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Abstract: Accurate computation of geometric moments is very important in computer vision, image 

processing and pattern recognition. In this paper, inspired by the idea of bit-plane decomposition and 

accurate computation of geometric moments on binary images, we put forward an accurate and fast 

algorithm for the computation of geometric moments using Non-symmetry and Anti-packing Model (NAM) 

for color images, which takes O(N) time where N is the number of all NAM blocks. By taking four color 

images ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’ as typical test objects, and by comparing our proposed NAM-based 

accurate algorithm with the popular Binary Tree (BT)-based accurate algorithm for computing the 

geometric moments, the theoretical and experimental results presented in this paper show that our 

NAM-based accurate algorithm can significantly improve the execution speed by 43.71%, 41.93%, 41.01%, 

and 38.63% over the BT-based accurate algorithm in images ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’, respectively. 

Also, our NAM-based accurate algorithm can significantly improve the average execution speed by 41.32% 

over the BT-based accurate algorithm. Therefore, in the case of computing lower order moments of color 

images, our proposed accurate algorithm is much faster than the BT-based accurate algorithm. 

 
Key words: Accurate computation, geometric moments, image representation, non-symmetry and 
anti-packing model (NAM), binary tree (BT), color images.  

 
 

1. Introduction 

Image representation is a research spot in computer visualization, image processing and pattern 

recognition [1]-[4]. An efficient representation method can not only save the storage space of images, but 

also can reduce the time required for some image operation. In 1980s, Gargantini firstly put forward a 

linear quadtree representation method [5]. Generally speaking, the linear quadtree can reduce the storage 

space by 66% and even in some special cases up to 90%. Later, Chen et al. proposed a linear binary tree 

representation method for binary images [6], which showed that the space-efficiency of the BT is superior 

to that of the linear quadtree. Up to date, the binary tree (BT) is still one of most popular representation 

methods and it has been widely applied in many fields [7]-[12]. The geometric moments are used in pattern 

recognition to provide a scale, orientation and position invariant characterization of the shape of a given 

object [13], [14]. Spiliotis et al. [13] proposed a computation formula of geometric moments on binary 
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images using image block representation. However, due to zero-order approximation and numeric 

integration over each pixel, the geometric moments calculated are only approximate. Later, Flusser [14] by 

recalling the original definition of moments in the continuous domain, they put forward an accurate 

formula to compute the geometric moments. However, this method can not directly deal with gray or color 

images. In 2005，Chung et al. put forward an efficient image algorithm based on the S-tree Coding (STC) 

method for computing the lower order moments on gray images [15]. Although the representation methods 

of the hierarchical data structures, such as BT and STC, have many merits and applications, they put too 

much emphasis upon the symmetry of image partition. Therefore, they are not the optimal representation 

methods. Inspired by the concept of the packing problem, Chen et al. presented a novel non-symmetry and 

anti-packing model (NAM) for image representation in order to represent the image pattern more 

effectively [16]. By using the NAM representation and the extended shading approach, Zheng et al. proposed 

a fast algorithm for computing the lower order moments of gray images [17]. However, the computation 

results of the geometric moments in [15] and [17] are both approximate since they used the Gouraud 

shading method and the extended Gouraud shading method, respectively. In fact, accurate computation of 

the geometric moments on gray or color images are also very important in the field of image processing 

[18]-[20]. 

The gray levels of an n-bit gray-scale image can be represented in their binary representation: 

an-1an-2 …a1a0, where each aj, 0≤j≤n−1, is 0 or 1. Based on this property, a simple method of decomposing the 

image into a collection of binary images is to separate the ajs into n 1-bit bit planes. In this paper, inspired 

by the idea of bit-plane decomposition and accurate computation of geometric moments on binary images, 

we put forward an accurate and fast algorithm for the computation of geometric moments using 

Non-symmetry and Anti-packing Model for color images, which takes O (N) time where N is the number of 

all NAM blocks. By taking four color images ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’ as typical test objects, and by 

comparing our proposed NAM-based accurate algorithm with the popular BT-based accurate algorithm for 

computing the geometric moments, the theoretical and experimental results presented in this paper 

demonstrate the computational advantage of our proposed algorithm.  

2. Proposed NAM-Based Algorithm for Computing Geometric Moments 

In this section, we first simply reintroduce the NAM representation; however, a detailed description can 

refer to our previous work [16]. Then, we present a new algorithm for computing the geometric moments 

based on the NAM representation. 

 Idea of the NAM 2.1.

The Non-symmetry and Anti-packing Model (NAM) is an anti-packing problem. The idea of the NAM can 

be described as follows: Given a packed pattern (a packed container) and n predefined subpatterns (n 

predefined objects) with different shapes, pick up these subpatterns (objects) from the packed pattern (the 

packed container) and then represent the packed pattern (the packed container) with a combination of 

these subpatterns (objects). 

The concept of non-symmetry in this paper means that the anti-packing structure is not symmetrical. 

Non-symmetry, which is related to the symmetry of hierarchical structures, is used because non-symmetry 

has the capability of representing a packed pattern with the least number of subpatterns in the packing 

problem. Therefore, NAM representation has the capability of achieving the best pattern representation 

efficiency which cannot be achieved by the traditional hierarchical representation methods. 

 Description of the NAM for Color Images 2.2.

Suppose an original color image pattern is represented by  and two reconstructed non-distortion and 
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distortion patterns of   are  and  . Then, the NAM is either a non-distortion transform model from 

 to  or a distortion transform from  to  .The transform procedure can be written as: 

 

( )T   , ( )T   , 

 

where T( ) is a transform or coding function. 

The non-distortion coding procedure can be given by 
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where  is the reconstructed pattern,  1 2, , , nP p p p is a set of some predefined subpatterns, n is the 

number of subpattern types, 
jp  is the jth subpattern (1≤ j ≤n); v is the value of 

jp , A is a parameter set of 

the subpattern 
jp , (1 )i ia i m  is a parameter set of shapes for 

jp , m is the number of the subpattern 
jp , 

( )d is a residue pattern, and d is a threshold of ( )d . 

If the residue pattern, ( )d , is removed from the non-distortion pattern, then the distortion pattern can be 

obtained as: 
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Then the following expression is true. 

 

∝  =  + ( )d .  

 Our NAM-Based Algorithm for Computing Geometric Moments of Color Images 2.3.

In our NAM representation of color images, the predefined subpatterns are the rectangles, p = {rectangle | 

rectangle = L×W} with two parameters, the length L and the width W. Since the background level is zero, 

only the pixels with level one are taken into account for the computation of the moments.  

Algorithm: NAM representation for color images. 

Input: A color image C of size 2n×2n×3 with a bit depth m. 

Output: An encoding queue set Q for C, where Q = {Q_r0, Q_r1,…, Q_r3m-1}.The variable Q_ri denotes the 

queues of the encoded rectangles of the ith binary bit-plane image, where  0 ≤ i ≤ 3m-1.  

Step 1. Decompose a color image C to 3m binary bit-plane images BPi (0 ≤ i ≤ 3m-1) by the method of the 

binary bit-plane decomposition and let i=0. 

Step 2. Establish an unmarked start point sp from the first entrance of the binary image BPi according to 

the raster scanning order, and trace the corresponding rectangular subpatterns. Mark the biggest found 

rectangular subpattern in the BPi, and store the parameters of the rectangle into a queue Q_ri, i.e, Q_ri←{sp, l, 

w}, where the variables ‘sp’, ‘l’, and ‘w’ are the upper and left coordinates, the length, and the width of the 

rectangle, respectively. 

Step 3. Repeat Step 2 until there is no unmarked rectangular subpattern in the BPi. 

Step 4. Increase the variable i by one. If i ≤ 3m−1, then go back to Step 2. 

Step 5. Output the encoding result Q, where Q = {Q_r}.  

Suppose that a color image of size 2n×2n×3 with a bit depth m has been decomposed into the NAM 
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representation where the number of NAM blocks is N, and that the upper-left and the lower-right 

coordinates of the ith NAM block Bi are (x1i, y1i) and (x2i, y2i), respectively. Therefore, we can redefine our 

color images as f (x,y)={bi: i=0, 1,…, N-1}. 

Given a binary image with size M×M, let f (x, y) denote the gray value of the pixel at the coordinate (x, y) 

for 0  x and y  M−1. Spiliotis et al. [13] proposed a computation formula of geometric moments on binary 

images using image block representation. 

The (p+q)th order moment in [13] is defined as follows 

2 2 2 2

1 1 1 1

1 1 1 1
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0  p  4, can be computed in O(1) time by using the following formula. 
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O(1) time. Thus, we can know from the Eq. (1) the moments
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computed in O(1) time.  

Later, Flusser [14] by recalling the original definition of moments in the continuous domain 
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pqM x y f x y dxdy
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                                     (3) 

where f (x, y) is the characteristic function of the block. Therefore, Eq. (1) is only an approximation of (3). An 

error pq pqM m is introduced due to zero-order approximation and numeric integration of p qx y over each 

pixel. Then, Flusser put forward an accurate formula to compute the geometric moments.  

In fact, according to their formula, we can easily deduce the following equation, which is used to compute 

the geometric moments of any NAM block b. 
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where (x1i, y1i), (x2i, y2i) the coordinates of the upper left and down right corner of the NAM block.  

Some quantities of Eq. (4) can be precalculated and stored in a lookup table. Therefore, for a given color 

image C of size 2n×2n×3 with a bit depth m, the NAM representation can compute the accurate lower order 

moments in O(N) time where N is the number of NAM blocks. 

In the case of the BT representation is concerned, because the BT partition is symmetric, the partition 

method suffers from a great confine. However, since the NAM partition is asymmetrical, the partition 

method is unrestricted. The purpose of the NAM partition is to construct subpatterns as large as possible 

and yield the fewest subpatterns number for a packed pattern. Generally speaking, the total number of 

subpatterns of the NAM, say N, is less than the total number of nodes of the BT, say K, i.e., N < K. Therefore, it 
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can be deduced that the NAM-based representation can compute the geometric moments faster than the 

BT-based representation. 

3. Experimental Results 

An efficient image representation can not only save space but also facilitate the manipulation of the 

acquired images. In this section, four color images of size 256×256×3 with a bit depth m=8 (see Fig. 1) are 

tested as the benchmark to evaluate the performance of moment computation. We implement the BT-based 

and the NAM-based algorithms for computing the geometric moments of color images, respectively. For the 

sake of the fairness of comparison, both of the two algorithms use the strategies of the precalculation. All 

our experiments are performed on a Celeron microprocessor running at 2.4 GHz with 2 GB RAM. The 

operating system is MS-Windows XP running the Visual Studio 2015 environment. The programming 

language is C++. 

    
Fig. 1. Four test images. 

Tables 1, 2, 3 and 4 list the approximate and accurate geometric moments using the BT and the NAM 

representation for ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’, respectively, where the symbol Gm denotes geometric 

moments; the symbols BT  and NAM  represent the approximate values of the corresponding geometric 

moments using the BT and the NAM representation, respectively; the symbols BT  and NAM  represent 

the accurate values of the corresponding geometric moments using the BT and the NAM representation, 

respectively; the symbol denote  the error between NAM  and NAM or between BT and BT .  

From these four tables, it can easily be seen that the values of both BT and NAM are always equal. Also, the 

values of both BT
 

and NAM
 

are always equal. Further, the approximate values of the corresponding 

geometric moments for each image are always less than the accurate values of the corresponding geometric 

moments except for these four geometric moments, i.e., m00, m01, m10, and m11, whose approximate values of 

the corresponding geometric moments are always equal to the accurate values of the corresponding 

geometric moments due to zero-order approximation and numeric integration of p qx y over each pixel. The 

parameter shows the difference between the approximate values and the accurate values.  

Table 1. Approximate and Accurate Geometric Moments Using BT and NAM Representation for ‘Lena’ 
Gm BT  NAM  BT  NAM    

m00 25210831 25210831 25210831 25210831 0 
m01 3127945069 3127945069 3127945069 3127945069 0 
m02 524666810497 524666810497 524668911400 524668911400 2100903 
m03 99658682214541 99658682214541 99659464200808 99659464200808 781986267 
m10 3330676309 3330676309 3330676309 3330676309 0 
m11 419972389817 419972389817 419972389817 419972389817 0 
m12 70753766888973 70753766888973 70754044445332 70754044445332 277556359 
m20 575471331463 575471331463 575473432366 575473432366 2100903 
m21 73434594060799 73434594060799 73434854722888 73434854722888 260662089 
m30 110655658557439 110655658557439 110656491226516 110656491226516 832669077 
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Table 2. Approximate and Accurate Geometric Moments Using BT and NAM Representation for ‘Peppers’ 
Gm BT  NAM  BT  NAM    

m00 21789686 21789686 21789686 21789686 0 
m01 2678015499 2678015499 2678015499 2678015499 0 
m02 450030089863 450030089863 450031905670 450031905670 1815807 
m03 85996217826225 85996217826225 85996887330100 85996887330100 669503875 
m10 2803248817 2803248817 2803248817 2803248817 0 
m11 336218218453 336218218453 336218218453 336218218453 0 
m12 55345684287279 55345684287279 55345917891347 55345917891347 233604068 
m20 478895170545 478895170545 478896986352 478896986352 1815807 
m21 56793505664915 56793505664915 56793728832873 56793728832873 223167958 
m30 92143088329339 92143088329339 92143789141543 92143789141543 700812204 

 

Table 3. Approximate and Accurate Geometric Moments Using BT and NAM Representation for ‘Frog’ 

Gm BT  NAM  BT  NAM    

m00 12238742 12238742 12238742 12238742 0 
m01 1599312932 1599312932 1599312932 1599312932 0 
m02 273228876830 273228876830 273229896725 273229896725 1019895 
m03 51967337177774 51967337177774 51967737006007 51967737006007 399828233 
m10 1633924130 1633924130 1633924130 1633924130 0 
m11 212109416760 212109416760 212109416760 212109416760 0 
m12 36049915581240 36049915581240 36050051741584 36050051741584 136160344 
m20 282526224846 282526224846 282527244741 282527244741 1019895 
m21 36415825290030 36415825290030 36415958566108 36415958566108 133276078 
m30 54578463383492 54578463383492 54578871864525 54578871864525 408481033 

 

Table 4. Approximate and Accurate Geometric Moments Using BT and NAM Representation for ‘Fish’ 

Gm BT  NAM  BT  NAM    

m00 16712860 16712860 16712860 16712860 0 
m01 2112465980 2112465980 2112465980 2112465980 0 
m02 338080731968 338080731968 338082124706 338082124706 1392738 
m03 60669916241972 60669916241972 60670444358467 60670444358467 528116495 
m10 2127420606 2127420606 2127420606 2127420606 0 
m11 267986393348 267986393348 267986393348 267986393348 0 
m12 43250531589712 43250531589712 43250708874762 43250708874762 177285050 
m20 339321091538 339321091538 339322484276 339322484276 1392738 
m21 43108758435632 43108758435632 43108934474464 43108934474464 176038832 
m30 61822784849328 61822784849328 61823316704480 61823316704480 531855152 

 
Complexities of many image operation algorithms are proportion to the node or block number of the 

images. The less the node or block number of the images is, the faster the image operation algorithm is. 

Table 5 presents the performance parameters of both the BT and the NAM representation methods of color 

images where the symbols BTN and NAMN represent the node number of the BT and the NAM representation, 

respectively; the symbol =( )/BT NAM BTN N N  ; the symbols BTC and NAMC  represent the compression ratios 

of the BT and the NAM representation, respectively; the symbol =( - )/NAM BT BTC C C ; the symbols BT and

NAM represent the approximate time of the corresponding geometric moments using the BT and the NAM 

representation, respectively; the symbol =( - )/NAM BT BT    ; the symbols BT and NAM represent the 

accurate time of the corresponding geometric moments using the BT and the NAM representation, 

respectively; the symbol =( - )/BT NAM BT    . The time unit for the moment computation is millisecond. 

It can be seen from Table 1 that the block numbers of Figs. 1(a)(d) using the BT (NAM) are 377631 

(205680), 365616 (204419), 262903 (151412), and 357236 (212866) respectively. In the case of the given 

four standard test images, from Table 1 we can easily notice that the block numbers of the NAM are always 

less than those of the BT. In fact, further comparison of the number of blocks allows us to work out that the 
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NAM can significantly reduce the block number by 45.53%, 44.09%, 42.41%, and 40.41% over BT in images 

‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’, respectively. In other words, the average block numbers of BT and NAM for 

the four images are 340847 and 193594, respectively. Therefore, the NAM can reduce the block numbers by 

43.11% than the BT in average. Therefore, our proposed representation method is more effective than the 

BT representation method with respect to the node number of the images. 

Table 5 presents the compression ratios of the BT and the NAM representation methods. The 

compression ratios of ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’ using the BT (NAM) are 0.1485 (0.1772), 0.1555 

(0.1871), 0.2028 (0.2402), and 0.1679 (0.2071) respectively. In the case of the compression ratios of both 

the BT and the NAM representation methods, we can see from Table 5 that our NAM representation method 

can save the storage room by 19.33%, 20.32%, 18.44%, and 23.35% over the BT representation method in 

images ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’, respectively. From Table 5, we can also see that the average 

compress ratios of BT and NAM for the four images are 0.1687 and 0.2029, respectively. That’s is to say, in 

the case of the four test images are concerned, our proposed NAM over the BT has about 20.36% 

memory-saving improvement ratio in average. Therefore, our proposed representation method is also more 

effective than the BT representation method with respect to the storage room.  

 

Table 5. Comparison of Number of Blocks or Pixels between BT and NAM Representation Methods 

Image BTN  NAMN    BTC  NAMC    BT  NAM    BT  NAM    

Lena 377631 205680 45.53% 0.1485 0.1772 19.33% 923.44 503.91 45.43% 58.29 32.81 43.71% 

Peppers 365616 204419 44.09% 0.1555 0.1871 20.32% 936.25 526.25 43.79% 58.91 34.21 41.93% 

Frog 262903 151412 42.41% 0.2028 0.2402 18.44% 650.31 370.00 43.10% 42.65 25.16 41.01% 

Fish 357236 212866 40.41% 0.1679 0.2071 23.35% 890.46 544.22 38.88% 57.50 35.29 38.63% 

Avg 340847 193594 43.11% 0.1687 0.2029 20.36% 850.12 486.10 42.80% 54.34 31.87 41.32% 

 

As far as the approximate computation method is concerned, from Table 5, we can know that NAM is 

always less than BT  for each image. In addition, from the values of , it can be seen that our NAM-based 

approximate algorithm can significantly improve the execution speed by 45.43%, 43.79%, 43.10%, and 

38.88% over the BT-based approximate algorithm in images ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’, respectively. 

Also, it can be seen that the average execution time of the BT-based and the NAM-based approximate 

algorithms for the four images are 850.12 ms, and 486.10 ms, respectively. In other words, our NAM-based 

approximate algorithm can significantly improve the average execution speed by 42.80% over the BT-based 

approximate algorithm.  

Similarly, as far as the accurate computation method is concerned, from Table 5, we can know that NAM

is always less than BT for each image. In addition, from the values of , it can be seen that our NAM-based 

accurate algorithm can significantly improve the execution speed by 43.71%, 41.93%, 41.01%, and 38.63% 

over the BT-based accurate algorithm in images ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’, respectively. Also, it can 

be seen that the average execution time of the BT-based and the NAM-based accurate algorithms for the 

four images are 54.34 ms, and 31.87 ms, respectively. In other words, our NAM-based accurate algorithm 

can significantly improve the average execution speed by 41.32% over the BT-based accurate algorithm. 

Further, as far as both the approximate and the accurate computation methods are concerned, we can 

work out from Table 5 that the average execution time of the BT-based approximate algorithm is 15.6445 

times of the BT-based accurate algorithm, which shows the BT-based accurate algorithm can significantly 

improve the execution speed by 93.61% than the BT-based approximate algorithm. Similarly, we can work 

out from Table 5 that the average execution time of the NAM-based approximate algorithm is 15.2526 times 

of the NAM-based accurate algorithm, which shows the NAM-based accurate algorithm can significantly 

improve the execution speed by 93.44% than the NAM-based approximate algorithm. Therefore, 
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precalculation can significant improve the execution speed of geometric moments whether for the BT-based 

accurate algorithm or the NAM-based accurate algorithm. 

As stated above, the experimental results in this section show that our proposed NAM-based algorithm 

for accurate computation of geometric moments for color images is much faster than the previous BT-based 

algorithm for accurate computation of geometric moments for color images. 

4. Conclusions 

In this paper, inspired by the idea of bit-plane decomposition and accurate computation of geometric 

moments on binary images, we put forward an accurate and fast algorithm for the computation of 

geometric moments using Non-symmetry and Anti-packing Model for color images, which takes O(N) time 

where N is the number of all NAM blocks. By taking four color images ‘Lena’, ‘Peppers’, ‘Frog’, and ‘Fish’ as 

typical test objects, and by comparing our proposed NAM-based accurate algorithm with the popular 

BT-based accurate algorithm for computing the geometric moments, the theoretical and experimental 

results presented in this paper demonstrate the computational advantage of our proposed algorithm. 
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