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Abstract: Software developed referring to a poor design often causes the introduction of security issues 

which could spread into other phases of the Software Development Life Cycle if not address in the initial 

stages. This could lead to major security breaches and loss of valuable assets to the consumers. Identifying 

and fixing security issues as early as possible in a software product is the most cost-effective way of 

implementing software security. This research proposes a proactive approach to build security into the 

product itself with the aid of a new tool developed as a proof of concept. The proposed semi-automatic tool 

will address limitations in current approaches to secure software engineering when developing a software 

product by providing visibility, tracking, awareness, and progress monitoring. Additionally Developers, 

Architects, QA, BA, and Management, as well as the Users, can participate in the Threat Modeling and 

architectural security analysis contributing their input for Security Engineering with the support provided 

by the tool as an interactive platform, a knowledge base and as an integration platform. The Microsoft 

Threat Modeling Tool is being used to generate the threat models. The tool extracts threat model 

information and produces detailed mitigations using known vulnerability databases and classification 

techniques. Developers can better understand the potential threats, vulnerabilities when coding and 

integration functionality with a Project Management Tool can provide visibility and tracking of Building 

Security In throughout SDLC. 

 
Key words: Threat modeling, building security In., architectural risk analysis, defence in depth, 
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1. Introduction 

Implementing a proper Secure Software Development Life Cycle which incorporate security has become a 

major turning point in a successful software application. The recent boom in the internet infrastructure and 

web application technologies and other software products have raised concerns over the security of 

software applications. The main reason behind this is that the software inherently carries sensitive 

information [1] and getting compromised means a huge loss of valuable assets for both software vendors 

and the consumers [2]. In the traditional Software Development Life Cycle, security is only focused on the 

production deployment/release phase and adding a security patch or an update to an identified bug or a 

vulnerability is a relatively costly thing compared to applying that during the development phase or design 

level [3]. It mostly concerned about the security of infrastructure and networks and address software 

security with the use of Antivirus Software, Firewalls, Intruder Detection Systems, and Operating Systems 

Security to harden the application environment [4]. With this approach, the security robustness of the 
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application itself is not considered and usually, software vendors release patches based on later findings of 

known security bugs, pen-testing results to harden the software with a new release version as a reactive 

countermeasure after catastrophic outcomes [4], [5]. This approach also recognized as Application Security 

approach by world-renowned Internet Security expert Garry McGraw [3]. As a solution to these 

aforementioned problems in the current Software Development Life Cycle phases, stakeholders started to 

find new ways of incorporating security into software development throughout all of its SDLC phases and to 

effectively develop a secure software code by focusing on Secure Architecture/ Design and Secure 

Implementation of software [3].  

Exploits or security breaches in a software which lives inside a security-hardened environment are most 

of the time a result of a vulnerability or a bug exists in the application itself. These defects come into 

existence due to the Architecture/ Design flaws and later propagate to development phase as 

implementation bugs [4]. A security bug can be identified as defect occurs in the implementation phase 

whereas a security flaw can be identified as a defect in a software Architecture/ Design or a wrong 

realization of application behavior and the requirement [6]. An Architectural/ Design defect may cause a 

chain reaction to produce more security bugs vulnerabilities in a software system throughout the SDLC 

since they are the root artifacts for a software implementation [6], [7]. Moreover, stats show that 50% of the 

security problems found in software are caused by defects which can be found in the design artifacts [3]. 

Finding suitable methods to identify security flaws/vulnerabilities in a design artifact is a key thing to 

overcome these aforementioned problems. Threat modeling address this requirement where it does an 

architectural risk analysis based on architectural and design artifacts [3], [8]. 

This research is focusing on improving the incorporation of software security aspect with SDLC in its 

Design/ Implementation phases through threat modeling software design and to enforce and track Build 

Security In process throughout SDLC providing visibility to all the stakeholders of a Software product. A 

semi-automatic tool is being developed to support these requirements. An experienced Developer / Lead or 

an Architect need to create the threat model accordingly with the application data flow using the Microsoft 

Threat Modeling Tool (MSTMT). This threat model along with the final report from MSTMT will be used as 

inputs to the KOSALAK framework which extract threat model information and generates mitigation 

techniques accordingly. Inconclusive threats produce by current threat modeling tools tend to demoralized 

the threat modeling process and the effectiveness and there is a huge void in the area of communication and 

providing visibility to all the entities involved in the SDLC. The KOSALAK framework will target addressing 

these areas by providing visibility of threat modeling of software design to Developers, QAs, Architects, 

Management and Client and also refine threat modeling output by associating STRIDE technique [3], [7], [9] 

OWASP top 10 threats [10], CWE/SANS top 25 [11] and CAPEC [12] to eliminate inconclusive threats to 

reduce the effort and cost needed in the SDLC for mitigation. 

2. Related Work 

Software security is the science of engineering software in order to function correctly under malicious 

attacks [3]. This focuses on solutions to define and establish a solid development paradigm which includes 

practices, processes, tools, benchmarks, test suits, etc to target the reduce numbers and severity of 

vulnerabilities in software and identify and manage the security flaws throughout the development instead 

of at maintenance [13], [14]. Software vendors usually provide security patches or updates to resolve 

identified security vulnerabilities but it is a less practical in most of the situations where a security patch is 

given prior to it has been exploited by an attacker [3], [4] and could lead to compromised systems. Web 

applications are ranked higher than the most when it comes to security breaches due to their nature and 

statistics shows that most of these exploitation carried out due to vulnerabilities exist in the application 
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itself rather than due to network or operating system security [15], [16].  

The internet security pioneer Garry McGraw who introduced the concept of Build Security In states seven 

touch-points and their interrelationship between software artifacts and the processes and methodologies 

that needs to follow in order to develop a software securely [3]. Fig. 1 shows that this process is conducted 

in an iterative manner where security-related activities can be cycled multiple times in a single phase of 

SDLC [3]. Each insight gain relating to software security within a single cycle is fed back to next cycle to 

improve the building security in within that stage. This carries on through all the stages of SDLC thus, the 

integration of touch points with the SDLC can work seamlessly with any software development model like 

Agile, Waterfall, Evolutionary, etc. [3].  

 

 
Fig. 1. Software security touch points [3]. 

 

 
Fig. 2. Microsoft security development lifecycle [4]. 

 

Microsoft Corporation has also started their own development process after Bill Gates Memo in 2002 to 

incorporate security into their applications called Microsoft Security Development Lifecycle. This was 

implemented under the Microsoft Trustworthy Computing Initiative. Fig. 2 shows key aspects of the 

Microsoft Security Development Lifecycle, they are focusing on People, Process and Technology to address 

security issues [3], [4], [7]. Each person involved in a software development are being trained to give them a 

better understanding and awareness of software security and how to build secure applications [3], [4], [7]. 

Software development process within Microsoft Corporation has been also enhanced to incorporate 

security and privacy as mandatory in designing, developing and testing following a holistic and practical 

approach leading to reduced number and severity of vulnerabilities in Microsoft products [3], [4], [7]. 

Microsoft has also improved the technology stack with introducing new tools to be used within SDL and 

only allowing approved tools for development and testing as well as establishing guidelines on deprecating 

unsafe functions, methods and software components and by conducting code reviews focusing security 

aspect of the application [3], [4], [7]. Threat modeling comes in the Design phase of the Microsoft Security 

Development Lifecycle focusing improved security in software design artifacts. This is conducted with the 
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aid of Microsoft Threat Modeling Tool by analyzing Level-0, Level-1 DFD derived using design artifacts [4], 

[7]. Applying a structured approach to threat scenarios during design helps a team more effectively, 

productively and less expensively identify security vulnerabilities, determine risks from those threats, and 

establish appropriate mitigations [7].  

Threat Modeling 

Threat modeling comes as an architectural risk analysis methodology based on software design 

documents. It provides a means to identify, classify, quantify and address security flaws in a software design 

[3], [4]. Since design artifacts are the root ingredients in a software system it is vital to understand about 

the probable security risks that can arise from design and address those early as possible eliminating half of 

the security vulnerabilities found in a software application [3], [5]. In most situation, Data Flow Diagrams 

are much more convenient and result driven if used for threat modeling the software design. A DFD 

overview of the system is created referencing design of the software following a three-step process which 

includes Attack resistance, Ambiguity analysis, and Weakness analysis [17]. Having DFDs in Level-0, Level-1 

is sufficient to represent a threat model [17] and to identify the architectural security flaws in the design. 

Following attackers approach and by checking security constraints and by assigning security characteristics 

to components can generate a reasoning mechanism to identify most probable threats to a software 

component [18]. Then the attack resistance step carried out to generate an attack checklist to understand 

known attacks. After determining the threats associated with these attacks they can be categorized using 

Microsoft STRIDE category model [3]. Then the ambiguity analysis is conducted to remove false positives 

from the identified threats by examining the application’s area of potential vulnerabilities. Apart from 

threat modeling, there are mainly two other approaches to do architectural risk analysis namely Trust 

modeling and Data Sensitivity modeling. Trust modeling is carried out to identify the trust boundaries for 

software components and data and Data Sensitivity modeling is conducted to identify the privacy and 

sensitivity of application data. Combining all these approaches can improve the accuracy of the final 

outcome. Threat modeling can be broken down into three main steps. The first step is focused on 

decomposing and gaining insight about the application and its behavior and the interactions it makes with 

other components, external/internal entities, etc. This allows to identify entry points/exit points of the 

application and determine where a potential attacker can interact with the system. During the second step, 

threat is identified, categorized and ranked to decide priorities. This can be done either using attackers 

perspective (STRIDE) [3] or using defensive perspective (ASF) [3]. Upon categorization and ranking threats, 

as the third step suitable mitigation and countermeasures can be decided. These countermeasures can be 

identified using threat-countermeasure mapping lists and with the help of ranking can decide the severity 

and the effort needed to resolve or implement the mitigation based on business requirements and the 

impact they pose.  

3. Solution Design/Implementation 

The research focuses on finding solutions to limitations in present secure software engineering process 

by providing a methodology to add visibility to Threat Modeling process and provide tracking and progress 

monitoring of Building Security In by developing a tool which could generate comprehensive mitigations 

and best practices for identified threats, predict inconclusive threats (false positives) and to enforce and 

educate developers on best practices to avoid known security vulnerabilities when coding, plus integration 

with the SDLC management tools. Based on findings from literature survey it has been identified that the 

MSTMT is the best feasible tool to conduct the architectural risk analysis due to reasons like its being a 

popular free tool and openly available to download as well as the simplicity and user-friendliness. MSTMT 

threat model has been taken in as the input for the framework. The system architecture consists of 
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components such as Threat Model Parser Engine, Knowledge Base, Mitigation Generator Engine, Inference 

Engine, User Interaction - Web View Engine, External Integration, and Publisher Engine. The mentioned 

components of the system and the methodology will be explained in detail in the following subsequent 

sections. The new design and architecture will address the drawbacks and limitations in the current 

approaches in a proactive manner to enhance the Secure Software Engineering paradigm.  

Support of integration with other tools has been limited only to Microsoft Threat Modeling Tool and the 

JIRA project management tool. MSTMT will provide the input information for the framework to work and 

the JIRA application will be the end point of the KOSALAK frameworks output. Generation of architectural 

threats will only be limited to the capabilities of MSTMT and its knowledge base. The intended users and 

the beneficiaries of the framework are not limited to technical people and the nontechnical individuals also 

can use certain features of the system. Software developers, Architects, Security Engineers can use the 

MSTMT to generate an appropriate threat model after analyzing the software project architectural and 

design artifacts using Level-0 or Level-1 DFDs. The literature review indicated that the data contained in 

Level-0, Level-1 has been identified as sufficient to identify the architecture level security flaws. The “tm7” 

file and the “htm” file which can be generated by MSTMT will contain the threat model information in 

respect to STRIDE categorization needed to feed to the KOSALAK framework to generate mitigation 

techniques and best practices and identify and filter low priority threats. Identification and filtering out low 

priority threats will be based on OWASP top 10 and CWE/SANS top 25 and the generated final output can 

be published into JIRA project management tool using REST API in a semi-automatic manner since the 

verification of false positives needs human interaction in the present implementation. Fig. 3 depicts the use 

case diagram derived according to the above requirements of the framework. 

 

 
Fig. 3. Use cases. 

 

 System Architecture 3.1.

The KOSALAK framework presents the proof of concept of this research and works as a semi-automated, 

standalone, web application which will take an MSTMT threat model and the corresponding final report as 

inputs and will parse those to extract useful threat model information. Extracted threat model information 
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will then be passed to the Inference Engine to generate mitigation techniques, best practices and to narrow 

down inconclusive threats which have been identified with respect to OWASP top 10, CWE/SANS top 25 and 

CAPEC and then the final output will be displayed in the User Interaction Web View. Users can view the 

threats and countermeasures in a user-friendly and interactive way enabling them to present and discuss 

the architectural risk analysis related information and can further conclude the false positive (inconclusive 

threats) with human intelligence. In the final stage, the user can submit the prioritized threats and 

mitigation information automatically to JIRA project management tool to provide visibility, tracking, and 

monitoring of Build Security Into all the stakeholders across the SDLC. The Reason for eliminating false 

positives is to improve the reliability of the threat modeling process so the unnecessary expenditure of 

effort and time can be saved without wasting on unlikely issues thus adding benefit to software institutions 

who actively use threat modeling. By being able to integrate with a project management tool enforces the 

threat modeling process by adding the issues to the project backlog and it will be easy to prioritize and later 

worked on by assigning to individuals when developing a software component. Fig. 4 demonstrate the 

process flow of the framework in contrast. 

 

 
Fig. 4. Process flow. 

 

A published vulnerability or a threat in the PM tool will display the severity or priority of the issue with 

respect to the design and the description of the issue along with mitigation techniques and best practices 

with examples and the relation and the point it was extracted from threat model design. This way the 

developers who were assigned to the issue and other interested parties can interpret the issue’s origin and 

can come up with a more solid way of handling the issue. Main components of the system can be 

categorized into five main groups. The Presentation Layer will represent the components which are 

interacting with the user. The Parser Module is an abstract implementation of different parsers supported 

for different types of threat modeling tools and other inputs allowing the system to be scalable with 

multiple threat modeling tools in the future. Currently, the parser for Microsoft Threat Modeling Tool is 

implemented and integrated. Core Logic Layer represents the decision making and knowledge modeling 

mechanism to generate mitigation techniques and best practices for identified threats and to identify false 

positives. Data Layer represents the persistent database and its components as well as lexical DB which is 

used for semantic inferring. Publisher Module is an abstract implementation that supports integration with 

different PM tools with support for scalability in future developments. Currently, integration support for 
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JIRA project management tool has been implemented. In Fig. 5 below shows, the components of the 

framework and the concrete implementations have been marked in solid color and the future extensions in 

dotted line. 

 

 
Fig. 5. Components. 

 

 Presentation Layer 3.2.

This layer will logically group application modules related to UI/UX together to provide Abstraction.  

3.2.1. GUI input threat model 

This component in the Presentation layer represents the GUI sub-component which allows the user to set 

the input “tm7” file and the “htm” file to the system for parsing. It will ask the user to point to the files in an 

opened file explorer window and a checkbox to tick to activate false positive inference. If the inference 

engine is enabled it will generate the mitigations and best practices and mark identified false positives for 

the user to verify. 

3.2.2. GUI view threat list 

This component in the Presentation layer represents the GUI sub-component which allows the user to 

view the extracted threat model information and the false positives from a given threat model file. 

3.2.3. GUI view mitigation 

This component in the presentation layer represents the GUI sub-component which allows the user to 
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view mitigations and best practices generated by the inference engine for a selected threat. Once clicked on 

the threat the view will expand and display the mitigations and the best practices.  

 Threat Model Parser Interface 3.3.

This layer will logically group application modules related to parsing inputs like files, web service 

messages, etc to the system together to provide Abstraction.  

3.3.1. Microsoft threat model parser 

This component in the Threat Model Parser Interface section is a concrete implementation of a threat 

model parser of type Microsoft threat modeling tools threat model and it can extract threat model 

information from a given “*.tm7” file and a given “htm” file for further processing. 

3.3.2. Threat model parser 2 (passive)  

This is an abstract representation of a threat model parser which can be implemented in a future 

development to support a different type of threat model providing scalability. 

 Core Logic Layer 3.4.

This layer will logically group application modules related to core functions of the system together to 

provide Abstraction. 

3.4.1. DB processor 

This component in the Core Logic Engine will implement the back-end logic related to database 

communications. The implementation regarding database processing with persistent database and the 

lexical DB is implemented in the "tmm.corelogic.db" package facilitating long-term storage support 

accumulating all the analyzed threat models. 

3.4.2. Inference engine 

This layer will logically group application modules related to inference functions of the system together 

to provide Abstraction. The "tmm.corelogic.inference" package will contain the logic relating to inferences 

from threat models making the association with different threat categorization and mitigation techniques. 

Here the implemented logic is to match the semantic similarity of threats obtained from MSTMT against 

OWASPT Top 10, CWE/SANS Top 25, CAPEC vulnerability databases.  

Semantic Similarity Processor 

Here each threat description has been evaluated to find the highest matching threat from the collected 

vulnerability databases. With a given threshold value and any two strings above that value with semantic 

similarity matching is considered as a candidate threat to produce and extract mitigation and best practices. 

When calculating the similarity of the semantics word by word comparison of each string has been 

evaluated. The collective output of the words in each sentences is considered as the final value. Wu - Palmer 

semantic similarity matching algorithm has been used with the WS4J library in combination with Word.net 

lexical DB. Below code snippets shows the key methods of the semantic similarity calculations. 

 
public double calculateWS4JSimilarity(String phrase1,String phrase2) { 

 String[] words1 = phrase1.split("\\W+"); 

 String[] words2 = phrase2.split("\\W+"); 

 double total = 0.0; 

 int count = 0; 

 for(int i=0; i<words1.length; i++){ 

  for(int j=0; j<words2.length; j++){ 

  double distance = calculateWS4JSimilarityWord(words1[i], words2[j]); 

   if(distance==Double.MAX_VALUE) { 

     distance = 5; 

   } 

   total +=distance; 
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   count++; 

  } 

 } 

 return total; 

} 

 
 
public double calculateWS4JSimilarityWord(String word1,String word2) { 

 RelatednessCalculator lesk = new Lesk(db); 

 POS posWord1=  POS.n; 

 POS posWord2= POS.n; 

 double maxScore = 0; 

 

 WS4JConfiguration.getInstance().setMFS(true); 

 

List<Concept> synsets1 = (List<Concept>)db.getAllConcepts(word1, posWord1.name()); 

List<Concept> synsets2 = (List<Concept>)db.getAllConcepts(word2, posWord2.name()); 

 

for(Concept synset1: synsets1) { 

 for (Concept synset2: synsets2) { 

 Relatedness relatedness =     lesk.calcRelatednessOfSynset(synset1, synset2); 

 double score = relatedness.getScore(); 

    if (score > maxScore) {  

         maxScore = score; 

    } 

  } 

} 

if (maxScore == -1D) { 

  maxScore = 0.0; 

} 

 return maxScore; 

} 

 

 

private static RelatednessCalculator[] rcs = { new HirstStOnge(db), 

  new LeacockChodorow(db), new Lesk(db), new WuPalmer(db), 

  new Resnik(db), new JiangConrath(db), new Lin(db), new Path(db)  

}; 

 

 

private static double compute(String word1, String word2) { 

  WS4JConfiguration.getInstance().setMFS(true); 

  return new WuPalmer(db).calcRelatednessOfWords(word1, word2); 

} 

 

 Data Layer 3.5.

3.5.1. Persistence database 

Future references on information regarding past analyzed threat models will be an added advantage if the 

machine learning techniques to be applied in the future to improve the accuracy and the usability of the 

application thus, the persistent DB will provide long-term storage support of analyzed threats and 

generated analytical information. This DB also contains the vulnerability databases of CWE, CAPEC, OWASP 

top 10, SANS Top 25 along with mitigations for each threat. 

3.5.2. Lexical DB 

Lexical DB contains mappings of semantic similarities of words in English language and is being used to 

generate the semantic similarities of sentences to match MSTMT threats against vulnerability databases. 
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 Publisher Interface 3.6.

This layer will logically group application modules related to outputs of the system like files, web service 

messages, etc together to provide Abstraction. 

3.6.1. REST publisher for JIRA 

This component in the Publisher interface is a concrete implementation of REST API to integrate the 

system with JIRA Project Management tool. It can publish issues, threats to the JIRA from an extracted and 

refined threat list to provide visibility and tracking for identified issues during SDLC.  

3.6.2. Publisher 2 (passive) 

This is an abstract implementation of a integration with a different PM tool which can accommodate in a 

future development to provide scalability and support to different PM tools. 

 Tools and Technologies 3.7.

 Programming Language : Java 8 EE. 

 IDE : Eclipse Oxygen 

 Application Server : Apache Tomcat 9. 

 Build and Dependency Management : Apache Maven 3. 

 Threat Modeling : Microsoft Threat Modeling Tool. 

 Project Management Tool : Atlassian Jira. 

 Core Framework : Spring MVC 4.1.0 

 Integration API : REST 

 Persistence DB : Postgres 10.0. 

 Lexical DB : Word net lexical db 3.1. 

3.7.1. Core libraries 

 
Table 1. Core Libraries 

Library Version Description 

tomcat-servlet-api 9.0.2 The package contains a number of classes and interfaces that describe and 
define the contracts between a servlet class running under the HTTP 
protocol and the run-time environment provided for an instance of such a 
class by a conforming servlet container 

jackson-databind 2.4.1 Contains basic mapper (conversion) functionality that allows for converting 
between regular streaming json content and Java objects. 

sitemesh 2.4.2 SiteMesh is a lightweight and flexible Java web application framework that 
applies the Gang of Four decorator pattern to allow a clean separation of 
content from presentation. 

jsoup 1.8.3 Jsoup is an Open source Java HTML parser with CSS, DOM and jquery-like 
methods for easy data extraction. 

json 200902
11 

JSON (JavaScript Object Notation) is a lightweight data-interchange format 
which is used to implement REST-API messages. 

commons-codec 1.9 The Codec package from Apache Commons contains simple encoder and 
decoders for various formats such as Base64, UTF-8, Hexadecimal, etc. 

json-simple 1.1.1 json-simple uses Map and List internally for JSON processing and can use 
for parsing JSON data as well as writing JSON to file. 

Ws4j 0.1.0 WordNet Similarity for Java provides an API for several Semantic 
Relatedness/Similarity algorithms 

commons-io 2.0.1 The Apache Commons IO library contains utility classes, stream 
implementations, file filters, file comparators, endian transformation 
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Table 1 above lists down the core libraries used when implementing the framework. Extracted 

mitigations from inference engine will be passed to front-end as a formatted output. The Java EE Spring 

framework packages will facilitate the MVC architecture based web application implementation containing 

all the core functionalities of a web application. Detailed view of the web application in action will be 

discussed in the next chapter. The "tmm.tmp.*" packages will contain the logic and object implementation of 

MSTMT parser and HTML parser as well as publisher logic for the web service integrating JIRA. The 

database itself will act as the knowledge base containing all the information regarding threats, appropriate 

mitigations, best practices, ranking and priorities of threats, previous experiences, etc. 

4. Testing and Evaluation 

Three case studies have been used for the evaluation covering web applications with a sample library 

application, e-commerce portals with a sample e-commerce application and cloud-based network virtual 

appliances with Microsoft Azure HA NVD [19]. Formal verification of functional and non-functional 

requirements of the KOSALAK framework has been carried out with developer testing to ensure that the 

software behaves as intended in the requirements and design specifications. Unit testing has been done 

using JUnit framework to verify micro implementations and modules such as methods and functions. 

Integration testing has been conducted to test integration between threat model file and the parser, final 

report, parser and the web application and the parser and integration between KOSALAK web application 

and JIRA project management tool.  

The results from each test have been manually and automatically validated and verified. The application 

is intended to function in real-time and a performance test is in accordance to verify that non-functional 

requirement. The user needs to have an adequate UI/UX to interact proactively with the tool and this has 

been tested accordingly. The application should not break when analyzing industrial scale threat models 

and the case study 3 covering real-world scenario of Microsoft Azure High Availability Network Virtual 

Appliance implementation using docker technology [19] has been used to test that and will be discussed in 

subsequent chapters in detail.  

 Evaluation Process 4.1.

For the evaluation of the framework an MSTMT threat model file which contains a Level-0 or Level-0 DFD 

along with its final report has to be fed into the system. The tool then parse input files and extract threat 

model information. Extracted threats will then be mapped against OWASP Top 10 Security threats, CAPEC, 

CWE/SANS Top 25 threats to identify the high priority security threats using semantic similarity 

comparison techniques. Appropriate mitigations and the best practices will be generated for each threat 

from pre-defined templates. The user can validate the findings later then submit the selected threats and 

mitigations to the JIRA as the endpoint. The reason behind picking JIRA as the supported PM tool is that is 

has been a popular PM tool in the software institutions. If the Build Security In concept is to be enforced it 

must support existing SDLC tools. The MSTMT threat model is developed following STRIDE threat 

categorization technique. Evaluating the output with respect to different categorization technique will 

prove valuable to identify if there are false positive threats. The accuracy of this false positive identification 

purely relies on the semantic similarity between MSTMT threats and the OWASP top 10 and CWE/SANS top 

25 threats descriptions. Generation of mitigations and best practices are selected from predefined 

classes, and much more 

jersey-client 1.19.4 Jersey is an open source framework for developing RESTFul Web Services. 

spring-web-mvc 4.3.0 Spring mvc is a popular java framework for building scalable web 
applications. 
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templates since the threat modeling is only focusing on known security vulnerabilities. ASF classification 

will look at generating mitigations from a defensive perspective and can be used to identify the appropriate 

security controls for a particular threat. OWASP top 10 security controls also proved valuable for the same 

concern since there also predefined mitigations and best practices have been illustrated. CWE/SANS also 

introduced countermeasures for known security threats, and these enumerations have also concerned 

when generating mitigation techniques within the application. 

Three case studies have been identified covering popular software application development areas. A 

sample library application which will focus on general web applications has been selected as the first case 

study. In this threat model, a typical simple web application has been illustrated. An e-commerce portal has 

been selected as the second case study adding more advanced components and concepts to elaborate the 

effectiveness and the uses of the KOSALAK tool in general software engineering. Finally, as the third case 

study, a cloud-based infrastructure platform has been selected to cover the Dev-Ops, Networking, and 

Systems Engineering concepts using the framework. Threat models and the styling will vary based on the 

user who developed that and is highly people dependent. No common standard is practiced when creating 

threat models but, options available in MSTMT will set a boundary on threat model creation. Each threat 

model will carry the perspective and the impression that the user had on the software application when 

creating the threat model.  

Below Fig. 6 illustrates the home screen of the KOSALAK threat model analyzer in while on the action. 

Input files for the framework can be selected from given file selection buttons. And by ticking the checkbox 

the user can activate the inference engine. Identified inconclusive threats or false positives will be marked 

with the  icon and by clicking on the  icon will allow the user to expand the information and see 

mitigations best practices, etc related to a particular threat. 

 

 
Fig. 6. KOSALAK - home screen. 

 

 Evaluation Results 4.2.

All the mitigations have been presented in the same format where OWASP top 10 countermeasures have 

been presented on their web site [10]. In below case studies same views of mitigations have been used for 

OWASP Top 10 related threats and vulnerabilities. If a particular threat cannot match against OWASP top 10 

vulnerability then it will check in subsequent vulnerability databases CWE [11] and CAPEC[12]. Top 5 

rating threats will then get selected when generating mitigations and displayed using the same format. 

When creating the threat models for case studies user can set the status of threats as mitigated, or not 

applicable and those will not get loaded into the application. 
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4.2.1. Case study 1: Simple web-based library application 

Threat model DFD developed using MSTMT for the architectural risk analysis of the web-based library 

application is illustrated in the below figure. MSTMT 2016 has generated a set of known potential threats 

associated with the drawn DFD following STRIDE categorization technique. Main components of the system 

and the connectivity, communication and the integration along with trust boundaries have been drawn 

using templates found in the MSTMT 2016. Below Fig. 7, and Fig. 8 will illustrate the output from the 

KOSALAK Threat Model Analyzer once this threat model has been loaded to the application. Visual 

representation of the threat model have been extracted from the “htm” file since the users need to visualize 

the threat model. 

 

 
Fig. 7. Simple web based library system - threat model. 

 

 
Fig. 8. Simple web based library system - loaded into KOSALAK. 

 

Below snapshot taken in Fig. 9 will illustrate how the KOSALAK Threat Model Analyzer displays the 

extracted threats and the false positives. Marked rows with the  icon indicated potential false positives 

or low priority threats and by clicking on the  icon can expand the row to see the in-depth analysis of 

the threat and mitigations and best practices. 
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Fig. 9. Simple web based library system - loaded threat list. 

 

 
Fig. 10. Simple web based library system - loaded mitigation1. 
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Fig. 11. Simple web based library system - loaded mitigation2. 

 

Ticking on the checkbox after reviewing and discussing with the team will mark that particular threat 

eligible to be exported to the JIRA along with all the information. Fig. 10 and Fig. 11 above is a snapshot 

taken to illustrates how the application shows a generated mitigation to a selected issue by clicking on the 

 icon. Mitigations and best practices have been derived with respect to OWASP top 10 security controls 

for this particular threat. The full list of extracted include 56 potential threats for this threat model. Below 

shows one such threat where it illustrates the category of the threat, description along with additional 
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information, how to prevent such an incident, example attack scenarios. This way when the team evaluates 

each of these threats they can educate team members about the best practices and guidelines to follow 

when implementing the application. 

4.2.2. Case study 2: Simple e-commerce web application 

 

 
Fig. 12. Simple e-commerce web application - threat model. 

 

 
Fig. 13. Simple e-commerce system - loaded threats. 

 

For this case study also threat model DFD was developed using MSTMT for the architectural risk analysis 
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of the e-commerce web application and is illustrated in the above Fig. 12. MSTMT 2016 has generated a set 

of known potential threats associated with the drawn DFD following STRIDE categorization technique. Main 

components of the system and the connectivity, communication and the integration along with trust 

boundaries have been drawn using templates found in the MSTMT 2016. Fig. 13 will illustrate the threat list 

output from the KOSALAK Threat Model Analyzer once this threat model has been loaded to the application 

along with the report file. The full list of extracted include 57 potential threats for this threat model. As a 

sample below Fig. 14 displays a SQL injection-related threat and mitigations in detailed format after clicking 

on the relevant tab with the threat. This feature can be used to educate the team on how to follow the best 

practices to avoid these known security vulnerabilities. 

 

 
Fig. 14. Simple e-commerce system - loaded mitigation. 

161 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering



  

Selected threat and the best practices can be published to PM tool supported by ticking on the threat 

head and then clicking on the publish button at the bottom linking with a development item. The user 

assigned the item will be able to refer this information and will be enforced to follow the best practices 

when implementing the feature or the functionality. The management and leads can monitor the security 

building progress via the JIRA. Fig. 15 below is a snapshot taken to illustrates how the threat is presented in 

JIRA project Management tool’s Dashboard once it is published. 

 

 
Fig. 15. JIRA - published threat and mitigation. 

 

 
Fig. 16. JIRA - published threat and mitigation - detail. 

 

Fig. 16 and Fig. 17 shows how the published threat is being available in a detailed view with all the 

information associated and the mitigations and the best practices generated. Any developer who’s going to 

work on the particular item can gain insight on how to properly code to avoid known security bugs. 

Additionally these threats can be linked up with the development items to provide more visibility. 
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Fig. 17. JIRA - published threat and mitigation - detail. 

 

4.2.3. Case study 3: Microsoft azure high availability network virtual appliance 

implementation using docker technology [19] 

This case study is a industrial scale real world scenario based threat model DFD which was developed 

using MSTMT for the architectural risk analysis of the cloud based HA-NVD implementation and is 

illustrated in the below figure. MSTMT 2016 has generated a set of known potential threats associated with 

the drawn DFD following STRIDE categorization technique. Main components of the system and the 

connectivity, communication and the integration along with trust boundaries have been drawn using 

templates found in the MSTMT 2016. Fig. 18 illustrates the threat model associated with this case study. 
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Fig. 18. HA-NVD system - threat model. 

 

 
Fig. 19. HA-NVD system - loaded threats. 

 

The full list of extracted include 91 potential threats for this threat model and can be seen in the snapshot 

taken in Fig. 19. The same level of application behavior can be observed in this case study and the 

application generates mitigations following the same format and mechanism used during previous two case 

studies.  

5. Conclusion 

The research proposes means and methods to improve the existing SDLC in terms of Secure Software 

Engineering. The particular field of research is focusing on deriving mitigations and best practices to 
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identified known security risks in a software design and to reduce the unwanted cost associated with low 

priority vulnerabilities and to provide visibility and guidance to all the stakeholders in SDLC on how to 

incorporate Build Security In to software products. A tool has been implemented as a proof of concept to 

assist the Developers, Leads, Architects, QA and Management on secure software development. The results 

and the accuracy are depended on many factors and the available knowledge in the field of threat modeling 

is proved to be inadequate in certain situations. The current dissertation will add valuable features to the 

field of threat modeling and secure software engineering which will provide more opportunities for the 

future growth of the field. 

Mitigation techniques generated will give a helping hand to developers when coding since they can be 

aware of the best practices to avoid introducing known security vulnerabilities to the software products. QA 

will have a better insight on how to test the security of a software product when doing quality assurance 

analyst tasks focusing on software security. Management can have an insight about building security into 

the software application and can provide visibility, tracking and monitoring throughout SDLC and educating 

all stakeholders in an SDLC is also an additional advantage with the help of the KOSALAK framework.  
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