
PSO 8,157 8,288.44 136.60 8.16

ESTPSO 7,544 7,804.20 172.70 0.03

IETPSO 7,544 7,879.60 200.93 0.03

FOGS-ACO 7,546 7,581.68 47.59 0.06

FOGS-PSO 7,542 7,562.82 36.63 0.00

Table 5. For Problem St70 with 70 Cities. The Optimal Result Is 675

Algorithms Best Result Average S.D. Error
PSO 719 768.08 37.36 6.52

ESTPSO 687 709.71 16.10 1.73

IETPSO 684 716.11 18.74 1.32

FOGS-ACO 679 694.39 8.34 0.58

FOGS-PSO 677 701.32 8.85 0.29

Table 6. For Problem Pr76 with 76 Cities. The Optimal Result Is 108,159

Algorithms Best Result Average S.D. Error
PSO 118,118 124,544.80 4,522.32 9.21

ESTPSO 109,974 110,529.74 2,404.78 1.67

IETPSO 109,565 110,540.74 2,242.94 1.29

FOGS-ACO 108,864 110,886.73 1,976.53 0.65

FOGS-PSO 108,159 110,556.14 1,875.73 0.00

Table 7. For Problem Eil76 with 76 Cities. The Optimal Result Is 538

Algorithms Best Result Average S.D. Error
PSO 571.36 572.77 32.47 6.20

ESTPSO 564.07 582.44 9.92 4.84

IETPSO 560.44 572.19 7.53 4.17

FOGS-ACO 546.83 548.63 5.79 1.64

FOGS-PSO 545.66 565.92 7.29 3.11

Table 8. For Problem KroA100 with 100 Cities. The Optimal Result Is 21,282

Algorithms Best Result Average S.D. Error
PSO 23,221 23,447.83 859.42 9.11

ESTPSO 21,644 23,476.51 927.06 1.70

IETPSO 21,282 22,484.26 647.23 0.73

FOGS-ACO 21,414 21,427.20 634.28 0.62

FOGS-PSO 21,529 21,676.20 624.26 1.16

Table 9. For Problem Rd100 with 100 Cities. The Optimal Result Is 7,910

Algorithms Best Result Average S.D. Error
PSO 8,295 8,604.86 234.83 4.87

ESTPSO 8,167 8,909.82 219.71 3.25

IETPSO 7,944 8,455.85 214.42 0.43

FOGS-ACO 7,919 8,087.81 93.94 0.11

FOGS-PSO 7,919 8,082.99 94.56 0.11

174 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

Table 10. For Problem Eil101 with 101 Cities. The Optimal Result Is 629
Algorithms Best Result Average S.D. Error

PSO 688 714.63 38.16 9.52

ESTPSO 675 698.27 19.02 7.39

IETPSO 663 683.99 11.48 5.45

FOGS-ACO 633 653.65 21.46 0.70
FOGS-PSO 633 694.01 18.39 0.70

Table 11. For Problem KroA200 with 200 Cities. The Optimal Result Is 29,368

Algorithms Best Result Average S.D. Error

PSO 32,401 33,225.63 828.18 10.32

ESTPSO 31,836 32,640.29 881.34 8.40

IETPSO 31,221 31,420.59 650.62 6.31

FOGS-ACO 29,717 31,515.93 674.08 1.18

FOGS-PSO 29,731 31,519.94 644.58 1.23

Table 12 shows the average execution time used to find the possibly best result of each problem when

compared with IESTPSO and FOGS-ACO. The number of iterations was 500 to assure the optimal solution

can be found. Table 12 shows the summary of execution time for all algorithms; our FOGSPSO can do better

than the others.

Table 12. The Comparisons of Average Execution Times (in Seconds) of All Algorithms Used to Fine the

Possibly Optimal Solution and the Average Execution Time of IESTPSO, FOGS-ACO and FOGS-PSO
Problems IESTPSO FOGS-ACO FOGS-PSO

Att48 263 260 169
Eil51 260 283 169

Berlin52 259 272 174
St70 394 279 274
Eil76 755 281 247
Pr76 533 279 280

KroA100 1,644 289 247
Rd100 423 223 242
Eil101 457 285 276

KroA200 528 293 307

FOGS-PSO can find the possibly best routes of some problems i.e. Berlin52, Eil76, Pr76 are shown in Fig. 3.

Each circle represents a city located in the coordinates listed on the x-axis and y-axis. Each number

represents the order of traversal of each problem. Fig. 4 shows the convergence speeds of FOGS-PSO. The

x-axis denotes the number of iterations and y-axis denotes the total tour length as fitness value. The speed

of our algorithm for some problem is shown in Fig. 4(a) Berlin52 (b) Eil76 and (c) Pr76. (a) Berlin52:

number of generations = 52; distance= 7464. (b) Eil76: number of generations = 89; distance= 545.66. (c)

Pr76: number of generations = 77; distance= 108,396.

(a) Berlin52: distance=7542, the best result is 7,542. (b)Eil76: distance=545.66, the best result is 538.

175 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

(c) Pr76: distance=108,159, the best result is 108,159.

Fig. 3. Some of the problems with the best routes and their total travelling distances.

(a) Berlin52 (b) Eil76 (c) Pr76

Fig. 4. The performance evaluation in terms of number of generations found the best solution and distance.

4. Conclusion

This paper presents an approach for solving travelling salesman problem based on improved particle

swarm optimization, called FOGS-PSO. This proposed algorithm contributed two considerable issues. The

first issue is the FOGS to carry out searching on the manifold and generating new candidate solutions. The

second issue is the application of Particle Swarm Optimization (PSO) to apply the output of FOGS phase as

the initial swarm population for generating new solutions. The advantage of FOGS is to find new solutions in

the same way as binary search using the backtracking on the manifold of the cost functions. In this study,

FOGS can be combined with PSO to create a new solution that approaches the optimal solution. To study the

performance of FOGS in the searching step, the study identified that a portion of FOGS may give a more

serious effect than other based PSO. For the combining issue, this study also confirms that FOGS can

combine with PSO and another technique to enhance a better solution with less time.

References

[1] Wu, H., & Yang, Y. (2004). Application of continuous Hopfield network to solve the TSP. Proceedings of

ICARCV 2004 the 8th Control, Automation, Robotics and Vision Conference (pp. 2258-2263). Kunming,

China.

[2] Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decisions in optimization problems. Biol.

Cybern, 52, 141-152.

[3] Saenphon, T., Phimoltares, S., & Lursinsap, C. (2014). Combining new fast opposite gradient search with

ant colony optimization for solving travelling salesman problem. Engineering Applications of Artificial

Intelligence, 35, 324-334.

[4] Zhu, Q. B., & Chen, S. Y. (2007). A new ant evolution algorithm to resolve TSP problem. Proceedings of

176 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

Sixth International Conference on Machine Learning and Applications (pp. 62-66). Ohio, Japan.

[5] Akhand, M. A. H., Akter, S., Rashid, M. A., & Yaakob, S. B. (2013). Velocity tentative particle swarm

optimization to solve TSP. Proceedings of 2013 International Conference on Electrical Information and

Communication Technology (EICT) (pp. 1-6). Khulna, Bangladesh.

[6] Deng, W., Chen, R., He, B., Liu, Y., Yin, L., & Guo, J. (2012). A novel two stage hybrid swarm intelligence

optimization algorithm and application. Soft Computing, 16(10), 1707-1722.

[7] Liao, Y. F., Yau, D. H., & Chen, C. L. (2012). Evolutionary algorithm to travelling salesman problems.

Computers and Mathematics with Applications, 64, 788-797.

[8] Xiaohui, H., Xiaoyang, L., & Junlian, C. (2009). Hybrid genetic algorithm based on strategy of greedy for

TSP. Journal of Lanzhou Jiaotong University, 28(3), 58-61.

[9] Guvenc, U., Duman, S., Saracoglu, B., & Ozturk, A. (2011). A hybrid GAPSO approach based on similarity

for various types of economic dispatch problems. Electron Electr. Eng. Kaunas: Technologija, 2(108),

109-114.

[10] Kezong, T., Zuoyong, L., Limin, L., & Bingxiang, L. (2015). Multi-strategy adaptive particle swarm

optimization for numerical optimization. Engineering Applications of Artificial Intelligence, 37, 9-19.

[11] Yan, X., Zhang, C., Luo, W., Li, W., Chen, W., & Liu, H. (2012). Solve traveling salesman problem using

particle swarm optimization algorithm. International Journal of Computer Science, 9, 264-271.

[12] Zhang, J., & Si, W. (2010). Improved enhanced self-tentative PSO algorithm for TSP. Proceedings of Sixth

IEEE International Conference on Natural Computation 2010 (pp. 2638-2641). Shandong, China.

Thirachit Saenphon received the M.S. degree in information technology from King

Mongkut University of Technology Thonburi, Thailand. She is currently a Ph.D. student in

computer and information technology at Faculty of Science, Chulalongkorn University.

She also works as a faculty staff in the Faculty of Information and Communication

Technology. Her current research interest is optimization and evolutionary algorithm.

177 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering

