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Abstract: The evolutionary computing based on Particle Swarm Optimization (PSO) technique has been 

proposed to obtain better performance for solving travelling salesman problems. Basically, the original PSO 

encounters a problem of convergence before tackling the best among local optimal solutions. To eliminate 

such problem, this paper presents an enhanced PSO algorithm called FOGS-PSO, which is a combination of 

PSO and Fast Opposite Gradient Search (FOGS) under benefits from the exploration ability of PSO and the 

ability to generate effective candidate solutions of FOGS. This algorithm is divided into two phases. Firstly, 

FOGS is applied to generate the best candidate solutions locating on the manifold of objective. Secondly, PSO 

is then applied to improve the searching result and speed. Travelling salesman problem was experimented 

as well as the objective function according to Hopfield-Tanks network. The proposed algorithm is compared 

with a variety of algorithms based on PSO techniques. The results of the test problems show that the 

algorithm performs well in terms of distance and number of generations.  

 
Key words: Opposite gradient search, optimization, particle swarm optimization, travelling salesman 
problem. 

 
 

1. Introduction 

One of the well-studied combinatorial problem is the Travelling salesman problem (TSP). The problem 

has been given this name because it can be described concern in a salesman who has to travel a long 

distance on one tour to visit his customers. The salesman start from his home and he bids to inflict all the 

customers in different cities exactly once before turning back to his home as the solution to minimize the 

entire length of the tour. Two interesting issues of travelling salesman problem are the shortest travelling 

distance and the order of cities which are traversed. To solve the problem, most evolutionary algorithm 

used random technique to generate different sets of solutions and filter only solutions which minimal value 

of the objective function. These algorithms are not interested in the geometrical structure of the objective 

function as a part of the solution finding process. Considering the geometric structure of the objective 

function can reduce the search area and find the results quickly.  

TSP concerns the sequence of cities and the total travelling distance. The sequence of the cities is 

important and involves the shortest distance. Hence, a set of travelling sequences must be used as a set of 

generating points scattered throughout the manifold of Hopfield-Tank’s energy function [1], [2] that is the 

objective function for optimizing the function [3]. There are several algorithms to solve travelling salesman 

problems. Some of the techniques are Ant Colony Optimization (ACO) [3], [4], Particle Swarm Optimization 

(PSO) [5]-[7], Genetic Algorithm (GA) [8]. GPSO was proposed to solve TSP [7]. This algorithm includes two 
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phases, the first phase is applied Fuzzy C-Means clustering, and a rule-based route permutation, a random 

swap strategy and a cluster merge procedure. This approach firstly generates an initial non-crossing route. 

The second phase combined Genetic-based PSO procedure to solve the TSP with better efficiency. An 

efficient method based on hybrid genetic algorithm-particle swarm optimization (GA-PSO) is presented for 

various types of economic dispatch (ED) problem [9]. Despite PSO having been successfully applied to some 

complex problems such as TSP, there are still some problems. For instance, PSO might fall into local optimal 

solutions because of the faster loss of diversity on some problems [10]. 

To overcome PSO problems, this approach emphasized on how to define the objective function involving 

the sequences of travelling as well as the total distance of each sequence and how to apply the manifold of 

the objective function for searching the better solution in PSO technique. FOGS was a manifold search 

algorithm to find the locations with zero gradients and minimum values of the objective function which first 

introduced in [3]. Therefore, combining FOGS with PSO is unlike other PSO based method. The paper has 

four sections. In section II, a new method named novel two-stage hybrid FOGS-PSO algorithm is presented. 

In section III, TSP examples are used to experimental results with the proposed algorithms that have been 

used to solve the problems. Finally, the conclusions are given in Section IV. 

2. The Framework of Hybrid Fogs-Pso Algorithm 

In the previous parts, the PSO algorithm should be used as a powerful technique for managing various 

forms of optimization problems. Original PSO is based on social adaptation of knowledge for working, and 

all individuals in the population are considered for generating a new population in the next generation. For 

generating new population, I combined the concept of searching for the best solution on the manifold of 

objective function or FOGS with PSO. The algorithm of FOGS-PSO is described in the following sections.  

 

 
Fig. 1. A flowchart of FOGS-PSO described the combining of FOGS and PSO algorithm. 
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Many candidate solutions are generated by the FOGS algorithm. These solutions are spread throughout 

the surface of the energy function 𝐸(𝑆(∗)) in a first part of proposed algorithm. The generated candidate 

solutions and their locations may not be evenly distributed enough to find the best solution because the 

structure and the geometric properties of the energy function use in high-dimensional space can not be 

visualized easily. To solve the defect of this distributed problem, the other evolutionary algorithm was 

combined with FOGS for enhancing the better solution. In this paper, the PSO algorithm was combined to 

generate some additional solutions besides the candidate solutions already generated by FOGS algorithm. 

The flowchart of the total algorithm named FOGS-PSO is shown in Fig. 1. 

2.1. Generate the Initialize Swarm Population 

The initialization swarm is an important population for the PSO algorithm to solve an optimization 

problem. In this proposed algorithm, the distribution of generated populations along the constraints stated 

as above- mentioned equations are concerned. To resolve these aspects, the values of some 𝑆𝑖,𝑗
(∗)

 are set to 

zeros. Suppose each 𝑆(∗) is of size × 𝑛, where n is the number of cities and N is the number of populations. 

Given 𝐺+ and 𝐺−to represent gradients of energy function are positive and negative value respectively. 

After this step is processed, the output is the first generation 𝑁 swarm population that divided into two 

different sign gradient set. The algorithm 1 is described the generating new population of swarm. 

 

Algorithm 1. The proposed algorithm begins with generating an initial population of swarm. 

 1:  𝐺+ =  ∅ and 𝐺− =  ∅ 

 2:  For 1 ≤ 𝑘 ≤ 2𝑁 do 

 3:   Generate 𝑆(𝑘) such that ∀𝑖, 𝑗: 𝑆𝑖,𝑗
(𝑘)

= 1 

 4:  End for 

 5:  For 1 ≤ 𝑘 ≤ 2𝑁do 

 6:   For 1 ≤ 𝑞 ≤ 2𝑁do 

 7:   Randomly set the values of 𝑖 and 𝑗 such that 1 ≤ 𝑖, 𝑗 ≤ 𝑛 

 8:   𝑆𝑖,𝑗
(𝑘)

= 0 

 9:  End for 

 10:  End for 

 11: Sort all 𝑆(𝑘), 1 ≤ 𝑘 ≤ 2𝑁, in ascending order according to 𝐸(𝑆(𝑘)) 

 12: Select the first 𝑁 populations of 𝑆(𝑘) 

 13:  For 1 ≤ 𝑘 ≤ 𝑁 do 

 14:  If ∇𝐸(𝑆(𝑘)) ≥ 0 then 

 15:   Insert 𝑆(𝑘) into 𝐺+ 

 16:  Else  

 17:   Insert 𝑆(𝑘) into 𝐺− 

 18:  End if 

 19: End for 

 

2.2. Brief Concept of Particle Swarm Optimization 

The original Particle Swarm Optimization (PSO) algorithm was first presented by Kennedy and Eberhart 

in 1995. This optimization algorithm was inspired by the behaviors of a flock of birds or the sociological 

behavior of a group of people. Nowadays, the PSO is widely used in many fields, such as the continuous 
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optimization problems, the discrete optimization problems, Fuzzy system control, etc. PSO algorithm has 

been widely used for applying with other techniques to solve TSP problem [9], [11]. Suppose that the 

number of dimensions of search space is 𝐷  and 𝑚  particles from the colony. The 𝑖th  particle is 

represented by a 𝐷 -dimensional 𝑥𝑖 (𝑖 = 1, 2, … , 𝑚 ) vector which means that the particle locates at 

𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝐷) in the search space. The fitness of particle is calculated by putting its position into 

an objective function. When the fitness is lower in minimum optimization problem, the corresponding 

𝑥𝑖  become better. The velocity of 𝑖th particle is also a 𝐷-dimensional vector, 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷)(𝑖 =

1,2, … , 𝑚). The best position of the 𝑖𝑡ℎ particle is also a defined by 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝐷) while the best 

position of the colony of the current generation is denoted by 𝑃𝑔 = (𝑝𝑔1, 𝑝𝑔2, … , 𝑝𝑔𝐷). The PSO algorithm 

could be performed by the following equations: 

𝑥𝑖(𝑘 + 1) =  𝑥𝑖(𝑘) + 𝑉𝑖(𝑘 + 1)        (1)  

𝑉𝑖(𝑘 + 1) =  𝜔𝑉𝑖(𝑘) + 𝑐1𝑟1(𝑃𝑖 − 𝑥𝑖(𝑘)) + 𝑐2𝑟2 (𝑃𝑔 − 𝑥𝑖(𝑘))       (2) 

where 𝑖 = 1,2, … , 𝑚;  𝜔 is the inertia coefficient which is a constant in [0, 1]. It represents how much the 

current velocity at 𝑥𝑖(𝑘)  𝑐1 𝑎𝑛𝑑 𝑐2  are learning rates; 𝑟1  𝑎𝑛𝑑 𝑟2  are random numbers uniformly 

distributed [0, 1]. 

2.3. Adapt Fast Opposite Gradient Search 

From the second generation, two new vectors are putting down in between two old vectors of opposite 

gradients in the first generation are computed to reduce the searching area when one of them gives a better 

result. And so this new vector along with another element in the first generation whose value of energy 

function is in an acceptable scope and its gradient that is opposite to the new vector, so the selected vector 

in the first generation is used to get a new vector in the third generation. Otherwise, any two vectors in the 

first generation, whose values of energy function are in an acceptable scope and their gradients are 

opposite to each other, are chosen to generate two new vectors in the second generation. 

Given 𝐺+ and 𝐺−  to represent the vectors which their gradients are positive and negative value 

respectively. All vectors in 𝐺+ and 𝐺− are already sorted in ascending order by their energy cost function 

values. Given 𝑀𝑎𝑥 be the maximum number of iterations. When the algorithm terminates after the 

iteration criteria 𝑀𝑎𝑥 is found, the locations with zero gradients will be obtained. This location is a global 

optimum solution for the problem. The description of this step is shown in Algorithm 3. Details of how to 

calculate the weight value (ω) for iteration 𝑡 of 𝑀, the maximum number of iterations, is described in 

Algorithm 2 bellow. 

 

Algorithm 2. The algorithm show how to calculate weight value, ω. 

 1: Initialization: 𝜔 =  1,  𝐹1  =  0, 𝐹2  =  0 

 2: Find a new vector using FOGS algorithm (algorithm 3) 

 3: If no city of 𝑆(𝜃) is travelled in any step then 

 4:   𝐹1  =  1 

 5: End if 

 6: If no city of 𝑆(𝛾) is travelled in any step then 

 7:   𝐹2  =  1 

 8: End if 

 9:  If 𝐹1  =  1, 𝐹2  =  1 then 
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 10:  Reduce 𝜔, 𝜔 = 𝜔 ×
𝑀

𝑡
× 0.05  

 11:  A new vector that out of the scope is ignored and discarded. 

 12:  Go to step 2 for finding other new vector with the new 𝜔 

 13: Else 

 14:   Let 𝜔 be a current weight value 

 15:  Go to step 2 for finding a new vector again 

 16:  End if 

  

Algorithm 3. Adapted Fast Opposite Gradient Search. 

 1: Set 𝜔 = 1 and 𝑐𝑜𝑢𝑛𝑡 = 1 
 2: While 𝑐𝑜𝑢𝑛𝑡 ≤ 𝑀𝑎𝑥 do 
 3:  Let 𝑆(𝜃) 𝑎𝑛𝑑  𝑆(𝛾) are the first vector of 𝐺+and 𝐺− respectively 
 4:  Compute two new vectors 𝑆(1)  from 𝑆(𝜃) 𝑎𝑛𝑑 𝑆(2)  from 𝑆(𝛾) 
 5:  Calculate the new weight value 𝜔 using algorithm 2 
 6:  For 1 ≤ 𝑖, 𝑗 ≤ 𝑛 do 

 7:   If new 𝑆𝑖,𝑗
(1)

< 0 then 

 8:    Set 𝑆𝑖,𝑗
(1)

= 0 

 9:   Else 

 10:    Set 𝑆𝑖,𝑗
(1)

= |𝑆𝑖,𝑗
(1)

− 1| 

 11:   End if 

 12:   If new 𝑆𝑖,𝑗
(2)

< 0 then 

 13:    Set 𝑆𝑖,𝑗
(2)

= 0 

 14:   Else 

 15:    Set 𝑆𝑖,𝑗
(2)

= |𝑆𝑖,𝑗
(2)

− 1| 

 16:   End if 
 17:  End for 
 18:  For 1 ≤ 𝑖 ≤ 𝑛  do 

 19:   Given 𝑗 = 𝑎𝑟𝑔1≤𝑘≤𝑛 min(𝑆𝑖,𝑘
(1)

) 

 20:   Set 𝑆𝑖,𝑗
(1)

= 1; ∀𝑘 ≠ 𝑗: 𝑆𝑖,𝑘
(1)

= 0; ∀𝑘 ≠ 𝑖: 𝑆𝑘,𝑗
(1)

= 0  

 21:  End for 
 22:  For 1 ≤ 𝑖 ≤ 𝑛 do 

 23:   Let 𝑗 = 𝑎𝑟𝑔1≤𝑘≤𝑛 min(𝑆𝑖,𝑘
(2)

) 

 24:   Set 𝑆𝑖,𝑗
(1)

= 1; ∀𝑘 ≠ 𝑗: 𝑆𝑖,𝑘
(2)

= 0; ∀𝑘 ≠ 𝑖: 𝑆𝑘,𝑗
(2)

= 0 

 25:  End for 

 

2.4. Compute Additional Better Solution: FOGS-PSO 

The PSO algorithm is based on vector updates and supports itself well for optimization in continuous 

vector spaces. 

Therefore, when the PSO used to find the solution in the TSP problem which is a combinatorial problem, 

this algorithm still had limitation. The aim of combining PSO algorithm with FOGS in this paper is to find the 

better solution searching process. The possibly best solution can be found out in a few generations. A 

sequence of cities in term of vector 𝑆 (𝜃) obtained from Algorithm 3 is a path for some particle to travel 

during the optimization process. 

PSO was used to generate additional paths 𝑆 (𝛾) to find better solutions. The sequence obtained from 

FOGS will accordingly set to the best position for a first particle. The beginning positions of the particles 

corresponding to travelling sequence 𝑆 (𝜃)are set the best position of the first 0.1 × 𝑀 particles. 
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Given 𝑀 to represent the maximum number of iterations and 𝑆(𝑖) be the 𝑖𝑡ℎ travelling sequence. The 

travelling sequence obtained from Algorithm 3 is denoted by 𝑆 (𝜃). Suppose 𝑚 particles are given. The 

detail of combining the PSO algorithm is shown in Algorithm 4. 

 

Algorithm 4. Combining Particle Swarm Optimization Algorithm with FOGS. 

  1: Set generation 𝑡 = 0 
  2: While 𝑡 < 𝑀 do 
  3:  Initialize the first 0.1 × 𝑀 of particles 𝑃 using its initial position from 𝑅 computed in 
Algorithm 3 
  4:  Set learning factors 𝐶1, 𝐶2 
  5:  If 𝑃𝑏𝑒𝑠𝑡 <  𝑃𝑔𝑏𝑒𝑠𝑡 then 

  6:   𝑃𝑔𝑏𝑒𝑠𝑡 = 𝑃𝑏𝑒𝑠𝑡 

  7:  End if 
  8:  Calculating the current inertia weight coefficient 𝜔 and 𝑟1, 𝑟2 randomly 
  9:  Updating the velocity and position according equation (1) and (2) from [8] 
  10:  Updating for the 𝑃𝑔𝑏𝑒𝑠𝑡  

  11:  𝑡 = 𝑡 + 1 
  12: End while 
  13: 𝑃𝑔𝑏𝑒𝑠𝑡 is the best solution 

 

2.5. Enhance Other Evolutionary Algorithm with FOGS 

By working to reduce the solution space quickly and easily create new generation points of FOGS nearby 

the optimum solution over another evolutionary which a new population created by a random method. I 

study that FOGS can combine other evolutionary algorithms to enhance the performance of them. A 

following flowchart in Fig. 2 shows the step of combining FOGS with alternative evolutionary algorithms. 

FOGS will replace the random initialize population and generate the new population in the second forwards 

convergence to the optimum solution quickly. 

 

 
Fig. 2. A flowchart represents combination of FOGS with other evolutionary algorithm. 
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3. Experimental Studies 

3.1. Parameter Set-up 

In order to evaluate the performance of proposed algorithm, ten TSP test problems were selected: Att48, 

Eil51, Berlin52, St70, Eil76, Pr76, KroA100, Rd100, Eil101, and KroA200. These test cases and their results 

were compared with the other four techniques (PSO, ESTPSO [11], IESTPSO [12], FOGSACO[3]) based on the 

benchmark problems from TSP library(TSPLIB). The parameters in PSO, and ESTPSO were adopted from 

the report of Yan et al. [11] and IESTPSO were adopted from Zhang et al. [12]. The following parameters 

were taken after exhaustive testing. The chosen ones were those that made the best computing solutions 

concerning both the quality of the solutions and the computational time. The optimal solution can be 

obtained within 500 iterations as same as the previous works of PSO, ESTPSO, IESTPSO and FOGSACO. 

Therefore, the parameters selected for FOGS-PSO are summarized in Table 1. 

 

Table 1. Parameter Setting of FOGS-PSO Algorithm 
Parameters Values 

𝛽1 500 
𝛽2 500 

𝛽3 200 

𝛽4 1 

𝑁 in algorithm 1 100 

𝑀𝑎𝑥 in algorithm 3 500 

𝑐1 0.08 

𝑐2 0.12 

𝑀 population size in algorithm 4 100 

Archive 𝑅 size in Algorithm 3 0.1 × 𝑀 

Number of experimental runs in each benchmark 50 

 

3.2. Experimental Results 

In the experiments, each of these algorithms, i.e. PSO, ESTPSO and IESTPSO was run 50 times for each 

benchmark problem. Our performance evaluation emphasized the total travelling distance, the execution 

time, and the mean number of generations used to find the possibly best solutions.  

The possibly best travelling distances of the test cases found by the algorithms are shown in Tables 2-11. 

The number of cities in these test cases varies from 48 to 200. Each number denotes the total distance 

found for each problem by each algorithm. From Tables 2-11, these results are better than the results from 

the other compared especially traditional PSO algorithm. Especially, the results show that all algorithms 

combined with FOGS yield better results than original algorithms. 

 
Table 2. For Problem Att48 with 48 Cities. The Optimal Result Is 33,522 

Algorithms Best Result Average S.D. Error 

PSO 34,810 36,058.82 1330.07 3.84 

ESTPSO 34,286 35,090.44 297.77 2.28 

IETPSO 33,842 34,741.95 299.53 0.95 

FOGS-ACO 33,561 34,205.04 282.09 0.12 

FOGS-PSO 33,561 34,321.62 289.53 0.12 

 
Table 3. For Problem Eil51 with 51 Cities. The Optimal Result Is 426 

Algorithms Best Result Average S.D. Error 

PSO 450 467.85 20.19 5.76 

ESTPSO 429 444.56 6.37 0.82 
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IETPSO 428 441.76 5.94 0.70 

FOGS-ACO 426 436.25 5.31 0.00 

FOGS-PSO 426 434.52 5.27 0.00 

 
Table 4. For Problem Berlin52 with 52 Cities. The Optimal Result Is 7,542 

Algorithms Best Result Average S.D. Error 
PSO 8,157 8,288.44 136.60 8.16 

ESTPSO 7,544 7,804.20 172.70 0.03 

IETPSO 7,544 7,879.60 200.93 0.03 

FOGS-ACO 7,546 7,581.68 47.59 0.06 

FOGS-PSO 7,542 7,562.82 36.63 0.00 

 
Table 5. For Problem St70 with 70 Cities. The Optimal Result Is 675 

Algorithms Best Result Average S.D. Error 
PSO 719 768.08 37.36 6.52 

ESTPSO 687 709.71 16.10 1.73 

IETPSO 684 716.11 18.74 1.32 

FOGS-ACO 679 694.39 8.34 0.58 

FOGS-PSO 677 701.32 8.85 0.29 

 
Table 6. For Problem Pr76 with 76 Cities. The Optimal Result Is 108,159 

Algorithms Best Result Average S.D. Error 
PSO 118,118 124,544.80 4,522.32 9.21 

ESTPSO 109,974 110,529.74 2,404.78 1.67 

IETPSO 109,565 110,540.74 2,242.94 1.29 

FOGS-ACO 108,864 110,886.73 1,976.53 0.65 

FOGS-PSO 108,159 110,556.14 1,875.73 0.00 

 
Table 7. For Problem Eil76 with 76 Cities. The Optimal Result Is 538 

Algorithms Best Result Average S.D. Error 
PSO 571.36 572.77 32.47 6.20 

ESTPSO 564.07 582.44 9.92 4.84 

IETPSO 560.44 572.19 7.53 4.17 

FOGS-ACO 546.83 548.63 5.79 1.64 

FOGS-PSO 545.66 565.92 7.29 3.11 

 
Table 8. For Problem KroA100 with 100 Cities. The Optimal Result Is 21,282 

Algorithms Best Result Average S.D. Error 
PSO 23,221 23,447.83 859.42 9.11 

ESTPSO 21,644 23,476.51 927.06 1.70 

IETPSO 21,282 22,484.26 647.23 0.73 

FOGS-ACO 21,414 21,427.20 634.28 0.62 

FOGS-PSO 21,529 21,676.20 624.26 1.16 

 
Table 9. For Problem Rd100 with 100 Cities. The Optimal Result Is 7,910 

Algorithms Best Result Average S.D. Error 
PSO 8,295 8,604.86 234.83 4.87 

ESTPSO 8,167 8,909.82 219.71 3.25 

IETPSO 7,944 8,455.85 214.42 0.43 

FOGS-ACO 7,919 8,087.81 93.94 0.11 

FOGS-PSO 7,919 8,082.99 94.56 0.11 
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Table 10. For Problem Eil101 with 101 Cities. The Optimal Result Is 629 
Algorithms Best Result Average S.D. Error 

PSO 688 714.63 38.16 9.52 

ESTPSO 675 698.27 19.02 7.39 

IETPSO 663 683.99 11.48 5.45 

FOGS-ACO 633 653.65 21.46 0.70 
FOGS-PSO 633 694.01 18.39 0.70 

 
Table 11. For Problem KroA200 with 200 Cities. The Optimal Result Is 29,368 

Algorithms Best Result Average S.D. Error 

PSO 32,401 33,225.63 828.18 10.32 

ESTPSO 31,836 32,640.29 881.34 8.40 

IETPSO 31,221 31,420.59 650.62 6.31 

FOGS-ACO 29,717 31,515.93 674.08 1.18 

FOGS-PSO 29,731 31,519.94 644.58 1.23 

 
Table 12 shows the average execution time used to find the possibly best result of each problem when 

compared with IESTPSO and FOGS-ACO. The number of iterations was 500 to assure the optimal solution 

can be found. Table 12 shows the summary of execution time for all algorithms; our FOGSPSO can do better 

than the others. 

 
Table 12. The Comparisons of Average Execution Times (in Seconds) of All Algorithms Used to Fine the 

Possibly Optimal Solution and the Average Execution Time of IESTPSO, FOGS-ACO and FOGS-PSO 
Problems IESTPSO FOGS-ACO FOGS-PSO 

Att48 263 260 169 
Eil51 260 283 169 

Berlin52 259 272 174 
St70 394 279 274 
Eil76 755 281 247 
Pr76 533 279 280 

KroA100 1,644 289 247 
Rd100 423 223 242 
Eil101 457 285 276 

KroA200 528 293 307 

 
FOGS-PSO can find the possibly best routes of some problems i.e. Berlin52, Eil76, Pr76 are shown in Fig. 3. 

Each circle represents a city located in the coordinates listed on the x-axis and y-axis. Each number 

represents the order of traversal of each problem. Fig. 4 shows the convergence speeds of FOGS-PSO. The 

x-axis denotes the number of iterations and y-axis denotes the total tour length as fitness value. The speed 

of our algorithm for some problem is shown in Fig. 4(a) Berlin52 (b) Eil76 and (c) Pr76. (a) Berlin52: 

number of generations = 52; distance= 7464. (b) Eil76: number of generations = 89; distance= 545.66. (c) 

Pr76: number of generations = 77; distance= 108,396.  

 

  
(a) Berlin52: distance=7542, the best result is 7,542. (b)Eil76: distance=545.66, the best result is 538. 
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(c) Pr76: distance=108,159, the best result is 108,159. 

Fig. 3. Some of the problems with the best routes and their total travelling distances. 

 

 
(a) Berlin52      (b) Eil76      (c) Pr76 

Fig. 4. The performance evaluation in terms of number of generations found the best solution and distance. 

 

4. Conclusion 

This paper presents an approach for solving travelling salesman problem based on improved particle 

swarm optimization, called FOGS-PSO. This proposed algorithm contributed two considerable issues. The 

first issue is the FOGS to carry out searching on the manifold and generating new candidate solutions. The 

second issue is the application of Particle Swarm Optimization (PSO) to apply the output of FOGS phase as 

the initial swarm population for generating new solutions. The advantage of FOGS is to find new solutions in 

the same way as binary search using the backtracking on the manifold of the cost functions. In this study, 

FOGS can be combined with PSO to create a new solution that approaches the optimal solution. To study the 

performance of FOGS in the searching step, the study identified that a portion of FOGS may give a more 

serious effect than other based PSO. For the combining issue, this study also confirms that FOGS can 

combine with PSO and another technique to enhance a better solution with less time.  
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