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Abstract: The development of wireless network technologies gives attackers the convenience to use 

advanced radio technologies to hide their positions in wireless networks. While location service is a hot 

research currently, there are few location strategies concentrate on locating an attacker equipped with 

advanced radio technologies. In order to locate the attackers and make a security wireless network 

environment, we present a localization strategy, named as Active Location Detection (ALD), to locate 

attackers, without depending on the true features of attackers’ signal. This process is robust against the 

attacks from these malicious users, using a finite horizon discrete Markov decision process (MDP). 

Furthermore, we qualitatively analyze the lower bound of ALD’s error rate. After our analysis, a common 

formula of the lower bound of ALD’s error rate is proved. Our simulations about ALD’s error rate 

demonstrate that ALD’s error rate is close to the lower bound of ALD’s error rate. As further noted, the 

theories about the lower bound of ALD’s error rate can also be applied to the range-free location systems. 
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1. Introduction 

Although the wireless network technology provides a new and popular way to access networks, it also 

gives the attackers convenience to use advanced radio technologies, such as software defined radios (SDR) 

and smart antennas, to hide their positions in wireless networks. While location service is a hot research 

currently, there are a few location strategies concentrate on locating an attacker equipped with advanced 

radio technologies [1]–[3]. We propose a localization mechanism called Active Location Detection (ALD) for 

wireless networks to identify the real location of an attacker even if the attacker is equipped with advanced 

radio technologies. 

There are two steps in the ALD process. In step one, the Packet Test Estimate (PTE) method is presented 

to calculate the upper bound of the distance between the attacker and its connecting access point. In the 

second step, we lure the attacker to change its signal features, force the attacker to reveal the true features 

of its signal, and locate the attacker. In order to get the estimated location quickly and reduce the 

probability that the attacker is alerted, the luring process of ALD is modeled as a finite horizon discrete 

Markov decision process (MDP).  

After using the ALD process to identify an attacker’s physical location in WLAN, a qualitative analysis of 

ALD’s performance is also needed. So, we qualitatively analyze the lower bound of ALD’s error rate. 

Extensive simulations about ALD’s error rate demonstrate that ALD’s error rate is close to the lower bound 

of ALD’s error rate.  
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The rest of the paper is organized as follows. Section 2 describes the related work. Section 3 introduce the 

ALD process. Its disassociation process is modeled as the finite horizon discrete MDP in Section 4. In 

Section 5, necessary qualitative analysis work about the lower bound of ALD’s error rate is done. The 

simulated results are shown in Section 6. Final section concludes the whole paper. 

2. Related Work 

We analysis the challenges to locate an attacker equipped with SDR and smart antennas in GPS, 

range-free and range-based current location systems. 

The GPS system has to trust the end device to report the correct location in the GPS system. Although 

tamper proof GPS receivers can be used to increase the reliability of location claims of end devices, which 

adds extra costs for legitimate users, it is impossible to enforce potential attackers to use tamper proof GPS 

devices. Range-free localization systems [4], [5] are designed to estimate a possible region of a target 

wireless node by collecting information about the node’s connectivity with other nodes. These systems can 

be easily fooled by an attacker that intentionally distorts its signal information to prevent the systems to 

localize itself. Most range-based systems [6], [7] use absolute estimates of mutual distances or angles to 

locate a wireless node. Similar as in range-free systems, an attacker can fool range-based localization 

systems by distorting angle of arrival, power adaptation and transmission delay variation. 

3. The Process of ALD 

The process of ALD is divided into two steps: (a) Packet Test Estimate (PTE) method, deriving an upper 

bound of the distance between the attacker and its connecting AP. (b) Luring Connection (LC), luring the 

attacker to dynamically change its signal features. 

In PTE, each AP has a capability to vary its transmission power level. After an attacker is connected to its 

home AP, none of the signal features can be directly used to localize the attacker. The upper bound derived 

by the PTE method is termed as PTE distance. To derive a tighter PTE distance, ALD controls the home AP to 

randomly use different transmission power levels while delivering packets to the attacker. By monitoring 

the lowest transmission power level that results in a successful response from the attacker, the home AP can 

derive a tight bound on the attacker’s distance to itself. We call this bound as PTE distance. 

The LC process can actively lure the attacker to dynamically change its signal features, force the attacker 

to involuntarily reveal the true features of its signal, and then identifies its location. To narrow the location 

estimation coverage area down, ALD exploits the attacker’s desire for communications to lure or force the 

attacker to change its home AP. When the attacker connects to a new home AP, a new PTE distance to this 

new home AP can be derived following the PTE method in step (a). Then, ALD obtains a new PTE estimation 

area centred at the new home AP. The location region of the attacker, hence, can be narrowed down to the 

intersection of the original estimation area and this new PTE estimation area. ALD repeatedly makes the 

attacker to switch its home AP until the targeted localization accuracy is reached or it is impossible to 

further narrow down the location estimation. When ALD ends its active localization effort, the attacker’s 

real location area is revealed to be in the final location estimation region. In Section 4, we explain how to 

derive the optimal set of active APs at each LC step. 

4. Markov Decision Process (MDP) 

To effectively locate an attacker, ALD must compute the best activation sequence of the attacker’s 

neighbouring APs by considering the following three factors. First, we need to locate the attacker as fast as 

possible. Second, there is a risk that the attacker is alerted and moves to a new location in a LC step if the 

attacker is forced to connect to a new neighbouring AP but cannot see any APs. Hence, we associate with 
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such an alert state with an alert “cost” factor Calert to capture the penalty caused by ALD’s termination of its 

current localization process. Finally, in each LC step, the estimation region of the attacker’s location is 

narrowed down. Hence, we define the “reward” in each LC step as the reduction of the attacker’s location 

estimation area compared to the estimation in the previous LC step. 

Considering these three factors, the best activation sequence of the LC steps should maximize the 

aggregated reward while minimizing the aggregated step cost and alert cost. To calculate this best trade-off 

point between reward and cost, ALD models the best activation sequence as a Markov decision process 

(MDP). Based on the above analysis, ALD finds the optimal activation sequence of APs by modeling this AP 

activation problem as a Markov decision process (MDP). 

4.1. Definition of MDP 

The MDP model for ALD’s AP activation process is defined as a tuple (S, A, A(s), Pa(s, s’), ra(s)) where S is 

the state space, A is the action space, A(s) is the action space for state sÍS, Pa(s, s’) is the transition 

probability of a given action aÍA(s) from state s to state s’, ra(s) is the expected immediate reward received 

after taking an action aÍA(s) at state s. Each state sx in S refers to the set of APs the attacker has connected 

to, where the subscript x=x1, x2,..., xk represents that the attacker has connected to x1, x2,..., and xk. The 

estimation of the attacker’s location region at state sx, denoted as Area(sx), is the intersection of the 

estimation disks of all APs in x. The only exception in the state space notation is the state that corresponds 

to the situations where the attacker is alerted. These states are represented by salert. 

4.2. Calculation of MDP 

Given the cost and reward associated with each step of the operation, the goal of ALD’s 

active-AP-selection operation is to maximize the aggregation of expected rewards minus costs by using an 

optimal sequence of activated APs. The optimal sequence can be computed as follows. 

Given any state sx, ALD determines the optimal set of activated APs, denoted by p (sx), as follows: 
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where 10 ¢< g  is the discounting factor for the future reward and captures the fact that the future 

reward is less important due to the chance that the attacker may move in the future. 

To find out the optimal AP activation process based on (1) and (2), there are two remaining problems, 

finding the transition probability between two states and defining the reward function. 

4.2.1. Expected transition probability calculation 

Given states sx, sy and an action a, if the transition from sx to sy is possible, ALD calculates the transition 

probability based on the two assumptions. (a) At state sx, it is assumed that the probability density of the 

adversary’s location is uniform over the estimated region of state sx. In this case, at any position in sx, the 

attacker can connect to a subset of the active APs in the action a and the attacker selects one in this subset 

as its new home AP. (b) We assume the selection of the attacker is completely random so that each active AP 

in this subset has an equal opportunity to be chosen. In other words, if the attacker is inside the intersection 

area of n active APs in the subset, the attacker selects any one of them as its home AP with probability 1/n. 
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With these assumptions, it can be proved the expectation transition probability from state sx to sy under 

action n is: 
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where Area(sx) is the area of the state sx and rv is the coverage region of AP v.  

4.2.2. Reward function calculation 

The reward function for an action a at state s is defined as a function of the decreased difficulty for 

locating the attacker within the region. Note that for a particular state, the larger is the estimated region of 

the attacker, the harder to locate the attacker within this region. Hence, the reward for transition from state 

sx to state sy can be represented by 

 

( ) ( ) ( ),x y x yr s s Area s Area s C= - -                            (4) 

 

where C is the constant cost for alert the attacker. Hence, the reward function in the MDP definition (1) 

becomes 
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The detailed proof of the formulas in MDP can be seen in our previous research [8]. 

5. Qualitative Analysis of Lower Bound 

After proposing the ALD strategy to identify an attacker’s physical location in WLAN, further qualitative 

analysis work about the lower bound of ALD’s error rate is needed to judge the ALD’s performance. 

Definition 1: In a 2D located range R with an area of S, APs’ radio coverage radius r can make the R into n 

disjoint located regions. The average localization error rate in the located range R is: 
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where p(Ri) is the probability of the located node in the range Ri, e(Ri) is the average localization error rate 

in the range Ri. We assume that the node is uniformly distributed on the 2D closed region R, so 
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where p(x,y) is the probability of the located node in the coordinates (x, y) point and S is the area of the 

region R. Based on (7) , Eave(R) in (6) can be described as : 

 

( ) ( ) ( ) ( ) ( )2 2 2 2

1 1

1 1

i

n n
i

ave i i i i

i ii i R

s
E R x x y y dxdy x x y y dxdy

S rs Sr= =

= - + - = - + -ä äññ ññ      (8) 

International Journal of Computer and Communication Engineering

70 Volume 6, Number 1, January 2017



  

where si is the area of the located region Ri, ri is the radio coverage radius and (xi, yi) is the barycenter 

coordinates for the located region Ri. Because S and ri are all constants, we can transform (8) to 
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where We(Ri)= ( ) ( )2 2
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Lemma 1: We(Ri) has the property of translation, which means in a given range Ri the value of We(Ri) is 

nothing to do with the centroid position of Ri in the coordinate system. 

Here is the proof. If there is a located range R and the initial position of the range’s centroid is the origin 

of coordinates, the We(R) can be represented 
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If we translate R to a new range D, where D = {(u,v) | u=x-xR, v=y-yR, (x,y)ÍR}, then 
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Lemma 2: There are two regions R1 and R2 in the 2D located and closed range R. R1 and R2 have the same 

shape and different area s1 and s2. It can be proved that: 
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where R1 = {(x,y) | (x,y)Í  R}, R2={(u,v) | (u,v)ÍR}.  

Because of We(R1) and We(R2)’s attribute of translation in Lemma 1, we can move the centroids of R1 and 

R2 to the origin of coordinates without changing the value of We(R1) and We(R2), then: 
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Definition 2: We define Uw as the unit of We(R) and obtain Uw’s value by calculating We(R)’s value in a 

circle which area value is 1: 
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Definition 3: We define AR as the shape coefficient. AR’s value is the ratio between the We(R) 

corresponded in the unit area Uw, when SR=1, 
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2 2 /R

R
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It is easy to see that AR² 1. We calculated some common shapes’ AR value and the results are that: the 

circle is 1, the hexagonal is 1.003, the square AR is1.017.  

According to (10), (11) and (12), Eave(R) in (9) can be written as: 
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Theorem 1: In a 2D closed range R with an area of S, where the attacker and the access points are 

uniformly distributed, the range R can be divided into n disjoint regions by the APs’ radio coverage radius r. 

With using the ALD localization algorithm, the average localization error rate’s minimum value can be 

proved as
2

3

s s

rn np
. 

Proof: According to (13), Eave(R) can also be described as: 
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From the theorem above, we can conclude that: for the ALD algorithm, the higher the density of APs, the 

more number of areas divided in the plane, the less the average localization error rate. Furthermore, the 

theories about the lower bound of ALD’s error rate can also be applied to the range-free location systems. 

6. Simulations 

We evaluate the performance of ALD in a grid topology where the AP density in the topology is 

represented by the ratio r/d, where r is the radius of the coverage region of an AP and d is the minimum 

distance between two APs. In our simulation, the discounting factor of ALD is set as g = 0.9. The location 

estimation of ALD is treated as the centroid of the estimated region. The coverage region of an AP is 

assumed to be a circle. In our simulations, we only consider the worst case. As to PTE distance in every step, 

we choose a random value between the attacker’s realistic distance to AP and the d because we assume we 

can’t accurately measure the PTE distance by transmission power in worst case. As to the LC process, we 

still consider the worst case, which means we assume the attacker can be listened by only one AP in every 

step. In this simulation, we study the relationship between the APs density with the performance of ALD. 
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Fig. 1. ALD performance comparison. 

 

As shown in the Fig. 1, the position error ratio decreases in a wave shape. When the network density is 

increased but the radio coverage radius is still not changed, the distance between access points will become 

smaller. Then, two neighboring access points’ coverage area of intersection becomes larger, and the scope of 

the intersection area becomes larger that leads to the increase of the position error ratio. However, if the 

density continues to rise which will cause the access point intersects with an outer access point, the 

location area will shrink and the location error ratio will reduce. 

In order to know the performance of ALD, we build mathematical models of ALD’s error rate in Section 5. 

In the Fig. 1, we calculated the lower bounds in different AP densities by using the formula of the lower 

bound of ALD’s error rate in Section 5. The lowest line in the Fig. 1 is the lower bound in different AP 

densities, named as “Ideal”. We also find in the Fig. 1 that the ALD’s error rate is close to the lower bound of 

ALD’s error rate which visually proves ALD’s high-performance. 

7. Conclusions 

In this paper, we present a range-free localization scheme, called ALD, to locate the attacker that 

initiatively hides its position information in WLAN. The ALD strategy does well in locating an attacker that 

distorts its signal features to hide its position. In order to judge the ALD strategy’s performance, we build 

mathematical models of ALD’s error rate and analysis the lower bound of ALD’s error rate in Section 5. We 

also simulate some necessary scenarios to test and verify our theories about ALD’s error rate. 
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