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Abstract: Identifying network traffics at their early stages accurately is very important for network 

management and security. Recent years, more and more studies have devoted to find effective machine 

learning models to identify traffics with the few packets at the early stage. In this paper, we try to build an 

effective early stage traffic identification model by applying probabilistic neural networks. Three network 

traffic data sets including two open data sets are used for the study. Packet sizes and three statistics are 

applied as features. Six classical classifiers are employed as the comparing methods in the identification 

experiments. PNN outperforms the other methods for most cases in the identification experiments, and it 

behaves very well for both of accuracy and AUC. Thus, PNN is effective for early stage traffic identification. 
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1. Introduction 

Recent years, early stage traffic identification has caught enough interests at the research community. 

Most traditional machine learning based traffic identification techniques extract features on a whole traffic 

instance [1]-[3]. The most extracting method is presented by A. W. Moore et al. in 2005 [4]. They extract 248 

statistical features based on whole traffics, such as maximum, minimum and average values of packet size, 

RTT. And classifiers using these statistical features can get very high performances in traffic identification. 

However, in real circumstances, it makes no sense to recognize Internet traffics when they have ended. 

Therefore, some researchers have turned to find effective models which are able to identify Internet traffics 

at their early stage. And this makes early stage identification to become a hot topic in traffic identification 

researches [5]. B. Qu et al. have studied the problem of accuracy of early stage traffic identification, and 

found that it is possible to identify traffic accurately at its early stage [6]. 

It is relatively hard to recognize a flow by only using several early stage packets. Thus, the key problem of 

early stage traffic identification is to find out effective features in early stage of traffics. L. Bernaille et al. 

presented a famous early stage traffic identification technique in 2006 [7]. They use the size of the first few 

data packets of each TCP flow as the features, and by applying K-means clustering technique, they got high 

identification rates for 10 types of application traffics. A. Este et al. have proved in 2009 [8] that early stage 

packets of an Internet flow carry enough information for traffic classification. They analyzed round trip time 

(RTT), packet size, inter-arrival time (IAT) and packet direction of early stage packets and found that packet 

size is the most effective feature for early stage classifications. N. Huang et al. have studied the early stage 

application characteristics and used them for classification effectively in 2008 [9]. Recently, they extracted 
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early stage traffic features by analyzing the negotiation behaviors of different applications. They use packet 

size (PS) and inter packet time (IPT) of the first 10 packets for some classifiers, while for other classifiers, 

they use average and standard deviation values of PS and IPT of the early packets. They applied these 

features for machine learning based classifiers with high performances [10]. B. Hullár et al. proposed an 

automatic machine learning based method consuming limited computational and memory resources for 

P2P traffic identification at early stage [11]. A. Dainotti et al. [12] construct high effective hybrid classifiers 

and apply a hybrid feature extraction method for early stage traffic classification. T. T. T. Nguyen et al. use 

statistical features derived from sub-flows for timely identification of VoIP traffics [13], they extend the 

concept of early stage to ”timely”, since a sub-flows refers to a small number of most recent packets taken at 

any point in a flow’s lifetime. A. Rizzi et al. proposed a highly efficient neuro-fuzzy system for early stage 

traffic identification [14]. 

Probabilistic neural network (PNN) [15] is a kind of neural network which uses Bayes inference theory 

for classification tasks. It has been widely applied for classification and pattern recognition [16]-[18]. 

Comparing with other neural networks, PNN has many attractive and unique characteristics. 

Contributions: In this paper, we set out to create an effective early stage traffic identification model by 

applying probabilistic neural networks. Three network traffic data sets including two open data sets are 

used for the study. Packet sizes and three statistics are applied as features. Six classical classifiers are 

employed as the comparing methods in the identification experiments. The experimental results show that 

PNN outperforms the other methods for most cases. 

The rest of the paper is organized as follows: Section 2 illustrates the basic model of probabilistic neural 

networks. We introduce the characteristics of the selected data sets and features in Section 3 and 4, 

respectively. The experimental settings including the comparing methods and the performance 

measurements are given in Section 5. And the details of experimental results and analysis are given in 

Section 6, and we also do some discussions in this section. Finally, we make some conclusions in Section 7. 

2. Probabilistic Neural Networks 

Probabilistic neural network (PNN) [15], a widely used nonlinear pattern classification technique, is a 

kind of neural network which uses Bayes decision rule for Bayes inference. Consider a m categories 

classification task for which θ1, θ2, …, θm is its m categories. The decision of objective θ is based on a set of 

measurements represented by the n-dimensional vector XT=[x1, x2, ..., xn]. Then for a category θq, the Bayes 

decision rule is: 

 

d(X) = θq if hqlqfq(X) > hklkfk(X), k≠q.                        (1) 

 

where fq(X) and fk(X) are the probability density functions of category q and k respectively. lq and lk are the 

priori probabilities of category θq and θk. lq is the loss function associated with the decision d(X)≠θq when θ 

= θq. lk is the loss function associated with the decision d(X)≠θk when θ = θk. 

For most actual cases, l is known can be estimated accurately. h is the same for each category. Therefore 

the key to use the Bayes decision rule is to estimate the probability density functions based on training 

patterns. A widely used and effective estimator proposed by Parzen [19] is as follows: 
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where Xqi is the ith training sample vector from category θq, nq is the number of samples from θq and σ is the 
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smooth parameter. 

Fig. 1 shows the organization of a typical probabilistic neural network which has three layers: input layer, 

hidden layer and output layer. The hidden layer is also called pattern layer in PNN. It should be noted that 

some literatures applies an additional layer which simply makes decision by comparing probabilities. This 

decision can be accomplished by a very simple numeric comparing algorithm. Therefore we omit this layer 

for concise network structures. The input layer comprises n units which merely supply inputs to all of the 

pattern units. Each pattern unit is a pattern neuron shown in Fig. 2. A pattern neuron firstly form a dot 

product Zi using input vector X and a weight vector Wi
xh, i. e. $ Zi =X·Wi

xh. Here Wi
xh belongs to Wxh which is 

the set of weights between input and pattern layer. And then the pattern neuron perform a nonlinear 

operator on Zi before outputting its activation level to the output units. The nonlinear operator applied in 

the pattern neuron is usually a radial basis function, so the input-pattern layer is usually called radial basis 

layer. A commonly used nonlinear operator is �(����) �
	⁄ . If X and Wi are both normalized to unit length, 

then the output of the ith pattern unit is 
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An output unit uses the outputs of pattern units as its inputs, and calculates its output as follows: 
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where h is the number of pattern unit, Wij
hy is the weight between ith pattern unit and jth output unit. The 

output yj denote the probability of X from category θj. Therefore, if 

 

},...,,{ 21 mq yyyMAXy =                                (5) 

 

then X is classified by PNN as θq. 

 

       

Fig. 1. Structure of probabilistic neural network.                Fig. 2. The pattern neuron. 
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3. Data Sets 

3.1. Auckland II Traffic Traces 

Auckland II is a collection of long GPS-synchronized traces taken using a pair of DAG 2 cards at the 

University of Auckland which is available at [20]. There are 85 trace files which were captured from 

November 1999 to July 2000. Most traces were targeted at 24 hour runs, but hardware failures have 

resulted in most traces being significantly shorter. We selected two trace files captured at Feb. 14 2000 

(20000214-185536-0.pcap and 20000214-185536-1.pcap) for our study. The traces include only the 

header bytes, with a maximum amount of 64 bytes for each frame, while the application payload is fully 

removed. And all IP addresses anonymised using Crypto-Pan AES encryption. We selected eight main types 

from Auckland II traces for our studies. 

3.2. UNIBS Traffic Traces 

UNIBS is another opening traffic traces developed by Prof. F. Gringoli and his research team, available at 

[21]. They developed a useful system namely GT [22] to application ground truths of captured Internet 

traffics. The traces were collected on the edge router of the campus network of the University of Brescia on 

three consecutive working days (Sept. 30, Oct. 1 and Oct. 2 2009). They are composed of traffic generated 

by a set of twenty workstations running the GT client daemon. Traffics were collected by running Tcpdump 

[23] on the Faculty's router, which is a dual Xeon Linux box that connects the network to the Internet 

through a dedicated 100Mb/s uplink. 99% flows in UNIBS are TCP flows. We also chose eight main types in 

UNIBS for our study. 

3.3. UJN Traffic Traces 

The third data set is collected in a laboratory network of University of Jinan using Traffic Labeler (TL) 

[24]. We deployed 10 TL instances on Windows user hosts in the laboratory network of Provincial Key 

Laboratory for Network Based Intelligent Computing. A mirror port of the uplink port of the switch was set, 

and a data collector was deployed at the mirror port. The deployed TL instances ran at work hours every 

day. The data collecting process lasted two days in May 2013. Again, flows with no more than six non-zero 

payload packets are also filtered. 

4. Features 

Packet size: Packet size has been proven to be the most effective original packet level feature in early 

stage of traffics [8]. We use the packet sizes of the first six packets as the packet-level features since we have 

proven that the first six packets are most effective for early stage feature extraction [25]. 

Average: The average is also known as the arithmetical mean, which is an extensively used statistical 

indicator. This feature is calculated as follows: 
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Standard deviation: The standard deviation shows how much variation or dispersion from the average 

exists. And the feature is defined as: 
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where n is the number of packets, i. e. 6 in this study. 
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Maximum and minimum: The maximum and minimum packet sizes are also applied in the study, and 

we use the abbreviations of max and min respectively. 

5. Experimental settings 

5.1. Compared Methods 

We execute our identification experiments using six well-known machine learning classifiers. We use 

Weka data mining software [26] as our experiment tool. All classifiers are run in Weka and all processed 

data sets are formatted into the Weka data file with the extension name of “arff”. The classifiers we selected 

fall into five categories according to Weka: 

Bayes: Bayes classifiers are based on Bayes theorem, which is widely applied in many engineering areas. 

In this study, we choose Naive Bayes classifier and Bayesian network (BayesNet) as Bayes classifiers. 

Meta: Strictly speaking, meta classifier is a kind of classification framework based on a specific classifier. 

This technique firstly trains a group of “weak learn”, and then generate a “strong learn” based on the weak 

learns. We choose adaptive Boost M1 (AdaBoost) for our study. 

Rule: As the name suggests, a rule based classifier extracts rules using a specific policy, e. g. probability 

and decision trees, and uses the rules to classify testing data. OneR is selected for this category in this study. 

Functions: Weka refers all classifiers based on specific functions to this category. We choose support 

vector machine (SVM) and radial basis function neural network (RBFNetwork) for this category. 

5.2. Performance Measures 

The confusion matrix is the basis in measuring a classification task. Fig. 3 shows a typical confusion 

matrix of a binary classification. In this study, the following measures are used: 

 

 

Fig. 3. Confusion matrix. 

 

� Accuracy 

Classification accuracy (Acc) is defined as the total proportion of all correctly classified instances: 
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� Area Under Curve 

The receiver operating characteristic (ROC) curve [27] is a 2D graphical illustration of the trade-off 

between the TP rate (TPR) and FP rate (FPR). The TPR is also called sensitivity (Sens), and the FPR is 

related to another general measure namely specificity (Spec), and they are defined as follows: 
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The ROC curve illustrates the behavior of a classifier without considering the class distribution or 

misclassification cost. The area under the ROC curve (AUC) is computed by the confusion matrix values in 

relation to the TPR and FPR: 

 

22

1 SpecSensFPRTPR
AUC

+=−+=                              (10) 

 

6. Results and Analysis 

6.1. Results 

 

       

Fig. 4. Accuracy results of Auckland II data set.        Fig. 5. AUC results of Auckland II data set. 

 

Fig. 4 and Fig. 5 show the experimental results of the Auckland II data set. Firstly, we can see that PNN 

outperforms all the other algorithms for both accuracy and AUC. It means that PNN is the best performed 

algorithm for this data set. Secondly, NaiveBayes and RBFNetwork do not show very high performances for 

the accuracy. However, they get high AUC values. So, we say that the two algorithms are able to conduct 

good trade-off among the eight kinds of class in Auckland II data set. On the contrary, OneR and SVM show 

good accuracy performances and poor AUC performances: Their accuracies are far higher than that of 

AdaBoost, but their AUC values are lower that of AdaBoost. 

 

       

Fig. 6. Accuracy results of UNIBS data set.               Fig. 7. AUC results of UNIBS data set. 
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The results of the UNIBS data set that given in Fig. 6 and Fig. 7 show different patterns. PNN again gets 

the highest accuracy. However, BayesNet defeats PNN for AUC with a slight edge. BayesNet shows good class 

trade-off ability for the UNIBS data set. NaiveBayes also shows good class trade-off ability: Its accuracy is 

the lowest one, but its AUC is fairly high. AdaBoost and RBFNetwork show stable performances for accuracy 

and AUC. And again OneR and SVM do not perform very well for AUC in contrast with their good behaviors 

for the accuracy. 

 

       

Fig. 8. Accuracy results of UJN data set.               Fig. 9. AUC results of UJN data set. 

 

Different from the results of the former two data sets, the results of the UJN data set in Fig. 8 and Fig. 9 

show a unique pattern. Firstly, NaiveBayes shows poor performances for both accuracy and AUC. Secondly, 

AdaBoost does not behave so stably as it does for the former two data sets: It get an accuracy value of 

0.8322, while its AUC value is 0.6790. It can be inferred that this algorithm is not able to get good class 

trade-off abilities for the UJN data set. RBFNetwork also does not show good performances for AUC this 

time. Similar to the results of the UNIBS data set, PNN again gets the highest accuracy, but was defeated by 

BayesNet for AUC with a slight edge. 

6.2. Analysis and Discussions 

According to the experimental results, some lessons can be learned: 

� First of all, the probabilistic neural networks shows high performances in early stage traffic 

identification. As can be seen, PNN gets the highest accuracy and AUC values for all of the three data 

sets. The high accuracy values mean that PNN is able to achieve high total identification rates, and the 

high AUC values say that PNN is able to get good trade-off among different traffic types, especially for 

imbalanced traffic type distributions. 

� For an early stage traffic identification method, performance evaluation using AUC is as important as 

the total identification rate, as AUC is a measurement to evaluate the tade-off abilities of a method. In 

our experiments, some classifiers show high performances for the accuracy measurement, but they do 

not perform well for the AUC measurement. e. g. AdaBoost gets a considerably high accuracy value for 

the UJN data set. However, its AUC value of this data set is very low. And the situation of OneR is the 

same for the Auckland II data set. 

7. Conclusion 

In this paper, we have tried to build an effective early stage traffic identification model using probabilistic 

neural networks. We use three traffic data sets include two opening data sets for the experimental 
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evaluations. And six classical classification algorithms are applied for experimental comparisons. According 

to the experimental results, we conclude that probabilistic neural network is effective for early stage traffic 

identification. As can be seen from the experimental results that PNN outperformed the other six classifiers 

for most experimental cases. Furthermore, PNN does not only get high total identification rates, but also 

show good trade-off among different traffic types. And this is very important for traffic identification, 

especially for the cases with an imbalanced data distribution. 
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