

Comparative Performance of a Parallel Implementation of

an Internet-Scale Zero-Day Worm Epidemiology Simulator

Luc Tidy*, Steve Woodhead, Jodie Wetherall

Internet Security Research Laboratory, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK.

* Corresponding author. Tel.: +44(0)1634883915; email: l.j.tidy@greenwich.ac.uk
Manuscript submitted October 3, 2014; accepted May 25, 2015.
doi: 10.17706/ijcce.2016.5.1.11-22

Abstract: The threat posed by fast-spreading malware is significant, particularly given the fact that network

operator/administrator intervention is not likely to take effect within the typical epidemiological timescale

of such infections. The cost of zero-day network worm outbreaks has been estimated to be up to US$2.6

billion for a single worm outbreak. Zero-day network worm outbreaks have been observed that spread at a

significant pace across the global Internet, with an observed rate of reaching more than 90 percent of

vulnerable hosts within 10 minutes. An accepted technology that is used in addressing the security threat

presented by zero-day worms is the use of simulation systems, and a common factor determining their

efficacy is their performance. An empirical comparison of a sequential and parallel implementation of a

novel simulator, the Internet Worm Simulator (IWS), is presented detailing the impact of a selection of

parameters on its performance. Experimentation demonstrates that IWS has the capability to simulate up to

91.8 million packets transmitted per second (PTS) for an IPv4 address space simulation on a single

workstation computer, comparing favourably to previously reported metrics. It is concluded that in addition

to comparing PTS performance, simulation requirements should be taken into consideration when

assessing the performance of such simulators.

Key words: Malware, network worm, simulation, computational performance.

1. Introduction

This paper defines a zero-day worm as a type of malware that exploits a vulnerability that has not been

patched or acknowledged at the point of an outbreak, which owing to an automatic propagation method can

spread pervasively throughout a network; which is exacerbated by either a lack of detection or speed of

propagation [1]. In order to tackle such outbreaks an understanding of how they occur, their propagation

method, and their epidemiological characteristics across a given network is essential [2]. Worms are often

hard to prevent, counter, or contain, primarily owing to their potential speed of propagation; ranging from

fast random-scanning worms to slower 'stealthy' worms that employ various techniques to propagate

undetected. In order to aid the analysis of zero-day worm epidemiology analytical models, such as [3], and

simulation systems, such as [4] have been adopted.

As the largest known network, the spread of worms on the Internet is of particular interest, as discussed

in [5]-[7]. This introduces particular issues due to the large-scale, and dynamic, heterogeneous nature of the

Internet [8], [9]. The Internet Worm Simulator (IWS) was designed to address these issues, however, no

performance analysis has been undertaken previously.

International Journal of Computer and Communication Engineering

11 Volume 5, Number 1, January 2016

Since the widespread worms that occurred in the first four years of the 21st century, such as Code Red

(2001) [3] and Slammer (2003) [10], there have been a series zero-day worms such as Conficker [11] in

2007 and Duqu [12] in 2011. These can incur significant costs, with one estimation for the cost of the Code

Red outbreak reaching US$2.6 billion (circa. 2002) and Slammer reaching US$1.2 billion (circa. 2003) [13].

It is imperative that defences are employed in order to mitigate or prevent such worm outbreaks.

Simulation systems provide a tool which can aid research into worm analysis [10], network worm

countermeasures [14], [15], and hypothetical network worm analysis [5], [16].

Performance is an intrinsic part of assessing a worm simulators applicability, as often there is a demand

for faster simulation given the current and hypothetical speed at which worms can spread [16]. One such

method that is commonly used to increase the performance of worm simulators is the use of parallelisation

[17]-[19] however; these have only been commonly applied or compared when using a cluster with many

discrete nodes. With the growing availability of multiple-core processors their performance when applying

parallelisation techniques can be assessed.

Using the Internet Worm Simulator (IWS), as a simulator able to simulate the entire IPv4 address space

on a node-by-node basis [20], the authors focus on assessing a sequential and parallel implementation of

the simulator. IWS is used to compare the two different implementation methods, and their effect on the

number of packets transmitted per second (PTS) [19]. The effect of altering various simulation parameters

on the two different implementations is presented, and the difference in application of a parallel simulation

in comparison to a sequential simulation is discussed.

The remainder of this paper is presented as follows: Section 2 summarises the related, relevant work to

the study; Section 3 discusses the design of IWS and its sequential and parallel implementations; Section 4

details the experimental methodology used, and the parameters used; Section 5 presents the results of this

experimentation; Section 6 presents an analysis of the work, given existing theory; and Section 7 considers

the context and impact of the work. Finally Section 8 presents a conclusion of the study, identifying its

original contribution, limitations and future work.

2. Relevant Previous Work

A selection of reported worm simulators have employed different design methodologies, and have

focused on different methods of worm simulation. Owing to the focus on the performance of worm

simulation, this paper focuses on two main areas; parallel worm simulation implementations, and metrics

used when testing performance.

2.1. Parallel Worm Simulators

A selection of computational worm simulators have either utilised or propose to utilise parallelisation, for

instance Bajaj et al. [17] proposed the implementation of parallel techniques in 1999 as part of improving

the performance of the GloMoSim worm simulator. Around the same time Riley et al. [18] implemented a

parallel, distributed version of the ns simulator (PDNS) [21], which although not focused on simulating

worms reported a significant increase in simulation speed. Since then some notable instances of parallel

worm simulators include GTNetS [22], SSFNet [23] and further development of PDNS [19], which

demonstrate a significant performance improvement in comparison to their sequential counterparts. A

focus on reducing the execution time of worm simulators is two-fold, either focusing on parallelisation as a

method of increasing fidelity or improving worm simulators to better facilitate research [19].

2.2. Performance Metrics

When considering the measurement of worm simulator performance there is a focus on two metrics, the

wall-clock execution time of the simulator and the total packets transmitted per second (PTS) [19]. PTS

International Journal of Computer and Communication Engineering

12 Volume 5, Number 1, January 2016

describes the overall number of packets generated by the simulator over wall-clock execution time, this

means that no matter the given scenario, or raw wall-clock execution time, the efficiency can be measured

given the main purpose of the worm simulator is to generate and transmit packets. Other methods have

been proposed, such as [18] where performance is measured in comparison between a parallel and

sequential implementation providing a comparative value, however, the authors chose to present the results

using PTS to allow for a broader comparison.

2.3. Summary

Based on the previous work undertaken it is hypothesised that by using parallel methods the execution

time and performance of the Internet Worm Simulator (IWS) will improve significantly, and the extent of

which will be determined by the type of parallelisation employed. Additionally, it is hypothesised that a

parallel implementation of IWS should be able to complete a simulation in less time than it takes a fast,

random-scanning worm outbreak to complete. Reported figures of the existing speed reached by simulators

that utilise parallel methods are as high as 106 million packets transmitted per second (PTS) on clusters of

processors up to 1,536 nodes. Using a single processor the same simulators were able to reach

approximately 95,000 PTS, demonstrating an increase as the number of processors increased [19], [24]. As

a comparison, IWS is intended for use on a single workstation however, with the modern advances in

multiple-core processors and the increase in memory capacity parallelisation that was only achievable in

clusters can now be implemented on a single workstation. Therefore it is beneficial to test a network

simulator designed to reach as high a performance as possible on such a multiple-core processor, such as

IWS, and compare it to previously reported metrics.

3. Design

The simulator reported in this paper was developed with the intention of employing it in an investigation

of the epidemiology of existing and hypothetical worms. It adopts the finite state machine approach [1] in

order to simulate a full IPv4-sized network. Two implementations have been developed; a sequential

implementation that uses a single processor core, and a parallel implementation that splits workload across

multiple cores.

The Internet Worm Simulator (IWS) was developed in the C programming language, using the GCC

compiler under a 64 bit architecture. IWS only requires one byte of memory per simulated host; this means

for an IPv4 sized network it has a memory footprint of approximately 4GB. The parallel implementation

uses the POSIX threads API [25] to manage its parallel processes. Owing to these specifications IWS can be

executed on a number of 64 bit operating systems, such as Windows or Linux, and can also be run on a

variety of different hardware configurations.

The sequential implementation performs simulated infection attempts, i.e. sending malicious packets, in a

serial manner, whereas the parallel implementation splits these into discrete workloads to be carried out in

parallel. For this comparison only the function block that handles these attempts has undergone

parallelisation, as under profiling the call graph identified that 98.7% of the sequential implementation is

spent executing this function block. In contrast other function blocks exhibit less than 1% of the execution

time, and as such have not been considered for parallelisation.

IWS can be modified for a variety of different scenarios using a series of user-defined parameters that

detail: the worm propagation method, the network composition, the worm packet size, the initial number of

infected hosts at the point of simulation start, and the total number of susceptible hosts. The focus of this

paper is on modifying the latter three parameters, with a random-scanning propagation method and a

random network composition. The exact parameters used for the experiments are detailed in Section 4.

A more detailed presentation of the design of IWS is available in [26].

International Journal of Computer and Communication Engineering

13 Volume 5, Number 1, January 2016

4. Experimental Methodology

An aim of this paper was to undertake an empirical comparison between the sequential and parallel

implementations of the Internet Worm Simulator (IWS). A range of scenarios are considered in order to

determine their impact on the performance of the simulator. These have been stratified into three

categories, low, medium and high, that represent relative boundaries and a mid-point for each of the three

parameters. This is performed as part of a case study, where the values are based on both previous worm

outbreak data and hypothetical scenarios. As a representative sample of large-scale empirical worm

outbreak data the three previous worm outbreaks that have been used to derive experimental values are;

the Code Red worm of 2001 [3], the Slammer worm of 2003 [10], and the Witty Worm of 2004 [27].

Table 1 details the values used for each of the boundaries and the mid-points, as well as indicating from

where these values are derived. Some of these values are representative of a hypothetical scenario, where a

previous worm outbreak has not indicated it has reached the potential boundary. The initially infected hosts

hypothetical value is based on an order of magnitude larger than the highest observed initially infected

value. Similarly the hypothetical proportion of susceptible hosts is based on a substantial number of hosts,

80%, of the total 232 hosts being susceptible.

Table 1. IWS Performance Evaluation Experimental Values

 Low Medium High

Worm Packet Size (bytes) 404 S 1,059 W 4,096 C

Initially Infected Hosts (number of hosts) 2 S 110 W 1,100 H

Proportion of Susceptible Hosts (hosts per

million)
2 W 91 C 800,000 H

Code Red (C); Slammer (S); Witty (W); Hypothetical (H)

A matrix of all these values results in 27 simulations to be run for both the sequential and parallel

implementation. In order to draw a statistical sample each simulation was executed five times using five

different pseudo-random number generator seeds; resulting in 270 total simulations. Each simulation was

run until 99% of the susceptible populous were infected, as by this time most of the susceptible hosts are

infected and it may take a substantial amount of time to reach the remaining susceptible hosts due to the

random propagation method. This provides a broad set of simulation results, in order to identify the impact

of varying these parameters.

Buildings on these experiments two additional criteria have undergone experimentation. Firstly, using an

additional 20 parallel simulations, the extent of threaded parallelisation has undergone experimentation in

order to quantify its impact on the performance of IWS and how many threads should be employed;

specifically on the testbed workstation. Secondly, using all 290 simulations, a comparison is undertaken

between the time it takes for the simulator to complete its simulation against the predicted time to reach

99% infection with the given set of scenarios under both a sequential and parallel implementation.

All experiments have been carried out on a single workstation, with the same hardware and software

configuration. This is in comparison to previous tests that have compared sequential simulations to parallel

implementations that are distributed across a cluster of machines; for example with 1,536 cores [19]. The

testbed workstation used an Intel Core i7 processor, 3.2GHz, with 64GB of DDR3 quad-channel RAM

operating at 1600MHz. The i7 processor offers a total of 12 threads however, the parallel implementation

was set to use 10 threads; allowing the two remaining threads to be available for the thread management

functions and background processes, such as those run by the OS.

5. Results

This section presents the results of a series of empirical experiments that investigate the change in

International Journal of Computer and Communication Engineering

14 Volume 5, Number 1, January 2016

performance of IWS across four scenarios. The first three experiments investigate the change in PTS of IWS

across a stratified range of: worm packet size, number of initially infected hosts at the point of an outbreak,

and the proportion of susceptible hosts. The extent to which IWS can be parallelised is also investigated and

a comparison between the speed of execution and projected time of a given worm to reach 99% infection is

discussed. In addition to the empirical comparison, the trends that can be identified from each of these

areas is presented and the likely underlying reasons for these trends discussed.

5.1. Proportion of Susceptible Hosts

For a fixed number of hosts within any given network, as the proportion of susceptible hosts increase the

number of potentially infectious hosts increase. Over the course of an outbreak, considering no other

attributes have changed, this means an overall increase in the number of packets transmitted compared to a

smaller proportion of susceptible hosts. Fig. 1 plots the performance of IWS in handling this workload.

Whereas the sequential implementation reports a slight increase in its PTS with an increasing proportion of

susceptible hosts; the parallel implementation shows a decrease.

The decrease in performance can be linked to the fact that only the infection attempts are carried out in

parallel, whereas the increase in the proportion of susceptible hosts creates an increased workload for the

entire simulation process, particularly the initialisation function block, resulting in the performance

decrease measured. Whereas for the sequential implementation the increase in PTS can be attributed to a

decrease in the number of simulated clock ticks as the proportion of susceptible hosts increases.

Fig. 1. Packets transmitted per second of IWS across a range of susceptible host proportions of an IPv4

address space.

5.2. Worm Size

The larger the worm size the more bandwidth is used per worm instance therefore, given a finite

bandwidth the number of infection attempts per unit time will decrease. A plot of the IWS performance

against worm packet size is shown in Fig. 2. As the worm size decreases the PTS increases. Although the

workload decreases as the worm size increases, the type of workload changes. This means that although

there are fewer infection attempts being made per clock tick, there are a greater number of clock ticks. This

is demonstrated by the greater decrease in PTS in the parallel implementation as the worm size increases,

owing to the fact that the number of sequential operations being performed in the parallel implementation

has increased. The increase in clock ticks also explains the decrease in PTS, as overall the number of

operations increase.

0 10 20 30 40 50 60 70 80 90

2

91

800,000

Packets Transmitted per Second (Millions of Packets/Second)

H
o
s
ts

 p
e

r
M

il
li
o

n
 S

u
s
c
e
p

ti
b
le

 (
#

/M
il
li
o
n

)

Parallel

Sequential

International Journal of Computer and Communication Engineering

15 Volume 5, Number 1, January 2016

Fig. 2. Packets transmitted per second of IWS across a range of worm packet sizes.

5.3. Initially Infected Hosts

Fig. 3 shows that as the number of initially infected hosts increases the simulator performance also

increases. The increase in the performance of the parallel implementation is due to the decrease in the

number of clock ticks being simulated owing to the greater number of scans at the start of the infection.

There is a similar, but marginal, increase in the performance of the sequential implementation, which is also

due to the reduced number of clock ticks.

Fig. 3. Packets transmitted per second of IWS across a range of initially infected hosts.

5.4. Extent of Parallelisation

As expected the experimentation reported so far identifies that the parallel implementation provides

better performance. The number of threads used within the parallel implementation was then examined. By

fixing the parameters to the medium experimental values (see Table 1) the impact of using a different

number of threads has been investigated.

Fig. 4 details the performance of IWS when using a different number of threads in the parallel

implementation, from two up to 12 threads (the maximum the testbed workstation can logically execute in

parallel). The performance of the test machine confirms to the findings of Hill and Marty [28], where the

gain of greater parallelisation on multi-core processors has diminishing returns, however, there are two

distinct anomalies; the decrease in performance observed between six and seven threads and the decrease

observed between eleven and twelve threads.

0 10 20 30 40 50 60 70 80 90

404

1059

4096

Packets Transmitted per Second (Millions of Packets/Second)

W
o
rm

 S
iz

e
 (
B

y
te

s
)

Parallel

Sequential

0 10 20 30 40 50 60 70 80 90

2

110

1100

Packets Transmitted per Second (Millions of Packets/Second)

In
it
ia

ll
y
 I
n
fe

c
ts

 H
o
s
ts

 (
#
)

Parallel

Sequential

International Journal of Computer and Communication Engineering

16 Volume 5, Number 1, January 2016

Fig. 4. Packets transmitted per second of IWS across a range of POSIX threads.

The first decrease could be explained by the architecture of the testing machine, where it has six real

cores and twelve logical cores. The request of more threads than real cores is an explanation as to why IWS

saw a decrease in simulation performance. In contrast the second decrease can be explained by the

simulator requiring resources that are in contention, owing to the background processes governed by the

operating system and the process that spawned the threads in the parallel implementation.

The POSIX API that used in IWS makes it is possible to request more threads than the hardware can

logically execute in parallel. Fig. 5 extended Fig. 4 to show that this is not an effective strategy, as this

performance does not surpass the peak achieved using 11 threads. This can be attributed to the hardware

restrictions of the testbed workstation and the overheads involved in thread management owing to

contention over resources.

Fig. 5. Packets transmitted per second of IWS across more POSIX threads than logical cores provided by

an intel core i7 processor.

5.5. Extent of Parallelisation

As Another key criterion that can be used to assess the performance of a simulator is to compare the

wall-clock execution time of a simulation to the infection time being simulated. The comparison metric, �, is

determined by dividing the execution time, �, by the simulated time, �, where � =
�

�
. This means that any

value less than 1 indicates that the simulator execution time is less than the simulated time.

2 3 4 5 6 7 8 9 10 11 12
30

40

50

60

70

80

90

100

Number of Threads (#)

P
a
c
k
e
ts

 T
ra

n
s
m

itt
e
d
 p

e
r

S
e
c
o
n
d

(M
ill

io
n
s
 o

f
P

a
c
k
e
ts

/S
e
c
o
n
d
)

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
70

75

80

85

90

95

100

Number of Threads (#)

P
a
c
k
e
ts

 T
ra

n
s
m

it
te

d
 p

e
r

S
e
c
o
n
d
s

(M
ill

io
n
s
 o

f
P

a
c
k
e
ts

/S
e
c
o
n
d
)

International Journal of Computer and Communication Engineering

17 Volume 5, Number 1, January 2016

For the entire experimental set, sequential simulations had a median comparison metric, �, of 16.9,

whereas parallel simulations had a median comparison metric of 3.9. Of note is that the large susceptible

populous simulations presented the worst comparison, with a peak comparison metric of 1,367.5 and 327.6

for the sequential and parallel simulations respectively.

The sequential implementation was able to execute in less than the simulated time in 22.2% of the

experiments, whereas the parallel implementation was able to achieve the same in 37.4% of the

experiments. This means that the parallel implementation of IWS would be a preferable choice if a single

simulation was required.

5.6. Summary

The parallel implementation of IWS is shown to be able to achieve up to 91.8 million PTS on a single

multi-core processor, which compares favourably with previous metrics from Fujimoto et al. [19] which

report up to 106 million PTS on a 1,536 processor cluster for a network 99.9% smaller. Similarly it is also

able to simulate 22% of the scenarios faster than the simulated infection time

6. Analysis

An aim of this the experimentation undertaken into quantifying the impact of key attributes on the

resource requirements of IWS yields results that are consistent with Amdahl's law [29], which details that

the maximum decrease of execution time of a program, �, is directly related to the proportion of the

program that is parallel, �, and the number of processors, 	, as shown in (1). This means that the

proportion of sequential operations that the program executes limits the increase in speed, which has been

shown to be the case.

�
	� =
�

�
���
�

�

 (1)

Having introduced a parallel implementation to the function block that was being called the most in the

design, an estimate of the parallel proportion can be derived. A modified Karp-Flatt metric [30] is presented

in (2), which is designed to determine, based on the measured difference in execution times, �, and number

of processors, 	, an estimate of the proportion of a program that is executed in parallel, ��; based on the

Karp-Flatt metric, �. As the decrease in wall-clock execution time was, on average, 56.5% when using an

equivalent of ten processors this estimates the average proportion of the program that was executed in

parallel as 62.8%. Amdahl's law suggests an increase in the parallel proportion in order to further decrease

execution time however, this does not account for the overheads involved in doing so, which may lead to an

increase in the sequential proportion as more parallelisation is included.

�� = 1− � =

�

�

�

�

�

�

�

 (2)

For a given task many simulations may be required. The authors propose (3), which presents a method to

determine if a given task with two or more simulations should be carried out by a sequential or parallel

implementation, and to what extent; where � is the percentage decrease in wall-clock execution time with

	 processes, and � is the threshold. If � is less than 1 then multiple discrete sequential implementations

should be used, otherwise a parallel implementation with 	 processors should be used in order to best

utilise the resources available.

� =
�

��×�
 (3)

International Journal of Computer and Communication Engineering

18 Volume 5, Number 1, January 2016

7. Discussion

Across the selection of parameters tested under an empirical comparison of performance it is evident

that a parallel implementation, on average, presents a reduced wall-clock execution time and an increased

rate of packets transmitted per second (PTS).

Although it can be accepted that improving worm simulator performance aids in its applicability as a tool

in worm analysis, the focus has often been to meet a reasonable execution time, as demonstrated by Wei et

al. [24], or to reach a specific goal, such as in [19]. Other considerations could be a factor, for instance if a

simulator is intended for use with hypothetical worm outbreak scenarios a consideration could be the

number of scenarios that can be run. When there are resource constraints, in this case only a single

workstation, the utilisation of those resources needs to be considered.

On the testbed workstation used in this paper a total of 64GB of RAM is available, which means although

each simulation can run 56.5% faster on average when using ten threads in a parallel implementation, it can

also run ten sequential simulations producing a greater volume of simulation results in the same time. This

is at the cost of using ten times the amount of RAM usually employed and each sequential simulation is

slower, but the number of hypothetical scenarios simulated in the same time frame is greater than if a

parallel implementation is being used.

A comparison between the equivalent PTS of multiple sequential implementations running and a

threaded implementation can be made, as shown in Fig. 6, demonstrating the linear increase resulting in a

greater overall PTS across multiple simulations using a multi-process method. The linear trend results in up

to 174.9 million PTS when running ten concurrent sequential simulations. Considering the nature of

multi-core processors similar decreases in performance when requesting more processors than real cores

or logical cores may occurr, however, this can be mitigated by introducing more real cores as each

simulation is executed discretely.

Fig. 6. Comparison of packets transmitted per second of a single parallel simulation and equivalent

multiple sequential simulations of IWS.

8. Conclusion

Having undertaken an empirical comparison of both a sequential and parallel implementation of the

Internet Worm Simulator (IWS) across a selection of varied parameters it is evident that a parallel

implementation exhibits, on average, a 56.5% decrease in wall-clock execution time, and a 320.9% increase

in the number of packets transmitted per second (PTS). The parallel implementation of IWS is shown to be

able to achieve up to 91.8 million PTS on a single multi-core processor, which compared favourably against

2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

100

120

140

160

180

200

220

Number of Processes (#)

P
a
c
k
e
ts

 T
ra

n
s
m

it
te

d
 p

e
r

S
e
c
o
n
d

(M
ill

io
n
s
 o

f
P

a
c
k
e
ts

/S
e
c
o
n
d
)

Parallel

Equivalent Sequential

International Journal of Computer and Communication Engineering

19 Volume 5, Number 1, January 2016

previously reported metrics, especially of a network the size of which IWS is simulating.

As IWS is able to run simulations based both on previous worm analysis and hypothetical scenarios three

key parameters have been assessed for performance: susceptible populous, worm size, and the number of

hosts initially infected at the point of an outbreak. These all showed a significant impact on the parallel

implementation, as well as having a variable impact on the sequential implementation. The extent of the

impact was assessed using Amdahl's law [29] and a modified Karp-Flatt metric [30] that estimates only

64.28% of the parallel implementations execution is done in parallel, which provides an indication as to

why although undertaking a parallel implementation on the function block that under profiling was being

called 98.7% of the time, the sequential parts of the code still have a significant impact.

Given a workload of more than one simulation, a way to reach 100% parallelisation is to run multiple

instances of a sequential implementation. This results in an equivalent of up to 192.4 million PTS at 11

concurrent simulations (the same number of processes as the highest performance of the parallel

implementation). Given the use of a multi-core processor, this could result in requiring multiple processors

to reach this maximum value owing to the difference in logical and real cores offered on the testbed.

8.1. Future Work

The authors suggest extending the work reported by considering other methods of improving

performance, such as distributed computing, or off-loading processing to dedicated hardware. Other

performance improving methods are certainly avenues for future work, and it is intended that a similar

empirical comparison and analysis will be undertaken when taking them into consideration.

References

[1] Ediger, B. (Sep. 2003). Simulating network worms — NWS network worm simulator. From

http://www.stratigery.com/nws/

[2] Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A taxonomy of computer worms.

Proceedings of the 2003 ACM Workshop on Rapid Malcode (pp. 11–18).

[3] Zou, C. C., Gong, W., & Towsley, D. (2002). Code red worm propagation modeling and analysis.

Proceedings of the 9th ACM Conference on Computer and Communications Security (pp. 138–147).

[4] Riley, G. (2003). The Georgia tech network simulator. Proceedings of ACM SIGCOMM Workshop on

Models, Methods and Tolls for Reproducible Network Research (pp. 5–12).

[5] Weaver, N. (Aug. 15, 2001). Warhol worms: The potential for very fast internet plagues. Retrieved

November, 2014, form http://www.iwar.org.uk/comsec/resources/worms/warhol-worm.htm

[6] Zou, C., Gao, L., Gong, W., & Towlsey, D. (2002). Monitoring and early warning for internet worms.

Proceedings of ACM CCS’2002.

[7] Chen, S., & Tang, Y. (2004). Slowing down internet worms. Proceedings of 24th International Conference

on Distributed Computing Systems (pp. 312-319).

[8] Floyd, S., & Paxson, V. (2001). Difficulties in simulating the internet. IEEE/ACM Transactions on

Networking, 9, 392–403.

[9] Staniford, S., Paxson, V., & Weaver, N. (2002). How to own the internet in your spare time. Proceedings

of 11th USENIX Security Symposium: Vol. 8 (pp. 149–167).

[10] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., & Weaver, N. (2003). The spread of the

sapphire/slammer worm. IEEE Security and Privacy, 1(4), 33–39.

[11] Shin, S., & Gu, G. (2010). Conficker and beyond: A large-scale empirical study. Proceedings of the 26th

Annual Computer Security Applications Conference (pp. 151–160).

[12] Faisal, M., & Ibrahim, M. (2012). Stuxnet, duqu and beyond. International Journal of Science and

Engineering Investigations, 1, 75–78.

International Journal of Computer and Communication Engineering

20 Volume 5, Number 1, January 2016

[13] Lemos, R. (January 2003). Counting the cost of slammer. Retrieved November, 2014, form

http://news.cnet.com/2100-1001-982955.html

[14] Whyte, D., Kranakis, E., & Oorschot, P. van (February 2005). DNS-based detection of scanning worms in

an enterprise network. Proceedings of 12th Network and Distributed System Security Symposium (pp.

181-195).

[15] Wong, C., Bielski, S., Studer, A, & Wang, C. (2006). Empirical analysis of rate limiting mechanisms.

Recent Advances in Intrusion Detection (pp. 22–42). Springer.

[16] Staniford, S., Moore, D., Paxson, V., & Weaver, N. (2004). The top speed of flash worms. Proceedings of

the 2004 ACM Workshop on Rapid Malcode (pp. 33–42).

[17] Bajaj, L., Takai, M., Ahuja, R., Tang, K., Bagrodia, R., & Geria, M. (1999). GloMoSim: A scalable network

simulation environment. UCLA Computer Science Department Technical Report.

[18] Riley, G., Fujimoto, R., & Ammar, M. (1999). A generic framework for parallelization of network

simulations. Proceedings of Seventh International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems (pp. 128–135).

[19] Fujimoto, R., Perumalla, K., Park, A., Wu, H., & Ammar, M. H. (2003). Large-scale network simulation:

How big? How fast? Proceedings of 11th IEEE/ACM International Symposium on Modelling, Analysis and

Simulation of Computer Telecommunications Systems (pp. 116–123).

[20] Tidy, L., Woodhead, S., & Wetherall, J. (2013). A large-scale zero-day worm simulator for

cyber-epidemiological analysis. International Journal of Advances in Computer Networks and Its Security,

3(1), 69–73.

[21] Fall, K. (1999). Network emulation in the vint/ns simulator. Proceedings of IEEE International

Symposium on Computers and Communications (pp. 244–250).

[22] Riley, G., Sharif, M., & Lee, W. (2006). Simulating internet worms. Proceedings of 12th IEEE/ACM

International Symposium on MASCOTS (p. 268).

[23] SSF Research Network. (2002). Scalable Simulation Framework. From

http://www.ssfnet.org/homePage.html

[24] Wei, S., Mirkovic, J., & Swany, M. (2005). Distributed worm simulation with a realistic internet model.

Proceedings of 9th Workshop on Principles of Advanced and Distributed Simulation (pp. 71–79).

[25] Butenhof, D. (1997). Programming with POSIX Threads. Addison-Wesley Professional.

[26] Tidy, L., Woodhead, S., & Wetherall, J. (2013). Simulation of zero-day worm epedimiology in the

dynamic heterogeneous internet. Journal of Defense Modeling and Simulation.

[27] Shannon, C., & Moore, D. (2004). The spread of the witty worm. Security & Privacy, 2(4), 46–50.

[28] Hill, M. & Marty, M. (2008). Amdahl’s law in the multicore era. Computer, 41(7), 33–38.

[29] Amdahl, G. (1967). Validity of the single processor approach to achieving large scale computing

capabilities. Proceedings of the Spring Joint Computer Conference (pp. 483–485).

[30] Karp, A., & Flatt, H. (1990). Measuring parallel processor performance. Communications of the ACM,

33(5), 539–543.

Luc Tidy obtained his BEng honours degree in computer systems and software

engineering in 2010. He is currently a research fellow and doctoral candidate in the

Internet Security Research Laboratory, University of Greenwich. His research is centred

on the development of cyber-epidemiological analytical systems for large-scale, zero-day

worm outbreaks.

International Journal of Computer and Communication Engineering

21 Volume 5, Number 1, January 2016

Steve Woodhead obtained his BSc honours degree in 1987 and his PhD degree in 1992,

both in electronic engineering. He currently holds the position of reader in computer

systems and networks at the University of Greenwich. He is also the director of the

Internet Security Research Laboratory at the same University. Dr. Woodhead has

published over 50 research papers in refereed journals and conferences.

Jodie Wetherall obtained his BEng honours degree in internet technologies in 2001, and

his PhD degree in computer engineering in 2010. He currently holds the position of

principal lecturer at the University of Greenwich.

International Journal of Computer and Communication Engineering

22 Volume 5, Number 1, January 2016

