

Support to Apply Accessibility Guidelines to Web
Applications

Tamaki Ohara1*, Hajime Iwata2, Junko Shirogane3, Yoshiaki Fukazawa1

1 Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan.
2 Kanagawa Institute of Technology, 1030 Shimono, Atsugi, Kanagawa, Japan.
3 Tokyo Woman’s Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo, Japan.

* Corresponding author. Tel.: +81-3-5286-3345; email: tamaki-o@asagi.waseda.jp
Manuscript submitted October 4, 2014; accepted November 25, 2014.
doi: 10.17706/ijcce.2016.5.2.99-109

Abstract: Recently RIAs (Rich Internet Applications) have been widely adopted in Web applications.

Although RIAs realize that Web pages change dynamically, their accessibility is often insufficient, preventing

people with disabilities from properly operating and recognizing content. To resolve these problems, the

WAI (Web Accessibility Initiative) of the W3C (World Wide Web Consortium) has established accessibility

guidelines, called WAI-ARIA (Web Accessibility Initiative — Accessible Rich Internet Applications), which

provide detailed instructions to make RIAs accessible for users with disabilities employing ATs (assistive

technologies). ATs include screen readers, alternative keyboards, screen magnification software, and voice

recognition software. Applying these guidelines to Web applications is extremely burdensome due to the

numerous elements in the guidelines. Herein we propose a method to automatically evaluate the

accessibility of Web applications, reducing developers' efforts and costs. The target RIAs of our current

method are developed by JavaScript.

Key words: Accessibility, Ajax, RIA, WAI-ARIA.

1. Introduction

RIAs (Rich Internet Applications) have been widely used for Web applications because they can provide

functions similar to desktop applications while offering complex and high levels of user interactivity. RIAs

have two important elements compared to traditional static Web applications: custom controls called

widgets and asynchronous data transactions [1]. Web developers can create new custom controls to extend

the functional limitations in native HTML. Additionally RIAs can dynamically alter and update Web pages.

JavaScript and Flash are often used to realize RIAs. In particular, Ajax can realize RIAs possessing the ability

to access and modify DOM (Document Object Model) of the Web pages without a full-page refresh [2].

However, RIAs have several accessibility problems. Accessibility is more difficult in RIAs than static Web

content. When content is updated in RIAs, the user must be aware of the update and able to access the new

content without unduly interrupting the current task [3]. Because the accessibility of Web applications by

RIAs is insufficient, users with disabilities and elderly users have difficulty operating RIAs. For example,

when parts of Web pages are changed and updated dynamically, ATs (Assistive Technologies) cannot detect

the dynamic changes, preventing recognition by the users.

ATs include screen readers, which read aloud the contents of Web pages, and screen magnification

software, which magnifies the display screen. Traditionally, ATs have treated information on Web pages as

static content. Since RIAs modify DOM dynamically without a full-page refresh, ATs cannot properly treat

International Journal of Computer and Communication Engineering

99 Volume 5, Number 2, March 2016

information in real time. Also, ATs cannot manipulate custom controls that allow users to use a mouse in

lieu of a keyboard.

To resolve these issues, the WAI (Web Accessible Initiative) of the W3C (World Wide Web Consortium)

has established accessibility guidelines called WAI-ARIA [4], which provide detailed instructions to make

RIAs accessible by adding semantics to HTML [5]. Due to these guidelines, Web developers can develop

accessible RIAs that notify dynamic changes to ATs, which allows users to recognize the status of the

current Web pages by ATs. However, WAI-ARIA contains an enormous number of elements, making it

difficult to understand and appropriately apply them to Web applications due to economic and time

constraints. In particular, manual evaluations are expensive in development environments in which

applications are updated frequently [5]. Therefore, accessibility should be improved by automatic

evaluation tools designed specifically for these environments. These systematic and fast tools should

increase the effectiveness, productivity, and coverage of web pages [6].

Existing automatic evaluation tools have faced several challenges [7]. One is that they cannot detect the

DOM changes in the same way as ATs and often report inaccurate evaluation results. Watanabe et al.

examined several HTML static automatic evaluation tools as well as their own approach for accessibility

evaluations of RIAs [5]; they reported that the HTML static automatic evaluation tools report more

incorrect assertions.

To resolve these problems, we propose a method to automatically evaluate whether the guidelines are

properly applied to Web applications. In the first step, Web developers specify URLs of the Web pages to be

evaluated. Second, the accessibility of the Web pages is evaluated by analyzing the HTML source code

statically. Third, the operation histories of the Web pages are obtained by Crawljax [7], which is a Web

crawler that manipulates Web pages automatically. Finally, the accessibility of the Web pages is evaluated

based on the operation histories. Using our method, Web developers can easily apply the WAI-ARIA

guidelines to Web applications. Currently, our method focuses on JavaScript applications as RIAs.

2. Related Works

In this section, we introduce some related works.

2.1. Evaluating the Accessibility of Web Applications

Fernandes et al. proposed a method to automatically evaluate the accessibility of RIAs [8]. Their method

automatically collects all clickable elements with an assigned onclick function, and detects the changes by

JavaScript. However, this method uses WCAG (Web Content Accessibility Guidelines) [9], which specify how

to create pure HTML code in an accessible way. Most Web applications use client-side technologies like

JavaScript and Ajax to give users real-time information such as stock prices. Thus, only making HTML code

accessible is insufficient.

2.2. Evaluating Web Accessibility at Different Processing Phases

Fernandes et al. evaluated the accessibility of Websites at different processing phases: before and after

loading [10]. They evaluated in the command-line environment before loading and then evaluated it in a

browser after loading using QualWeb evaluator. They could not evaluate the accessibility properly before

the loading phase using a command-line, and concluded that the command-line environment cannot

correctly be evaluated because the evaluator does not detect the dynamical DOM changes in Web contents

such as Ajax.

2.3. Integrating Manual and Automatic Evaluations

Salomoni et al. proposed a method to evaluate the accessibility of Websites by integrating manual and

automatic evaluations [11]. They insisted that the combination between explicit syntax and implicit

International Journal of Computer and Communication Engineering

100 Volume 5, Number 2, March 2016

semantics of Web coding is more valuable for accessibility evaluations. Their method used WCAG to

evaluate the accessibility.

3. Features of Our Proposed Method

3.1. Reducing Cost and Time

To develop accessible RIAs using JavaScript, Web developers must apply WAI-ARIA. Typically, confirming

that all the necessary elements are applied to Web applications is burdensome. Because our method is

automatic, it reduces both the cost and time.

3.2. Supporting Dynamic Web Applications

Our method detects the code of Web applications with accessibility problems and suggests modifications.

Although accessibility evaluations of Web applications are difficult because Web pages are dynamically

changed, our method can evaluate various changes in Web applications.

3.3. Evaluating Automatically

Our method can evaluate the accessibility using HTML source codes and JavaScript source codes of Web

applications. Thus, Web developers and users do not have to manipulate Web applications to evaluate the

accessibility. In addition, even Web developers unfamiliar with the accessibility guidelines can evaluate the

accessibility and modify their Web applications based on the evaluation results.

4. Accessibility Guidelines

In the late 1990s, the W3C WAI released three guidelines for Web content accessibility for people with

disabilities: WCAG for content, UAAG (User Agent Accessibility Guidelines) [12] for user agents, ATAG

(Authoring Tool Accessibility Guidelines) [13] for authoring tools [14].

The first version of the guidelines, WCAG, was used to improve the accessibility of Web pages [14].

However, today’s Web is no longer static and simple. The expansion of RIAs realizes more complex

interactions between Web applications [5]. Because ATs cannot keep up with the interactivity growth, ATs

do not always recognize dynamic changes and updates generated by JavaScript [5], which are required to

support the interoperability between RIAs and ATs [15]. In this context, the W3C WAI established WAI-ARIA,

which provides specifications to make RIAs accessible for users through ATs [5].

Our method evaluates the accessibility of Web applications along with WAI-ARIA. WAI-ARIA introduces

several concepts [14]:

1) Tabindex extensions

2) Role attributes

3) Properties/states

WAI-ARIA introduces an extension of the tabindex [14], which is already used in HTML to support

keyboard navigation. Web developers can decide whether their custom controls are focusable with

JavaScript or tab navigation.

Role attributes indicate the meanings of elements and widgets, while “properties/states” indicate their

states [14]. Then the role attributes notify the roles and the status of elements to ATs such as screen readers.

By applying these specifications to Web applications, users can understand the displays of the current Web

pages. According to WAI-ARIA, for example, lists that can be expanded and collapsed must have the

description of role=“tree” and their child elements must have the description of role=“treeitem” [4].

Accordions are classified in this type of list. Table 1 shows examples of role attributes where “banner” roles

can be added to <header> tags, “complementary” roles to <aside> tags, “contentinfo” roles to <footer> tags,

and “navigation” roles to <nav> tags of HTML code.

International Journal of Computer and Communication Engineering

101 Volume 5, Number 2, March 2016

Table 1. Examples of Role Attributes

 Role attributes Desctiption

1 banner A region that contains site-oriented content
2 complementary A supporting section of the document

3 contentinfo A region that contains information about the parent document

4 main The main content of a document

5 navigation A collection of navigational elements to navigate the document

6 tree A type of list that can be collapsed and expanded

7 treeitem An option item of tree

8 application Web applications

9 document Document content

5. Strategies of Accessibility Evaluation

Fig. 1 overviews our system. Our method consists of three steps, which begins when Web developers

specify URLs of the target Web pages. These steps are:

1) Analyzing the HTML code statically

2) Analyzing the operation histories dynamically

3) Evaluating the extracted information

Fig. 2 shows a Web page example. When users click the menu items, the state changes dynamically to

another state (Fig. 3). Fig. 4 shows the HTML source code of the Web page, which consists of the header part,

the navigation part, the main content, the sub menu part, and the footer part. The main content part shows

a list, which can be expanded and collapsed dynamically by JavaScript. The JavaScript source code of the

process, which uses the JQuery UI [16] plugin, is shown in Fig. 5.

Fig. 1. Overview of our system.

Fig. 2. Initial state.

International Journal of Computer and Communication Engineering

102 Volume 5, Number 2, March 2016

Fig. 3. State after transition.

1 <header>Header</header>
2 <nav id="globalnavi">
3
4 Menu1
5 Menu2
6
7 </nav>
8 <div id="main">
9 <div id="accordion">

10 <div class="section">
11 <h2>Fruits</h2>
12 <ul id=”bar”>
13 Apple
14 Orange
15
16 </div>
17 <div class="section">
18 <h2>Vegetables</h2>
19 <ul id=”bar”>
20 Tomato
21 Carrot
22
23 </div>
24 </div>
25 </div>
26 <aside>Sub menu</aside>
27 <footer>footer</footer>

Fig. 4. Example of HTML.

Fig. 5. JavaScript source code.

5.1. Analyzing the HTML Codes Statically

First, our method analyzes the inputted HTML source code to extract tag names, attributes, and attribute

1 $(function(){

2 $("#accordion").accordion({

3 header: "h2",

4 collapsible: true,

5 autoHeight: false,

6 active: 0

7 });

8 });

Header

Navigation

Main content

Sub

menu
 Footer

International Journal of Computer and Communication Engineering

103 Volume 5, Number 2, March 2016

values in order beginning with the first line.

5.2. Analyzing the Operation Histories

In this step, our system analyzes whether each extracted content item in the static analysis changes

dynamically using Crawljax [7] and DOM MutationObserver [17]. Crawljax, which is a program that collects

and stores Web content, is an open source Web crawler. Crawljax extracts and automatically clicks all

clickable elements. DOM MutationObserver is an API (Application Programming Interface), which detects

the changes of DOM. Our system uses Crawljax to operate the target Web applications automatically, while

the changed contents are detected with DOM MutationObserver.

Fig. 2 shows the initial display of the target Web application. When Crawljax clicks the menu item labelled

as “Vegetables”, the display changes to that shown in Fig. 3. In this change, the style attribute in tagged

at line 12 in Fig. 4 changes from <style=”display: block;”> to <style=”display: none;”>. In addition, the style

attribute in tags at line 19 in Fig. 4 changes from <style=”display: none;”> to <style=”display: block;”>.

DOM MutationObserver detects these changes. Consequently, our system analyzes these tags as a list of

the dynamically changed states. Table 2 shows the extracted data.

Table 2. Information Extracted in the Dynamic Analysis

Line number Element name Attribute name Attribute value Dynamic change

1 header

2 nav id globalnavi

3 ul

4 li

4 a href #

5 li

5 a href #

8 div id main

9 div id accordion

10 div class section

11 h2

12 ul id Bar Yes

13 li

14 li

17 div class section

18 h2

19 Ul id Bar Yes

20 li

21 li

26 aside

27 footer

5.3. Evaluating the Extracted Information

In this step, our system evaluates the extracted data using static and dynamic analysis to compare the

accessibility guidelines. The evaluation results are divided in two types of assertions: modification

requirements and confirmation requirements. In the modification requirements, Web developers must

modify the source code following the assertions. In the confirmation requirements, the source code may not

require modification, but Web developers should confirm that current roles are appropriate.

Considering the example in Fig. 2, according to the WAI-ARIA guidelines in Table 1, a tag for the header

part of the Web page must have a “banner” role. Similarly, a tag of the navigation part must have a

“navigation” role, the sub menu part must have a “complementary” role, and the footer part must have a

“contentinfo” role. In addition, the type of tree, which can be collapsed or expanded, must have a “tree” role

International Journal of Computer and Communication Engineering

104 Volume 5, Number 2, March 2016

and its child elements must have “treeitem” roles.

5.3.1. Modification requirements

The <header> tag in line 1, the <navi> element in line 2, the <aside> tag in line 26, and the <footer> tag in

line 27 in Fig. 6 are not assigned the appropriate role attributes. In addition, the tags, which move

dynamically in line 12 and line 19, are not assigned tree roles.

5.3.2. Confirmation requirements

Some roles can be added to <a> tags. If our system is unable to determine the most appropriate role, it

presents all candidates. Our system detects insufficient tags by comparing the guidelines and the extracted

data in Table 2 and then presents how to modify the tags as the evaluation results. Web developers can

modify their source code by following the assertions. Fig. 6 shows the modified HTML code in Fig. 4.

1 <header role=”banner”>Header</header>

2 <nav id="globalnavi" role=”navigation”>

3

4 Menu1

5 Menu2

6

7 </nav>

8 <div id="main">

9 <div id="accordion">

10 <div class="section">

11 <h2>Fruits</h2>

12 <ul id=”bar” role=”tree”>

13 <li role=”treeitem”>Apple

14 <li role=”treeitem”>Orange

15

16 </div>

17 <div class="section">

18 <h2>Vegetables</h2>

19 <ul id=”bar” role=”tree”>

20 <li role=”treeitem”>Tomato

21 <li role=”treeitem”>Carrot

22

23 </div>

24 </div>

25 </div>

26 <aside role=”complementary”>Sub menu</aside>

27 <footer role=”contentinfo”>footer</footer>

Fig. 6. Example of a modified HTML.

6. Evaluation

To confirm the effectiveness of our method, we evaluated ten Websites (the top ten in Alexa Top 500

Websites [17]) manually (manual evaluation) and by using our system (system evaluation). The manual

evaluation determines whether the accessibility guidelines are applied to the target Websites by comparing

each element in the guidelines with each line in the source codes of the target (Table 3).

The numbers in Table 3 indicate the numbers of assertions detected in these evaluations. For example, 35

modification requirements are detected in the manual evaluation in Website 1, whereas the system

evaluation indicates 33 modification requirements and 357 confirmation requirements.

International Journal of Computer and Communication Engineering

105 Volume 5, Number 2, March 2016

Table 3. Results of the Evaluation

Website Manual
System

Modification requirements Confirmation requirements
1 35 33 357

2 16 8 931

3 0 0 106

4 4 0 314

5 117 49 1060

6 26 14 53

7 10 10 2

8 3 2 48

9 15 0 36

10 11 11 791

Average 23.7 12.7 369.8

Our system detects fewer assertions than the manual evaluation for most of the Websites. However, all

assertions in the modification requirements by the system evaluation are included in the assertions

detected by the manual evaluation. Also, all assertions reported by the manual analysis are equivalent to the

modification requirements in the system analysis. The average numbers of assertions detected by the

manual evaluation and the system evaluation are 23.7 (manual evaluation) and 12.7 (system evaluation).

Our system detects about a half of the assertions detected by the manual evaluation. Below we consider the

differences between these two methods.

6.1. Assertions Not Be Detected by Our System

About half of the assertions detected by the manual evaluation are not detected in the system evaluation

due mainly to two reasons. First, in the system evaluation, Crawljax clicks all clickable contents, but

sometimes clicking alone does not induce a change in state. Other operations such as a mouse hover are

necessary to change the content state. Consequently, our system cannot detect contents with these types of

dynamic state changes.

1 <div id =”header”>Header</div>

2 <div id="menu">

3

4 Menu1

5 Menu2

6

7 </nav>

8 <div id="main">

9 Main contents

10 </div>

11 <div id =”submenu”>

12

13 Sub menu1

14 Sub menu2

15

16 </div>

17 <div id=”footer”>footer</div>

Fig. 7. Example of HTML using div elements.

Second, some Websites used many <div> tags and tags for navigation and footer contents.

However, Fig. 7 shows the appropriate use of these contents. Because <div> and tags are used for

International Journal of Computer and Communication Engineering

106 Volume 5, Number 2, March 2016

various purposes, different role attributes can be added and the intended purpose must be clarified.

Additionally, the appropriate role attributes must be added to each tag to apply the guidelines. Our system

cannot clarify the purposes of the <div> and tags, preventing proper evaluation. In many cases, the

id attributes indicate the purposes, but their values depend on each Web developer, making it difficult for

our system to identify the intended purpose appropriately.

6.2. Assertions Detected Only by Our System

Our system detected over 100 confirmation requirements for almost all of the Websites. Confirmation

requirements mean suggestions, but are not required in these Websites. The two most common

confirmation requirements are for the <a> and <button> tags. The <a> and <button> tags have default role

values, but Table 4 lists other candidates to add to the <a> and <button> tags with dynamic changes. Our

system shows which role values are modification candidates. However, in our experiment, the default roles

have to be added to these <a> and <button> tags, so the modifications are unnecessary. Many tags have

default roles when other roles are not added. The reasons why our system suggested incorrect candidates

are the same as those for the <div> and tags explained above. Because our system cannot clarify the

purpose of these tags, Web developers must verify that the role is appropriate.

Table 4. Possible Roles

Tag name Default role Possible roles

a link button, checkbox, menuitem, menuitemcheckbox, menuitemradio, tab, or treeitem

button button link, menuitem, menuitemcheckbox, menuitemradio, or radio

7. Conclusion

In this paper, we propose a method to automatically evaluate whether the accessibility guidelines,

“WAI-ARIA”, are applied to Web applications. Our system analyzes an input HTML to extract all the tags and

then manipulates the Web application automatically to identify which tags are changed and updated

dynamically. Finally, our system compares the extracted data and the guidelines to evaluate the accessibility

of the Web application. We used our method to evaluate the accessibility of ten existing Websites and

compared the results to a manual evaluation. Our system reported about half of the assertions detected by

the manual analysis, indicating that our method can help develop accessible Web applications effectively by

reducing the time and cost necessary to apply the accessible guidelines. However, our method has some

limitations due to the crawling process and how the Websites are developed.

In future work, we will improve our system so it can detect various operations instead of solely mouse

clicks, including mouse hovers. Additionally, we plan to expand our method to id attributes of various tags

as well as consider strategies to analyze states/properties and keyboard navigation using the tabindex

attribute.

References

[1] Marino, L., Adolfo, L., Miguel, A. P., Juan, C. P., Roberto, R., & Fernando, S. (2011). Providing RIA user

interfaces with accessibility properties. Journal of Symbolic Computation, 46(2), 207-217.

[2] Peter, T., & Stephen, H. (2010). WAI-ARIA live regions: eBuddy IM as a case example. Proceedings of the

2010 International Cross Disciplinary Conference on Web Accessibility: Article No. 33. USA.

[3] Michael, C. (2007). Accessibility of emerging rich web technologies: Web 2.0 and the semantic web.

Proceedings of the 2007 International Cross-Disciplinary Conference on Web Accessibility (pp. 93–98).

International Journal of Computer and Communication Engineering

107 Volume 5, Number 2, March 2016

USA.

[4] Accessible rich internet applications (WAI-ARIA) 1.0. From http://www.w3c.org/TR/wai-aria/

[5] Willian, M. W., Renata, P. M. F., & Ana, L. D. (2012). Using acceptance tests to validate accessibility

requirements in RIA. Proceeding of the International Cross-Disciplinary Conference on Web Accessibility:

Article No.15. USA.

[6] Giorgio, B. (2008). Beyond conformance: The role of accessibility evaluation methods. In S. Hartmann,

X. Zhou, & M. Kirchberg (Eds.), Proceedings of Web Information Systems Engineering — WISE 2008

Workshops (pp. 63-80). New Zealand.

[7] Ali, M., & Arie, V. D. (2009). Invariant-based automatic testing of Ajax user interfaces. Proceeding of the

31st International Conference on Software Engineering (pp. 210-220). Canada.

[8] Nadia, F., Daniel, C., Carlos, D., & Luis, C. (2012). Evaluating the accessibility of web applications.

Proceeding of the 4th International Conference on Software Development for Enhancing Accessibility and

Fighting Info-exclusion: Vol. 14 (pp. 28-35). Portugal.

[9] Web Content Accessibility Guidelines (WCAG) 2.0. From http://www.w3.org/TR/WCAG20/

[10] Nadia, F., Rui, B. L., & Luis, C. (2012). Evaluating web accessibility at different processing phases.

Journal of The New Review of Hypermedia and Multimedia — Web Accessibility, 18(3), 159–181.

[11] Paola, S., Silvia, M., Ludovico, A. M., & Matteo, B. (2012). Integrating manual and automatic evaluations

to measure accessibility barriers. In K. Miesenberger, A. Karshmer, P. Penaz, & W. Zagler (Eds.),

Computers Helping People with Special Needs (pp. 288-395).

[12] User Agent Accessibility Guidelines (UAAG) 2.0. From http://www.w3.org/TR/UAAG20/

[13] Authoring Tool Accessibility Guidelines (ATAG) 2.0. From http://www.w3.org/TR/ATAG20/

[14] Loretta, G. R., & Andi, S. (2008). WCAG 2.0: A web accessibility standard for the evolving web.

Proceeding of the 2008 International Cross-Disciplinary Conference on Web Accessibility (pp. 109-115).

USA.

[15] Iyad, A. D., Faisal, A., Eslam, A. M., & Mohammed, A. A. (2013). The design of RIA accessibility evaluation

tool. Advances in Engineering Software, 57, 1–7.

[16] jQuery UI. From http://jqueryui.com/

[17] Alexa. From http://www.alexa.com/

Tamaki Ohara is a master course student at Waseda University, Japan. He received a

bachelor degree from Waseda University, Japan in 2013.

Hajime Iwata received the B.E., M.E. and D.E. degrees in information and computer

science from Waseda University, Tokyo, Japan, in 2002, 2004 and 2008, respectively.

He joined the Media Network Center of Waseda University as a research assistant in

2005 and the Department of Network and Communication of Kanagawa Institute of

Technology as an assistant professor in 2008. His research interest includes support

tools for learning operating method of applications. He is a member of IPSJ and ACM.

International Journal of Computer and Communication Engineering

108 Volume 5, Number 2, March 2016

Junko Shirogane received the B.E., M.E. and D.E. degrees in information and computer

science from Waseda University, Tokyo, Japan, in 1997, 1999 and 2002, respectively. She

joined the Department of Communication of Tokyo Woman's Christian University as a

lecturer in 2003. Her research interest includes support tools for development of

software with graphical user interface. She is a member of IPSJ Japan and IEEE.

Yoshiaki Fukazawa received the B.E, M.E. and D.E. degrees in electrical engineering

from Waseda University, Tokyo, Japan in 1976, 1978 and 1986, respectively. He is now a

professor of the Department of Information and Computer Science, Waseda University.

Also he is the director of the Institute of Open Source Software, Waseda University. His

research interests include software engineering especially reuse of object-oriented

software and agent-based software.

International Journal of Computer and Communication Engineering

109 Volume 5, Number 2, March 2016

