

Real-Time Simulation Engine Implementation in
Automotive FlexRay Communication

Chu Liu*, Feng Luo, Yunge Qu

Clean Energy Automotive Engineering Center, College of Automotive Engineering, Tongji University,
Shanghai 201804, China.

* Corresponding author. Tel.: +86-2169589482; email: liuchu1985@126.com
Manuscript submitted June 29, 2014; accepted March 19, 2015.
doi: 10.17706/ijcce.2015.4.4.246-255

Abstract: To overcome the difficulty of today's automotive FlexRay system development, this paper

presents a low cost and dedicated approach to the hard real-time simulation in FlexRay enabled electronic

control units (ECU). A real-time simulation engine named "RSE" is implemented in micro-controller

firmware, which is able to load executable code generated dynamically from the PC environment through

high-speed USB interface. With the help of the dynamic code generation, the behavior of the

micro-controller can be controlled freely by the script to achieve FlexRay frame transmission and reception,

control signals input and output, internal algorithm execution and so on. Firmware reprogramming is not

necessary for the micro-controller due to the fact that most of the low-level register access functions and

algorithms are exported by the simulation engine as application interface (API) for the user scripts.

Experiments prove that with the decent loading and execution performance of the dynamic code, the

development efficiency of the automotive FlexRay systems can be greatly improved.

Key words: FlexRay bus, automotive networks, hard real-time simulation, dynamic code generation, HIL.

1. Introduction

1.1. The Development of Automotive FlexRay Systems

With the increasing demands for automobiles in safety improvement, performance and comfort

enhancement, environmental impact reduction, the higher communication speed, reliability in automotive

networks are becoming more and more important. And with the advantage of guaranteed latency,

predictability, high baud rate, deterministic, flexibility and extendibility, FlexRay has established itself as a

de-facto standard for in-vehicle, time-triggered communication systems.

As complexity of the FlexRay hardware being developed increases, so too does the complexity of the

embedded system that is designed to control the communication controller for FlexRay communication.

The basic solution for this is hardware-in-the-loop (HIL) simulation and test technique, which aims at

providing an effective platform for developing and testing real-time embedded systems. This approach is to

attach one or more ECUs to a simulator, which represents all the needed signals that the ECUs required

during runtime. All the behavior of the ECUs are monitored and checked so that the hardware development

and software development of embedded systems are able to go parallel.

1.2. Problems That FlexRay Development Faces

One basic requirement of the FlexRay communication is that the update of communication signals is time

International Journal of Computer and Communication Engineering

246 Volume 4, Number 4, July 2015

critical and predictable. Here "time critical" means hard real-time. For example, a signal is predicted to be

updated in one milliseconds, neither earlier (the calculation of this signal requires time), nor later (the

updated signal has to be transmitted in the incoming slot) [1].

To achieve this, all the control algorithm and communication related functions should be implemented in

firmware of the FlexRay enabled embedded systems. This also requires that the HIL simulation also be hard

real-time to simulate FlexRay transmission so as to interact properly with the embedded systems [2].

Time critical applications make the simulation and setup for end users expensive and slow, and also make

development and debug difficult.

1.3. FlexRay Simulation Approaches

Nowadays there are many solutions for the automotive FlexRay network simulation and development.

They are aiming at the following aspects:

1) Developing and optimizing the embedded systems with little or without manual programming;

2) Remaining bus simulation;

3) Simulation and Test of ECU.

As investigation shows that there are three kinds of mainstream methods used for FlexRay simulation:

1) FlexRay development boards: starter kits or evaluation kits from semiconductors. The disadvantages

are that the hardware level registers manipulation and debugging are very complicated and time cost,

frequent modification and validation are required when the communication parameters are altered [3].

2) Hardware-in-the-loop system such as SPACE [4].

3) Universal analyzing and simulation tools such as CANoe. FlexRay from vector and multibus analyzer

from IXXAT and so on [5]. These comprehensive tools are powerful but expensive; moreover, they do

not provide a means for the user to access and manipulate the hardware modules of the FlexRay

enabled embedded systems.

1.4. RSE Architecture

The approach presented by this article will help the developer to create a hardware-in-the-loop simulator

for FlexRay system development, which is able to simulate nodes and I/O signals required by the ECU under

development and test. The diagram of the approach is demonstrated in Fig. 1.

FlexRay Bus

HIL SimulatorHIL Simulator

ECU
Under

Development
and
Test

Sim ECU1

Sim ECU2

Sim ECUn

I/O(s)

.

.

.

Fig. 1. Diagram of the approach.

This paper presents a hard real-time simulation engine (RSE) for FlexRay development, which runs in the

local memory of the embedded system, analyze the code compiled from user scripts, and perform the

required operation such as mathematical calculations, FlexRay frame transmission and reception, hardware

International Journal of Computer and Communication Engineering

247 Volume 4, Number 4, July 2015

IO read and write and so on. RSE is made up of a collection of header and C source codes, and can be

migrated into any hardware platform for real-time simulation, which requires only a small modification of

the hardware low level interfacing functions. The developer can access not only the hardware resources, but

also high-level scripts for the real-time simulation. The architecture of the RSE engine is shown in Fig. 2.

RSE Kernel
Debug

Module

Configuration

Module

Hardware Abstraction Layer

Memory & Compiled Code from User Scripts

Hardware

IO

FlexRay

Module

CAN

Module

Other

Modules...
INT

RSE

Engine

Hardware

Platform

Fig. 2. RSE engine architecture.

The RSE kernel is designed to be hardware independent, which only requires a memory buffer to run

user scripts, this memory buffer is made up of three parts:

1) Execution memory, which contains the code compiled from user scripts;

2) Global memory, which contains all the global variables the script uses, and also constant variables;

3) Stack memory, which is managed by the RSE engine for internal function and API invoke.

The hardware abstraction layer translates communication requirements and IO commands into hardware

operations.

2. Implementation of the RSE Engine

The implementations of the real-time simulation engine includes the script based simulation language

formulation, the script parser and compiler development, the configuration and debug module integration,

API list, low-level drivers and script editing environment realization.

2.1. Scripting Language Definition

To realize such a simulation environment the first step required is to define a proper scripting language

for real-time control. Considering the portability, cross-platform ability, minimum memory consumption,

and support for embedded system control such as Bit-wise operation, the C language template is chosen

since it has good portability and is closeness to the machine.

The newly defined scripting language is called "RSE Language", where the most part of it is a subset of the

standard C language, but it also has new features added such as CAN frame typed variable. Here the CAN

feature is supported because an Automotive FlexRay network is a multi-bus environment, which includes

not only FlexRay network, but also CAN, LIN, MOST and Ethernet bus systems. CAN bus is a subnet of

FlexRay bus and should also be supported natively [6]. The RSE language is defined in the Backus-Naur

Form (BNF), which is a notation used to describe context free grammars [7].

2.2. Parser Creation

After the definition of the RSE scripting language, the corresponding parser needs to be built for that

language. The most efficient way to build a parser for RSE language is to find a proper parser builder with

BNF support, which automatically deals with the grammar and checks the validity of the scripts. Gold

parsing system is used in the parser creation [8]; the steps to build RSE language parser with gold parsing

system are shown in Fig. 3.

International Journal of Computer and Communication Engineering

248 Volume 4, Number 4, July 2015

RSE Grammar File Gold Parser Builder

Compiled Grammar

Table (.cgt) File

Gold Parser Engine
RSE Simulation

Scripts

Parsed Data for

Compiler

RSE Engine Related Design Files Gold Parsing System

Fig. 3. RSE parser development using gold parsing engine.

In above all the steps, the most important one in the creation of the RSE parser is the design of the RSE

grammar for the gold parser builder. This grammar file can be written using any text editor, which has to

comply with the BNF syntax rules in the gold parsing system. Fig. 4 shows the grammar development inside

the gold parser builder editor.

Fig. 4. The design of RSE language grammar file.

2.3. The Design of the Compiler

To make RSE engine understand the purpose of the script, a compiler is needed to translate the scripts

into binary stream that can be directly executed by the embedded system. Unlike compilers such as Win32,

ARM and Motorola, the RSE compiler is platform independent, which generates intermediate code for the

RSE engine low level APIs. RSE engine is API based, there are a total 60 basic APIs already implemented in

the RSE engine kernel in embedded system, which support all the low level operations of the RSE language

such as "Addition", "Subtraction", "If statement", "goto statement" and so on. Take one of the APIs "Addition"

for example. Please see corresponding RSE script below:

y = x1 + x2 + x3

Such a piece of scripts will be automatically converted into two same API calls by the RSE engine, the

name of these APIs are called "Addition", one API calculates "x1 + x2", generate result "x" and stores the

result value "x" into internal stack, and the next one deals with "x + x3" and stores the result into the

variable "y".

Take the first API for example; this function requires two parameters called "o1" and "o2", where "o1"

International Journal of Computer and Communication Engineering

249 Volume 4, Number 4, July 2015

represents "x1" in the script, and "o2" represents "x2". "o1" and "o2" are popped from the internal stack

managed by the RSE engine, after calculation, the result value will be pushed into the internal stack again

for the next statement operation. So if the stack is properly managed by the engine, all the internal API can

be directly and easily invoked.

To properly manage the internal stack of the RSE engine, the compiler needs the parsed data structure

generated by the RSE engine parser; this parsed data can be further generated into a complete parse tree by

the RSE compiler. The parse tree is an ordered, rooted tree-like data structure that represents the syntactic

structure of a string according to the grammar of the RSE language [9].

The RSE parse tree is built during the "reduction" stage when the simulation script is parsed by the RSE

engine parser. The incoming reduced objects are pushed into a compiler stack when a statement is not

completed, and popped from the compiler stack when a complete operation is identified by the compiler.

Having all the reduced items in the parse tree, the logic of the user scripts are revealed by the compiler. Fig.

5 shows a parse tree generated by a piece of test codes, in which all the variable definitions, assignments,

"if" statements, "for" statements and "while" statements are identified by the compiler.

Fig. 5. RSE parse tree.

The next step is to use the identified parse tree to form the final execution code, which is intermediate

compared with the native binary code. A kind of data structure is proposed with the name "Execution Unit"

for the execution code, which is the basic data structure that can be used by the low-level API of the

hardware runtime environment. Each execution unit represents an atomic operation which is also known as

the internal API mentioned above.

The compiler reads the parse tree from the very beginning, and generates execution units into a global

memory buffer area called "execution memory".

Execution units are placed in an ordered sequence so that the RSE engine can find the next execution unit

when the current one is performed. Fig. 6 shows an overview of the generated execution units after the

parse tree has been built.

Until then, the whole parse tree has been generated into a flat memory area as execution units. Each

execution unit has an execution pointer connecting to the next execution unit. Some execution units such as

"for" or "while" have more execution pointers because they contain potential jumps that can link to other

execution units. The RSE compiler is responsible for the correct linking of all the execution units. Fig. 7

demonstrates the linking of the execution units around the "If" statement.

In Fig. 7, Stm_A, Stm_C and Stm_D are normal statements, while Stm_B represents a condition check of the

"if" statement. So the "if" statement has two execution pointers, one links to the Stm_D and another links to

International Journal of Computer and Communication Engineering

250 Volume 4, Number 4, July 2015

Stm_C. Care should be taken to also make the execution pointer of Stm_C link to Stm_D, as to meet the

requirements of the user logic.

Fig. 6. Execution units generated from the parse tree.

Stm_A

Stm_A;

if (Stm_B){

 Stm_C;

}

Stm_D;

Stm_B Stm_C Stm_D

Condition 1

Condition 2

Fig. 7. The linking of execution units.

2.4. RSE Execution Engine Design in the Embedded System

The RSE Execution Engine is designed to be platform independent, which is achieved by implementing

kernel functions in pure C code and separating hardware specific functions with the engine functions by

inserting a software layer called "Hardware Abstraction Layer".

There are four files required for the universal RSE engine in embedded systems:

2.4.1. RSEInc.h

This is the platform switch option header file, which defines the capability including the stack size, global

variable size and maximum execution unit count of the current RSE engine. By switching the compiler

options of the endian mode, the RSE engine can be configured to accommodate different CPU models such

as big-endian or small-endian.

2.4.2. RSE.h

This is the main header file for data types and structure. Here the basic data type is declared including the

8-bit, 16-bit, 32-bit, 64-bit integer data types, IEEE 32-bit float and 64-bit double data types, and also CAN

message data type defined in the RSE language. The data structure of RSE execution unit is also defined in

this header, which contains the atomic operation type, parameter requirements and linking information

with other execution units.

2.4.3. RSEInternalFunctions.c

This is the implementation of the runtime logic. In this unit there are in total 60 atomic operation types

International Journal of Computer and Communication Engineering

251 Volume 4, Number 4, July 2015

implemented, that support all the features of the RSE engine.

2.4.4. RSESystemFunctions.c

This is the user API implementation unit. All the functions that can be invoked by the scripts are exported

in this unit such as I/O operation, FlexRay frame transmission and reception. Interrupts such as timer

interrupts and capture interrupts are also implemented inside this unit in order to ensure the real-time

performance of the RSE engine.

2.5. Configuration Module Realization

To make the RSE engine run with execution units, the next step is to download all the configuration data

compiled by the RSE compiler from PC into the embedded system through USB interface. The data is

represented by two kinds of memory: the execution units array and the initialization data of global

variables, since the stack memory is allocated and managed by the engine itself in the embedded system,

this kind of memory does not need to be downloaded.

As all the configuration data has been prepared, the RSE engine can be started from the entry point of the

execution units. There are several entry points within an execution memory, which are defined by the RSE

compiler from entry points of different functions during the compilation.

2.6. Debug Module Integration

To ease the development process of the RSE engine, a RSE engine debugger is also created for the engine,

which is running on windows platform on PC. As shown in Fig. 8.

Fig. 8. The RSE engine debugger.

The symbol tree on the left side is the script source viewer, where the users are able to find the script

source written by them. Break points can be set on the source lines.

Global variables viewer displays all the global variables defined by the user script, and the stack viewer

displays local variables inside the currently function being executed.

RSE Register window displays all the internal registers defined by the RSE engine. Unlike CPU registers,

these registers are emulated including stack pointer, current function pointer, current execution unit

pointer and so on.

And the execution units viewer contains a list of all the execution units displayed with their member

value within the execution unit data structure. From this viewer the status of the current execution unit can

be monitored and the execution process of the whole script can be fully validated.

International Journal of Computer and Communication Engineering

252 Volume 4, Number 4, July 2015

2.7. Simulation Engine Script API Realization

The Script API acts as a bridge to interconnect the hardware abstraction layer of RSE engine and the

hardware components of the specific platform. Commands are translated from the hardware abstraction

layer and the corresponding registers are set accordingly.

Take one of the API "int flexray_send_frame (const int ASlot, const unsigned char* AData, const int

ASize);" for example, which updates the transmit buffer of FlexRay module and schedules the frame for the

dedicated slot transmission. In the implementation area of this API function, the three input parameters are

first popped from the RSE internal stack, and the parameter data is retrieved from the global memory and

written into the registers of the FlexRay registers.

After all the needed APIs are created for the user scripts, user script is able to control most of the

behavior of the current platform just like it is controlled by the native code. The time cost during script

execution is a little bit longer than the native code due to additional time is required to analyze the

intermediate code generated by the compiler by the RSE engine.

2.8. FlexRay Low-Level Driver Development

As during the simulation, the FlexRay register values and parameters may be reloaded to adapt new

network settings, a stand-alone FlexRay driver is needed for the simulation engine. Since FlexRay driver is

also specific to platform, new driver should be generated for each migration of the dedicated platform.

The FlexRay driver is responsible for FlexRay hardware module initialization, configuration, state

management, interrupt handling, and also frame transmission and reception. Take one of the FlexRay driver

implemented on Freescale MC9S12XF512 for example, which configures the Freescale FRCC2100 FlexRay

core using the configuration generator as shown in Fig. 9.

Fig. 9. FlexRay configuration generator designed for Freescale FRCC2100.

This FlexRay driver configuration generator stores the generated configuration data into a memory area

on the embedded system, which is loaded by the RSE engine API to configure the FlexRay hardware module.

Due to the flexible configuration generation capability and the unlimited possibilities of the user simulation

scripts, the difficulty of the FlexRay development is greatly reduced.

3. Results and Analysis

This RSE engine has been migrated successfully into several platforms such as Win32 platform with

FlexRay tool, Freescale 16-bit microcontroller MC9S12XF512 with integrated FlexRay module, and also

NIOS II inside Altera Cyclone IV FPGA which interfaces stand-alone FlexRay controller MFR4310.

International Journal of Computer and Communication Engineering

253 Volume 4, Number 4, July 2015

Take one of the implementations MC9S12XF512 as an example, the on-chip memory consumption of the

RSE engine is about 20 KB and 16 KB flash memory is used for storing the RSE hardware driver and API

implementation. Benchmark is also performed to validate the real-time performance of the RSE engine, the

method of IO toggle measurement is used to measure the interrupt time overhead in the RSE script. A

simple FlexRay receive interrupt costs about 4.3 micro-seconds for RSE processing, which is acceptable

compared with the native code (about 1 micro-second), as shown in Fig. 10.

Fig. 10. Interrupt time overhead in RSE script.

Numerous simulation and test scripts are executed on all the platforms mentioned above and identical

results are generated. Experiments prove the correct performance of the simulation engine even when

executing complicated algorithms.

4. Conclusion and Future Work

This paper demonstrates the development of the Real-Time simulation engine (RSE) implementation.

The definition of the simulation language, the creation of the script parser and compiler, and the realization

of the RSE kernel in embedded system along with the debugger and configuration module are introduced.

Finally an experiment with RSE engine installed is executed for the validation of the features and engine

performance. The advantages of this real-time simulation solution are concluded as below:

1) Execute c code directly in memory in real-time;

2) Support of single step debugging;

3) Error-free execution, support of memory bound check;

4) Safe, execution can be started or stopped at any time;

5) Easy and fast migration;

6) Execution speed higher than pure scripting language;

7) Light-weight, 16-bit micro-controller is also supported.

The RSE engine is initially designed for Automotive FlexRay with CAN sub-bus development, however, its

ability which allows user to write scripts freely and execute them directly on hardware makes it capable of

performing real-time intelligent control tasks also in electronic components debugging, industrial sites, and

civilian facilities and so on.

International Journal of Computer and Communication Engineering

254 Volume 4, Number 4, July 2015

References

[1] Chaaban, K., & Leserf, P. (2009). Simulation of a steer-by-wire system using FlexRay-based ECU

network. Proceedings of International Conference on Advances in Computational Tools for Engineering

Applications (pp. 21-26).

[2] Schneider, R., Goswami, D., Zafar, S., & Chakraborty, S. (2011). Constraint-driven synthesis and

tool-support for FlexRay-based automotive control systems. Proceedings of the 9th International

Conference on Hardware/Software Codesign and System Synthesis (pp. 139-148).

[3] Hagiescu, A., Bordoloi, U. D., Chakraborty, S., Sampath, P., et al. (2007). Performance analysis of FlexRay

based ECU networks. Proceedings of the 44th Annual Design Automation Conference (pp. 284-289).

[4] Stroop, J., & Stolpe, R. (2006). Prototyping of automotive control systems in a time-triggered

environment using FlexRay. Proceedings of the IEEE Conference on Computer Aided Control Systems

Design (pp. 2332-2337).

[5] Tian, G., Bai, P., & Chen, Q. (2008). Response time analysis of FlexRay communication in fuel cell hybrid

vehicle. Proceedings of Vehicle Power and Propulsion Conference (pp. 1-4).

[6] Schmidt, E. G., Alkan, M., Schmidt, K., Yürüklü, E., & Karakaya, U. (2010). Performance evaluation of

FlexRay/CAN networks interconnected by a gateway. Proceedings of International Symposium on

Industrial Embedded Systems (pp. 209-212).

[7] Garshol, L. M. (2005). EBNF: What are they and how do they work. Acedida Pela úLtima Vez Em, 16.

[8] Kastner, W., & Kastner-Masilko, F. (2004). EDDL inside FDT/DTM. Proceedings of IEEE International

Workshop on Factory Communication Systems (pp. 365-368).

[9] Buehrer, G., Weide, B. W., & Sivilotti, P. A. G. (2005). Using parse tree validation to prevent SQL injection

attacks. Proceedings of the Int. Workshop on Software Engineering and Middleware (pp. 106-113).

Chu Liu was born in Fujian, China in July 1985. He is now a PhD research student in Clean

Energy Automotive Engineering Center of Tongji University in Shanghai, China. His major

field of study is automotive network technology. He received his master’s degree in

automotive engineering from Tongji University in Shanghai, China, 2011.

His research interests include automotive network communication, vehicle to vehicle

communication, and intelligent vehicle.

Feng Luo received his PhD degree in aircraft control engineering from Northwestern

Polytechnical University in 2000. From 2000 to 2002, he did his postdoctoral research

work in the Department of Automotive Engineering of Tsinghua University. He joined

Tongji University in 2002, he is now a professor in automotive engineering study of

Tongji University.

His research interests include automotive networks, automotive electronic system

control, and vehicle to vehicle communication.

Yunge Qu was born in Jilin, China in December 1988. She is now a master student in

Tongji University in Shanghai, China. She received her bachelor’s degree in automation

from Jilin University in 2012.

Her research interests include automotive network communication and FlexRay bus.

International Journal of Computer and Communication Engineering

255 Volume 4, Number 4, July 2015

