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Abstract: The threat posed by fast-spreading malware is significant, particularly given the fact that network 

operator/administrator intervention is not likely to take effect within the typical epidemiological timescale 

of such infections. The cost of zero-day network worm outbreaks has been estimated to be up to US$2.6 

billion for a single worm outbreak. Zero-day network worm outbreaks have been observed that spread at a 

significant pace across the global Internet, with an observed rate of reaching more than 90 percent of 

vulnerable hosts within 10 minutes. An accepted technology that is used in addressing the security threat 

presented by zero-day worms is the use of simulation systems, and a common factor determining their 

efficacy is their performance. An empirical comparison of a sequential and parallel implementation of a 

novel simulator, the Internet Worm Simulator (IWS), is presented detailing the impact of a selection of 

parameters on its performance. Experimentation demonstrates that IWS has the capability to simulate up to 

91.8 million packets transmitted per second (PTS) for an IPv4 address space simulation on a single 

workstation computer, comparing favourably to previously reported metrics. It is concluded that in addition 

to comparing PTS performance, simulation requirements should be taken into consideration when 

assessing the performance of such simulators.  
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1. Introduction 

This paper defines a zero-day worm as a type of malware that exploits a vulnerability that has not been 

patched or acknowledged at the point of an outbreak, which owing to an automatic propagation method can 

spread pervasively throughout a network; which is exacerbated by either a lack of detection or speed of 

propagation [1]. In order to tackle such outbreaks an understanding of how they occur, their propagation 

method, and their epidemiological characteristics across a given network is essential [2]. Worms are often 

hard to prevent, counter, or contain, primarily owing to their potential speed of propagation; ranging from 

fast random-scanning worms to slower 'stealthy' worms that employ various techniques to propagate 

undetected. In order to aid the analysis of zero-day worm epidemiology analytical models, such as [3], and 

simulation systems, such as [4] have been adopted. 

As the largest known network, the spread of worms on the Internet is of particular interest, as discussed 

in [5]-[7]. This introduces particular issues due to the large-scale, and dynamic, heterogeneous nature of the 

Internet [8], [9]. The Internet Worm Simulator (IWS) was designed to address these issues, however, no 

performance analysis has been undertaken previously. 
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Since the widespread worms that occurred in the first four years of the 21st century, such as Code Red 

(2001) [3] and Slammer (2003) [10], there have been a series zero-day worms such as Conficker [11] in 

2007 and Duqu [12] in 2011. These can incur significant costs, with one estimation for the cost of the Code 

Red outbreak reaching US$2.6 billion (circa. 2002) and Slammer reaching US$1.2 billion (circa. 2003) [13]. 

It is imperative that defences are employed in order to mitigate or prevent such worm outbreaks. 

Simulation systems provide a tool which can aid research into worm analysis [10], network worm 

countermeasures [14], [15], and hypothetical network worm analysis [5], [16]. 

Performance is an intrinsic part of assessing a worm simulators applicability, as often there is a demand 

for faster simulation given the current and hypothetical speed at which worms can spread [16]. One such 

method that is commonly used to increase the performance of worm simulators is the use of parallelisation 

[17]-[19] however; these have only been commonly applied or compared when using a cluster with many 

discrete nodes. With the growing availability of multiple-core processors their performance when applying 

parallelisation techniques can be assessed. 

Using the Internet Worm Simulator (IWS), as a simulator able to simulate the entire IPv4 address space 

on a node-by-node basis [20], the authors focus on assessing a sequential and parallel implementation of 

the simulator. IWS is used to compare the two different implementation methods, and their effect on the 

number of packets transmitted per second (PTS) [19]. The effect of altering various simulation parameters 

on the two different implementations is presented, and the difference in application of a parallel simulation 

in comparison to a sequential simulation is discussed. 

The remainder of this paper is presented as follows: Section 2 summarises the related, relevant work to 

the study; Section 3 discusses the design of IWS and its sequential and parallel implementations; Section 4 

details the experimental methodology used, and the parameters used; Section 5 presents the results of this 

experimentation; Section 6 presents an analysis of the work, given existing theory; and Section 7 considers 

the context and impact of the work. Finally Section 8 presents a conclusion of the study, identifying its 

original contribution, limitations and future work. 

2. Relevant Previous Work 

A selection of reported worm simulators have employed different design methodologies, and have 

focused on different methods of worm simulation. Owing to the focus on the performance of worm 

simulation, this paper focuses on two main areas; parallel worm simulation implementations, and metrics 

used when testing performance. 

2.1. Parallel Worm Simulators 

A selection of computational worm simulators have either utilised or propose to utilise parallelisation, for 

instance Bajaj et al. [17] proposed the implementation of parallel techniques in 1999 as part of improving 

the performance of the GloMoSim worm simulator. Around the same time Riley et al. [18] implemented a 

parallel, distributed version of the ns simulator (PDNS) [21], which although not focused on simulating 

worms reported a significant increase in simulation speed. Since then some notable instances of parallel 

worm simulators include GTNetS [22], SSFNet [23] and further development of PDNS [19], which 

demonstrate a significant performance improvement in comparison to their sequential counterparts. A 

focus on reducing the execution time of worm simulators is two-fold, either focusing on parallelisation as a 

method of increasing fidelity or improving worm simulators to better facilitate research [19]. 

2.2. Performance Metrics 

When considering the measurement of worm simulator performance there is a focus on two metrics, the 

wall-clock execution time of the simulator and the total packets transmitted per second (PTS) [19]. PTS 
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describes the overall number of packets generated by the simulator over wall-clock execution time, this 

means that no matter the given scenario, or raw wall-clock execution time, the efficiency can be measured 

given the main purpose of the worm simulator is to generate and transmit packets. Other methods have 

been proposed, such as [18] where performance is measured in comparison between a parallel and 

sequential implementation providing a comparative value, however, the authors chose to present the results 

using PTS to allow for a broader comparison. 

2.3. Summary 

Based on the previous work undertaken it is hypothesised that by using parallel methods the execution 

time and performance of the Internet Worm Simulator (IWS) will improve significantly, and the extent of 

which will be determined by the type of parallelisation employed. Additionally, it is hypothesised that a 

parallel implementation of IWS should be able to complete a simulation in less time than it takes a fast, 

random-scanning worm outbreak to complete. Reported figures of the existing speed reached by simulators 

that utilise parallel methods are as high as 106 million packets transmitted per second (PTS) on clusters of 

processors up to 1,536 nodes. Using a single processor the same simulators were able to reach 

approximately 95,000 PTS, demonstrating an increase as the number of processors increased [19], [24]. As 

a comparison, IWS is intended for use on a single workstation however, with the modern advances in 

multiple-core processors and the increase in memory capacity parallelisation that was only achievable in 

clusters can now be implemented on a single workstation. Therefore it is beneficial to test a network 

simulator designed to reach as high a performance as possible on such a multiple-core processor, such as 

IWS, and compare it to previously reported metrics. 

3. Design 

The simulator reported in this paper was developed with the intention of employing it in an investigation 

of the epidemiology of existing and hypothetical worms. It adopts the finite state machine approach [1] in 

order to simulate a full IPv4-sized network. Two implementations have been developed; a sequential 

implementation that uses a single processor core, and a parallel implementation that splits workload across 

multiple cores. 

The Internet Worm Simulator (IWS) was developed in the C programming language, using the GCC 

compiler under a 64 bit architecture. IWS only requires one byte of memory per simulated host; this means 

for an IPv4 sized network it has a memory footprint of approximately 4GB. The parallel implementation 

uses the POSIX threads API [25] to manage its parallel processes. Owing to these specifications IWS can be 

executed on a number of 64 bit operating systems, such as Windows or Linux, and can also be run on a 

variety of different hardware configurations. 

The sequential implementation performs simulated infection attempts, i.e. sending malicious packets, in a 

serial manner, whereas the parallel implementation splits these into discrete workloads to be carried out in 

parallel. For this comparison only the function block that handles these attempts has undergone 

parallelisation, as under profiling the call graph identified that 98.7% of the sequential implementation is 

spent executing this function block. In contrast other function blocks exhibit less than 1% of the execution 

time, and as such have not been considered for parallelisation.  

IWS can be modified for a variety of different scenarios using a series of user-defined parameters that 

detail: the worm propagation method, the network composition, the worm packet size, the initial number of 

infected hosts at the point of simulation start, and the total number of susceptible hosts. The focus of this 

paper is on modifying the latter three parameters, with a random-scanning propagation method and a 

random network composition. The exact parameters used for the experiments are detailed in Section 4. 

A more detailed presentation of the design of IWS is available in [26]. 
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4. Experimental Methodology 

An aim of this paper was to undertake an empirical comparison between the sequential and parallel 

implementations of the Internet Worm Simulator (IWS). A range of scenarios are considered in order to 

determine their impact on the performance of the simulator. These have been stratified into three 

categories, low, medium and high, that represent relative boundaries and a mid-point for each of the three 

parameters. This is performed as part of a case study, where the values are based on both previous worm 

outbreak data and hypothetical scenarios. As a representative sample of large-scale empirical worm 

outbreak data the three previous worm outbreaks that have been used to derive experimental values are; 

the Code Red worm of 2001 [3], the Slammer worm of 2003 [10], and the Witty Worm of 2004 [27]. 

Table 1 details the values used for each of the boundaries and the mid-points, as well as indicating from 

where these values are derived. Some of these values are representative of a hypothetical scenario, where a 

previous worm outbreak has not indicated it has reached the potential boundary. The initially infected hosts 

hypothetical value is based on an order of magnitude larger than the highest observed initially infected 

value. Similarly the hypothetical proportion of susceptible hosts is based on a substantial number of hosts, 

80%, of the total 232 hosts being susceptible. 

Table 1. IWS Performance Evaluation Experimental Values 

 Low Medium High 

Worm Packet Size (bytes) 404 S 1,059 W 4,096 C 

Initially Infected Hosts (number of hosts) 2 S 110 W 1,100 H 

Proportion of Susceptible Hosts (hosts per 

million) 
2 W 91 C 800,000 H 

Code Red (C); Slammer (S); Witty (W); Hypothetical (H) 

 

A matrix of all these values results in 27 simulations to be run for both the sequential and parallel 

implementation. In order to draw a statistical sample each simulation was executed five times using five 

different pseudo-random number generator seeds; resulting in 270 total simulations. Each simulation was 

run until 99% of the susceptible populous were infected, as by this time most of the susceptible hosts are 

infected and it may take a substantial amount of time to reach the remaining susceptible hosts due to the 

random propagation method. This provides a broad set of simulation results, in order to identify the impact 

of varying these parameters. 

Buildings on these experiments two additional criteria have undergone experimentation. Firstly, using an 

additional 20 parallel simulations, the extent of threaded parallelisation has undergone experimentation in 

order to quantify its impact on the performance of IWS and how many threads should be employed; 

specifically on the testbed workstation. Secondly, using all 290 simulations, a comparison is undertaken 

between the time it takes for the simulator to complete its simulation against the predicted time to reach  

99% infection with the given set of scenarios under both a sequential and parallel implementation. 

All experiments have been carried out on a single workstation, with the same hardware and software 

configuration. This is in comparison to previous tests that have compared sequential simulations to parallel 

implementations that are distributed across a cluster of machines; for example with 1,536 cores [19]. The 

testbed workstation used an Intel Core i7 processor, 3.2GHz, with 64GB of DDR3 quad-channel RAM 

operating at 1600MHz. The i7 processor offers a total of 12 threads however, the parallel implementation 

was set to use 10 threads; allowing the two remaining threads to be available for the thread management 

functions and background processes, such as those run by the OS. 

5. Results 

This section presents the results of a series of empirical experiments that investigate the change in 
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performance of IWS across four scenarios. The first three experiments investigate the change in PTS of IWS 

across a stratified range of: worm packet size, number of initially infected hosts at the point of an outbreak, 

and the proportion of susceptible hosts. The extent to which IWS can be parallelised is also investigated and 

a comparison between the speed of execution and projected time of a given worm to reach 99% infection is 

discussed. In addition to the empirical comparison, the trends that can be identified from each of these 

areas is presented and the likely underlying reasons for these trends discussed.  

5.1. Proportion of Susceptible Hosts 

For a fixed number of hosts within any given network, as the proportion of susceptible hosts increase the 

number of potentially infectious hosts increase. Over the course of an outbreak, considering no other 

attributes have changed, this means an overall increase in the number of packets transmitted compared to a 

smaller proportion of susceptible hosts. Fig. 1 plots the performance of IWS in handling this workload. 

Whereas the sequential implementation reports a slight increase in its PTS with an increasing proportion of 

susceptible hosts; the parallel implementation shows a decrease. 

The decrease in performance can be linked to the fact that only the infection attempts are carried out in 

parallel, whereas the increase in the proportion of susceptible hosts creates an increased workload for the 

entire simulation process, particularly the initialisation function block, resulting in the performance 

decrease measured. Whereas for the sequential implementation the increase in PTS can be attributed to a 

decrease in the number of simulated clock ticks as the proportion of susceptible hosts increases. 

 

 

Fig. 1. Packets transmitted per second of IWS across a range of susceptible host proportions of an IPv4 

address space. 

 

5.2. Worm Size 

The larger the worm size the more bandwidth is used per worm instance therefore, given a finite 

bandwidth the number of infection attempts per unit time will decrease. A plot of the IWS performance 

against worm packet size is shown in Fig. 2. As the worm size decreases the PTS increases. Although the 

workload decreases as the worm size increases, the type of workload changes. This means that although 

there are fewer infection attempts being made per clock tick, there are a greater number of clock ticks. This 

is demonstrated by the greater decrease in PTS in the parallel implementation as the worm size increases, 

owing to the fact that the number of sequential operations being performed in the parallel implementation 

has increased. The increase in clock ticks also explains the decrease in PTS, as overall the number of 

operations increase. 
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Fig. 2. Packets transmitted per second of IWS across a range of worm packet sizes. 

 

5.3. Initially Infected Hosts 

Fig. 3 shows that as the number of initially infected hosts increases the simulator performance also 

increases. The increase in the performance of the parallel implementation is due to the decrease in the 

number of clock ticks being simulated owing to the greater number of scans at the start of the infection. 

There is a similar, but marginal, increase in the performance of the sequential implementation, which is also 

due to the reduced number of clock ticks. 

 

 

Fig. 3. Packets transmitted per second of IWS across a range of initially infected hosts. 

 

5.4. Extent of Parallelisation 

As expected the experimentation reported so far identifies that the parallel implementation provides 

better performance. The number of threads used within the parallel implementation was then examined. By 

fixing the parameters to the medium experimental values (see Table 1) the impact of using a different 

number of threads has been investigated.  

Fig. 4 details the performance of IWS when using a different number of threads in the parallel 

implementation, from two up to 12 threads (the maximum the testbed workstation can logically execute in 

parallel). The performance of the test machine confirms to the findings of Hill and Marty [28], where the 

gain of greater parallelisation on multi-core processors has diminishing returns, however, there are two 

distinct anomalies; the decrease in performance observed between six and seven threads and the decrease 

observed between eleven and twelve threads. 
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Fig. 4. Packets transmitted per second of IWS across a range of POSIX threads. 

 

The first decrease could be explained by the architecture of the testing machine, where it has six real 

cores and twelve logical cores. The request of more threads than real cores is an explanation as to why IWS 

saw a decrease in simulation performance. In contrast the second decrease can be explained by the 

simulator requiring resources that are in contention, owing to the background processes governed by the 

operating system and the process that spawned the threads in the parallel implementation. 

The POSIX API that used in IWS makes it is possible to request more threads than the hardware can 

logically execute in parallel. Fig. 5 extended Fig. 4 to show that this is not an effective strategy, as this 

performance does not surpass the peak achieved using 11 threads. This can be attributed to the hardware 

restrictions of the testbed workstation and the overheads involved in thread management owing to 

contention over resources. 

 

 

Fig. 5. Packets transmitted per second of IWS across more POSIX threads than logical cores provided by 

an intel core i7 processor. 
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For the entire experimental set, sequential simulations had a median comparison metric, �, of 16.9, 

whereas parallel simulations had a median comparison metric of 3.9. Of note is that the large susceptible 

populous simulations presented the worst comparison, with a peak comparison metric of 1,367.5 and 327.6 

for the sequential and parallel simulations respectively. 

The sequential implementation was able to execute in less than the simulated time in 22.2% of the 

experiments, whereas the parallel implementation was able to achieve the same in 37.4% of the 

experiments. This means that the parallel implementation of IWS would be a preferable choice if a single 

simulation was required. 

5.6. Summary 

The parallel implementation of IWS is shown to be able to achieve up to 91.8 million PTS on a single 

multi-core processor, which compares favourably with previous metrics from Fujimoto et al. [19] which 

report up to 106 million PTS on a 1,536 processor cluster for a network 99.9% smaller. Similarly it is also 

able to simulate 22% of the scenarios faster than the simulated infection time 

6. Analysis 

An aim of this the experimentation undertaken into quantifying the impact of key attributes on the 

resource requirements of IWS yields results that are consistent with Amdahl's law [29], which details that 

the maximum decrease of execution time of a program, �, is directly related to the proportion of the 

program that is parallel, �, and the number of processors, 	, as shown in (1). This means that the 

proportion of sequential operations that the program executes limits the increase in speed, which has been 

shown to be the case. 

�
	� =
�


�
���
�

�

                                      (1) 

Having introduced a parallel implementation to the function block that was being called the most in the 

design, an estimate of the parallel proportion can be derived. A modified Karp-Flatt metric [30] is presented 

in (2), which is designed to determine, based on the measured difference in execution times, �, and number 

of processors, 	, an estimate of the proportion of a program that is executed in parallel, ��; based on the 

Karp-Flatt metric, �. As the decrease in wall-clock execution time was, on average, 56.5% when using an 

equivalent of ten processors this estimates the average proportion of the program that was executed in 

parallel as 62.8%. Amdahl's law suggests an increase in the parallel proportion in order to further decrease 

execution time however, this does not account for the overheads involved in doing so, which may lead to an 

increase in the sequential proportion as more parallelisation is included. 

�� = 1− � =

�

�


�

�

�

�

�

                                     (2) 

For a given task many simulations may be required. The authors propose (3), which presents a method to 

determine if a given task with two or more simulations should be carried out by a sequential or parallel 

implementation, and to what extent; where � is the percentage decrease in wall-clock execution time with 

	 processes, and � is the threshold. If � is less than 1 then multiple discrete sequential implementations 

should be used, otherwise a parallel implementation with 	 processors should be used in order to best 

utilise the resources available. 

 

� =
�

��×�
                                        (3) 
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7. Discussion 

Across the selection of parameters tested under an empirical comparison of performance it is evident 

that a parallel implementation, on average, presents a reduced wall-clock execution time and an increased 

rate of packets transmitted per second (PTS). 

Although it can be accepted that improving worm simulator performance aids in its applicability as a tool 

in worm analysis, the focus has often been to meet a reasonable execution time, as demonstrated by Wei et 

al. [24], or to reach a specific goal, such as in [19]. Other considerations could be a factor, for instance if a 

simulator is intended for use with hypothetical worm outbreak scenarios a consideration could be the 

number of scenarios that can be run. When there are resource constraints, in this case only a single 

workstation, the utilisation of those resources needs to be considered. 

On the testbed workstation used in this paper a total of 64GB of RAM is available, which means although 

each simulation can run 56.5% faster on average when using ten threads in a parallel implementation, it can 

also run ten sequential simulations producing a greater volume of simulation results in the same time. This 

is at the cost of using ten times the amount of RAM usually employed and each sequential simulation is 

slower, but the number of hypothetical scenarios simulated in the same time frame is greater than if a 

parallel implementation is being used. 

A comparison between the equivalent PTS of multiple sequential implementations running and a 

threaded implementation can be made, as shown in Fig. 6, demonstrating the linear increase resulting in a 

greater overall PTS across multiple simulations using a multi-process method. The linear trend results in up 

to 174.9 million PTS when running ten concurrent sequential simulations. Considering the nature of 

multi-core processors similar decreases in performance when requesting more processors than real cores 

or logical cores may occurr, however, this can be mitigated by introducing more real cores as each 

simulation is executed discretely. 

 

 

Fig. 6. Comparison of packets transmitted per second of a single parallel simulation and equivalent 

multiple sequential simulations of IWS. 
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Having undertaken an empirical comparison of both a sequential and parallel implementation of the 

Internet Worm Simulator (IWS) across a selection of varied parameters it is evident that a parallel 

implementation exhibits, on average, a 56.5% decrease in wall-clock execution time, and a 320.9% increase 

in the number of packets transmitted per second (PTS). The parallel implementation of IWS is shown to be 

able to achieve up to 91.8 million PTS on a single multi-core processor, which compared favourably against 
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previously reported metrics, especially of a network the size of which IWS is simulating. 

As IWS is able to run simulations based both on previous worm analysis and hypothetical scenarios three 

key parameters have been assessed for performance: susceptible populous, worm size, and the number of 

hosts initially infected at the point of an outbreak. These all showed a significant impact on the parallel 

implementation, as well as having a variable impact on the sequential implementation. The extent of the 

impact was assessed using Amdahl's law [29] and a modified Karp-Flatt metric [30] that estimates only 

64.28% of the parallel implementations execution is done in parallel, which provides an indication as to 

why although undertaking a parallel implementation on the function block that under profiling was being 

called 98.7% of the time, the sequential parts of the code still have a significant impact. 

Given a workload of more than one simulation, a way to reach 100% parallelisation is to run multiple 

instances of a sequential implementation. This results in an equivalent of up to 192.4 million PTS at 11 

concurrent simulations (the same number of processes as the highest performance of the parallel 

implementation). Given the use of a multi-core processor, this could result in requiring multiple processors 

to reach this maximum value owing to the difference in logical and real cores offered on the testbed. 

8.1. Future Work 

The authors suggest extending the work reported by considering other methods of improving 

performance, such as distributed computing, or off-loading processing to dedicated hardware. Other 

performance improving methods are certainly avenues for future work, and it is intended that a similar 

empirical comparison and analysis will be undertaken when taking them into consideration. 
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