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Abstract: In this paper, we present a new framework to verify cryptographic protocols statically for the 

property of confidentiality using the witness-functions. A witness-function is a reliable metric able to prove 

confidentiality in a cryptographic protocol by measuring security in it. Here, we present the theory of 

witness-functions and we run an analysis on the flawed version of the Woo-Lam protocol using one of these 

metrics. 
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1. Introduction 

Cryptographic protocols are short programs intended to ensure some security properties in 

communications using cryptographic primitives. Designing a secure protocol is a hard problem [1]-[8]. In 

fact, many security bugs have been uncovered in lots protocols too many years after of their use [9]-[14]. 

The man-in-the-middle attack is one of them. It is therefore crucial to obtain a formal token that a protocol 

is secure for the properties that it must ensure. For that, many verification methods had been introduced to 

analyze security inside protocols [15]-[27]. In this paper we pose a new static framework for measuring 

security in protocols that we instilled recently in [28]-[32] using the witness-functions. A witness-function 

is a mathematical function built locally in the protocol. It could be used to observe the evolution of every 

atomic message in order to verify that its level of security never falls down in all protocol steps. If a protocol 

is designed that way, we can conclude that it is secure with respect to confidentiality. A witness-function 

bases its calculation fully on the static part of a message (static neighborhood) in a role-based specification 

[26], [33], [34] and ignores the dynamic one (dynamic neighborhood) by construction. It provides two 

elegant and practical bounds that enable to analyze a protocol on an unbounded number of sessions and 

with no restriction on the size of valid traces. Here we give the theoretical foundation of the 

witness-functions and we run an analysis on the flawed version of the Woo-Lam protocol using one of them. 

We show that it can help to describe the flaw in it.  

2. Confidentially Inside Increasing Protocols 

To analyze a protocol, we need verification functions to reasonably assess the level of security of all 
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atomic messages. Indeed, if a verification function mistakes the level of security of a single atomic message, 

this may lead to bad conclusions regarding the protocol security. We call a good verification function a 

reliable function. If the level of security of every atomic message in the protocol, assessed by a reliable 

verification functions, never drops, we say that the protocol is increasing. Here, we give general sufficient 

conditions [28] for a verification function to be reliable. Then, we state that an increasing protocol is secure 

with respect to confidentiality. 

2.1. Reliable Verification Functions 

Definition 2.1, [Well-Formed verification Function]: 

Let 𝜑 be a verification function and C be a context of verification, 𝜑 is well–formed in C if: 

 

∀𝑀, 𝑀1, 𝑀2 ⊆ ℳ, ∀α∈Α(ℳ) {

(, {}) = 

(, 𝑀1∪ 𝑀2) = (𝛼,𝑀1 ) ⊓ 𝜑(𝛼,𝑀2)

(, 𝑀) = ⊤, if  ∉ 𝒜(𝑀)
 

 

A well-formed verification Function 𝜑 should return the infimum "" for an atom 𝛼 that appears in 

clear in 𝑀. It returns for it in the union of two sets, the minimum "⊓" of the two values assessed in each set 

separately. It returns the supremum "⊤" for any atom α that does appear in 𝑀. 

Definition 2.2, [Stable-by-Intruder Verification Function]: 

Let 𝜑 be a verification function and C be a context of verification, 𝜑 is stable-by intruder in C if: 

 

∀ Μ ⊆ ℳ, 𝓂∈ℳ.𝑀 ⊨ 𝒸 𝓂 ⟹ ∀𝛼 ∈ 𝒜(𝓂). (𝜑(𝛼,𝓂)  ⊒ 𝜑(𝛼,𝑀)) ∨ (⌈𝐾⌉(Ι)  ⊒ ⌈𝛼⌉) 

 

A Stable-by-Intruder verification Function ' is such that, when it assigns a security level to an atom _ in a 

set of messages Μ  the intruder can never derive, using her knowledge, from Μ another message 𝓂 in 

which this level drops (i.e. 𝜑(𝛼,𝓂) ⋣  𝜑(𝛼,𝑀)), unless  𝛼  is initially intended to the intruder (i.e. 

⌈𝐾⌉(𝛪)  ⊒ ⌈𝛼⌉). 

Definition 2.3, [Reliable Verification Function]: 

Let 𝜑 be a verification function and C be a context of verification. 

 

𝜑 is C-reliable, if {
𝜑 is well formed in 𝐶

     𝜑 is stabled by intruder in 𝐶 
 

 

A reliable verification function 𝜑 is stable-by-intruder and well-formed. 

Definition 2.4, [𝜑-Increasing Protocol]: 

Let 𝜑 be a verification function, C be a context of verification and 𝑝 be a protocol, 𝑝 is 𝜑- Increasing in 

𝐶 if ∀𝑅. 𝑟 ∈ 𝑅𝐺(𝑝)∀ℴ ∈ 𝛤: 𝛸 ⟶ℳ𝑝  we have: 

 

∀α∈𝒜(ℳ). 𝜑(𝛼, 𝑟+𝜎) ⊒ ⌈𝛼⌉ ⊓  𝜑(𝛼, 𝑅−𝜎) 

 

A 𝜑-Increasing protocol is a protocol that produces immutably valid traces with atoms having all the time 

a level of security, assessed by 𝜑, higher on sending (i.e. in 𝑟+𝜎), than it was on reception (i.e. in 𝑅−𝜎). 

Definition 2.5, [Secret Divulgation]: 

Let 𝑝 be a protocol and C be a context of verification. We say that 𝑝 reveals a secret 𝛼 ∈ 𝒜(ℳ) in C if: 

 

∃𝑝 ∈ ⟦𝑝⟧. (𝑝 ⊨ 𝑐 𝛼)⋀(⌈𝐾(𝐼)⌉ ⋣ ⌈𝛼⌉) 
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A secret divulgation is the fact that the intruder manipulates a valid trace ϱ, using her capacity, to derive a 

secret α that she should not know (i.e. ⌈𝐾(𝐼)⌉ ⋣ ⌈𝛼⌉). 

Proposition 2.6: 

Let 𝜑 be a C-Reliable verification function and 𝑝a 𝜑-Increasing Protocol. We have: 

 

8m ∀𝓂 ∈ℳ.𝑝  ⊨ 𝑐 𝓂 ⇒ ∀α ∈ 𝒜(𝓂). (𝜑(𝛼, 𝓂) ⊒ 𝛼) ∨ (𝐾(𝐼) ⊒ 𝛼 

 

The Proposition 2.6 asserts that the level of security of an atom α in a message m generated by an 

increasing protocol and assessed by a reliable verification function 𝜑 is maintained higher than its initial 

value in the context, if the atom is not initially destined to the intruder. Indeed, initially the atom has a given 

level of security. This level cannot be decreased by the intruder using her capacity and received messages 

because a reliable function is Stable-by-Intruder. Besides, in every new step of the evolution of the valid 

trace, involved atoms have higher level of security assessed by 𝜑 since the protocol is 𝜑-increasing. The 

proof is then directed by induction on the size of the trace. 

Theorem 2.7, [Security of Increasing Protocols]: 

Let 𝜑 be a C -Reliable verification Function and 𝑝 a 𝜑-increasing protocol. 

𝑝 is C -secure with respect to confidentiality. 

The Theorem 2.7 states that an increasing protocol is secure with respect to confidentiality when 

analyzed with a reliable function 𝜑. The proof of the Theorem 2.7 derives directly from the Proposition 6 

and the Definitions 2.1 and 2.5. For further details on the proof, please see [28]-[32]. 

3. Reliable Verification Functions  

We define in [29], [32] a class 𝑆𝐺𝑒𝑛
𝐸𝐾  of reliable selection-based verification functions. A selection 

𝑆 ∈ 𝑆𝐺𝑒𝑛
𝐸𝐾  returns for an atom 𝛼 in a message 𝓂: 

1) If α is encrypted by a key 𝑘, where k is the most external key that satisfies to ⌈𝑘−1⌉ ⊒ ⌈𝛼⌉(or simply 

the external protective key), a subset among the reverse form 𝑘−1 and atoms that travel with 𝛼 

under the same protection by k (𝛼 itself is not selected); 

2) For two messages joined by an operation other than an encryption by a protective key (e.g. pair), the 

union of two subselections in the two messages separately; 

3) If 𝛼 does not have a protective key in m, the infimum value (all atoms); 

4) If 𝛼 does not appear in m, the supremum value (the empty set). 

We prove that any 𝑆 ∈ 𝑆𝐺𝑒𝑛
𝐸𝐾  is C -reliable. 

Among the elements of  𝑆𝐺𝑒𝑛
𝐸𝐾 , we define three practical selections: 

1) The selection 𝑆𝑀𝐴𝑋
𝐸𝐾  : returns for an atom 𝛼 in a message having the key 𝑘 as an external protective, 

all the principal identities inside the same protection by 𝑘, in addition to the key 𝑘−1; 

2) The selection 𝑆𝐸𝐾
𝐸𝐾 : returns for an atomαin a message m having as an external protective key 𝑘, the 

key 𝑘−1; 

3) The selection 𝑆𝑁
𝐸𝐾: returns for an atom 𝛼 in a message m having as an external protective key 𝑘, all the 

principal identities inside the same protection by 𝑘; 

These selections when composed to a proper homomorphism ψ render reliable verification functions φ = 

ψ ο S. 

We choose the homomorphism that returns for: 

1) A principal, its identity; 

2) The key 𝑘−1, if selected, the set of principals that know it in the context. 

We denote by 𝜑𝑀𝐴𝐾
𝐸𝐾 , 𝜑𝐸𝐾

𝐸𝐾 and 𝜑𝑁
𝐸𝐾 respectively the compositions 𝜓 𝜊 𝑆𝑀𝐴𝑋

𝐸𝐾 , 𝜓 𝜊 𝑆𝐸𝐾
𝐸𝐾 and  𝜓 𝜊 𝑆𝑁

𝐸𝐾. We 
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prove that these functions are C-reliable. The main idea of the proof is that the selection for protected atoms 

(secrets) is always performed inside an invariant area protected by the external protective keyk. Hence, to 

alter this area (to decrease the level of security of an atom 𝛼), the intruder should have derived the atomic 

key 𝑘−1 before. In this case, her knowledge should necessarily satisfy ⌈𝐾(𝐼)⌉ ⊒  ⌈𝑘−1⌉. Since the key 𝑘−1 

satisfies ⌈𝑘−1⌉ ⊒ ⌈𝛼⌉, then the knowledge of the intruder must satisfy ⌈𝐾(𝐼)⌉ ⊒ ⌈𝛼⌉ too by transitivity of the 

relation "⊒" in the lattice, which is the definition of a Stable-by-Intruder function. These functions are in 

addition Well-Formed by construction. So, they are C-reliable. For further details on the proof, please see 

[30]-[32]. In the rest of this paper, 𝜑 denotes any of the functions 𝜑𝑀𝐴𝐾
𝐸𝐾 , 𝜑𝐸𝐾

𝐸𝐾 and  𝜑𝑁
𝐸𝐾. 

Example: 

Let 𝛼 be an atom, m a message and 𝑘𝑎𝑏a key such that ⌈𝛼⌉ ={A, B, S}, m= {A. C. { ⌈α⌉.𝐷} 𝑘𝑎𝑠}𝑘𝑎𝑏; 𝑘ab
−1 =

𝑘𝑎𝑏, 𝑘as
−1 = 𝑘𝑎𝑠;  ⌈𝑘𝑎𝑆⌉={A, S}, ⌈𝑘𝑎𝑏⌉ = {𝐴, 𝐵}; 

 

𝑆𝐸𝐾
𝐸𝐾(𝛼,𝑚) = {𝑘𝑎𝑏

−1}; 𝑆𝑁
𝐸𝐾(𝛼,𝑚) = {𝐴, 𝐶, 𝐷}; 𝑆𝑀𝐴𝑋

𝐸𝐾 (𝛼,𝑚) = {𝐴, 𝐶, 𝐷, 𝑘𝑎𝑏
−1}; 

 

𝜑𝐸𝐾
𝐸𝐾(𝛼,𝑚) = 𝜓 𝜊 𝑆𝐸𝐾

𝐸𝐾(𝛼,𝑚) = 𝑘𝑎𝑏 = {𝐴, 𝐵}; 𝜑𝑁
𝐸𝐾(𝛼,𝑚) =  𝜓 𝜊 𝑆𝑁

𝐸𝐾(𝛼,𝑚) = {𝐴, 𝐶, 𝐷}; 𝜑𝑀𝐴𝑋
𝐸𝐾 (𝛼,𝑚)

=  𝜓 𝜊 𝑆𝑀𝐴𝑋
𝐸𝐾 (𝛼,𝑚) = {𝐴, 𝐶, 𝐷} ⊓ ⌈𝑘𝑎𝑏

−1⌉ = {𝐴, 𝐶, 𝐷} ∪ {𝐴, 𝐵} = {𝐴, 𝐶, 𝐷, 𝐵} 

 

4. The Witness-Functions 

The verification functions defined previously are good to verify a protocol through its valid traces (closed 

messages). Unfortunately, the set of valid traces is infinite. A static verification should be run on the finite 

set of generalized roles. But, the generalized roles contain variables and our functions are not ready to deal 

with this problem. Here, we propose a safe way to use these functions on generalized roles. First, in order to 

reduce variable effects, we introduce the notion of derivative messages that are messages from which we 

remove variables as described in the Definition 4.1. 

Definition 4.1, [Derivation]: 

We define the derivative message as follows: 

 

𝜕𝑋 𝛼 = 𝛼 

𝜕𝑋 𝜖 = 𝜖 

𝜕𝑋 𝑋 = 𝜖 

𝜕𝑋 𝑌 = 𝑌 

𝜕{𝑋} 𝑚 = 𝜕𝑥𝑚  

𝜕[𝑋]𝑚 = 𝜕{𝑥𝑚\𝑋}𝑚 

𝜕𝑋 𝑓(𝑚) = 𝑓(𝜕𝑋 𝑚),𝑓 ∈  Σ 

𝜕𝑠1∪𝑠2𝑚 = 𝜕𝑠1𝜕𝑠2𝑚 

𝜕𝑠1∪𝑠2𝑚 = 𝜕𝑠2∪𝑠1𝑚 

 

Then, we apply any of the previous functions 𝜑 to derivative message instead of the message with 

variables. For an atom of the static part (i.e. in 𝜕m) we analyze it with no regard to variables at all. For a 

variable, it is analyzed as a constant block with no regard on its content and with no respect to other 

variables in the message, if any. Hence, every component is calculated according to the static neighborhood 

only. This is described by the Definition 4.2. For any secret, a reliable function φ applied to derivative 

messages preserves its property of reliability since its associative selection might just ignore some 

candidates (principal identities that come dynamically by variable substitution), but remains a 
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sub-selection of  𝑆𝐺𝑒𝑛
𝐸𝐾 , so reliable 

Definition 4.2: 

Let m ∈ ℳ𝑃
𝒢

, X ∈ Xm and mσ be a valid trace. 

For all α ∈ A(mσ), σ ∈ Γ, we denote by: 

 

𝜑(𝛼, 𝜕[𝛼]𝑚𝜎)  = {
𝜑(𝛼, 𝜕𝑚)if 𝛼 ∈  𝐴(𝜕𝑚),

𝜑(𝑋, 𝜕[𝑋]𝑚)  if 𝛼 ∉  𝐴(𝜕𝑚) and 𝛼 =  𝑋𝜎.
 

 

Example 4. 3: 

Let  𝑚1 and 𝑚2 be two messages of a generalized role of a protocol p such that  𝑚1 = {α.C.X}𝑘𝑎𝑏 and 

 𝑚2 = {α. Y} 𝑘𝑎𝑏 and ⌈𝛼⌉= {A, B, S} and ⌈𝑘𝑎𝑏
−1⌉ = {A, B, S}. Let m = {α.C.B} 𝑘𝑎𝑏 be in a valid trace generated by 

p. 

 
 

𝜑𝑀𝐴𝑋
𝐸𝐾 (𝛼, 𝜕[𝛼]𝑚) = {

{𝐴, 𝐵, 𝑆, 𝐶} if 𝑚 =  𝑚1𝜎1|𝑋𝜎1 =  𝐵

{𝐴, 𝐵, 𝑆} if 𝑚 =  𝑚2𝜎2|𝑌𝜎2  =  𝐶. 𝐵
 

 

Therefore, 𝜑𝑀𝐴𝑋
𝐸𝐾 (𝛼, 𝜕[𝛼]𝑚) is not even a function on 𝑚 since it could return more than one image for 

the same atom 𝛼. 

To solve this problem, we define the witness-functions. A witness-function as described in the Definition 

4.4 considers all the sources of a closed message mσ in the finite set of generalized roles  𝑀𝑝
𝑔

 and takes the 

minimum. This minimum naturally exists and is unique in a lattice. 

Definition 4.4, [Witness-Function]: 

Let 𝓂 ∈ 𝑀𝑝
𝒢

, X Xm and mσ be a valid trace. Let p be a protocol and φ be a C-reliable verification 

Function. We define a witness-function Φ𝑝 , 𝜑 for all α  A(mσ), σ  Γ, as follows: 

 

Φp , φ(α, mσ) = ⊓  𝜑(𝛼,𝜕[𝛼]𝓂′𝜎 ′) 

𝓂′ ∈ ℳ𝑃
𝒢

 
∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑚𝜎  

 

We notice that a witness-function depends on the set of sources of 𝑚𝜎 , (i.e. the 

set{𝓂′ ∈ ℳ𝑃
𝒢
|∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑚𝜎 }). So it depends on the substitution 𝜎 that is not known statically. For 

that, we bind the witness-function in two bounds that are independent of any substitution in order to be 

able to verify a protocol statically, with no regard to its runs. These bounds are given by the Proposition 4.5. 

Proposition 4.5: 

Let 𝑚 ∈ℳ𝑃
𝒢

, let ϕp, φ be a witness-function. For all σ ∈ Γ we have: 

 

𝜑(𝛼,𝜕[𝛼]𝓂)  ⊒  Φ𝑝 , 𝜑(𝛼,mσ)  ⊒ ∪  𝜑(𝛼,𝜕[𝛼]𝓂′𝜎 ′) 

 𝓂′ ∈ ℳ𝑃
𝒢

 
∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑚𝜎 ′ 

 

The proof of the Proposition 4.5 is trivial since we have always 𝓂 ∈ {𝓂′ ∈ ℳ𝑃
𝒢
|∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑚𝜎 } 

and {𝓂′ ∈ ℳ𝑃
𝒢
|∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑚𝜎 }  ∈ {𝓂′ ∈ ℳ𝑃

𝒢
|∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑚𝜎 ′ } . The upper bound (the 

tighter) provides a minimal set of confirmed principals whereas the lower bound (the looser) provides the 

set of all possible principals in all the likely runs of a protocol. This latter contains, in addition to the honest 
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principals, all possible intrusions, if any. It is an intrusion trap. 

Theorem 4.6, [Protocol Analysis Theorem]: 

Let p be a protocol. Let 𝜙𝑝,𝜑 be a witness-function. p is secure for the property of confidentiality if: 

∀ R, r ∈ 𝑅𝐺 (𝒫), ∀𝛼(𝑟+) we have: 

 

⊓  𝜑(𝛼,𝜕[𝛼]𝓂′𝜎 ′)  ⊒  ⌈𝑎⌉  ⊓  𝜑(𝛼,𝜕[𝛼]𝑅−) 

 𝓂′ ∈ ℳ𝑃
𝒢

 
 ∃𝜎 ′ ∈  𝛤,𝓂′𝜎 ′ = 𝑟+𝜎 ′ 

 

The proof derives directly from the Proposition 4.5 and the Theorem 2.7. The Theorem 4.6 sets a criterion 

for protocol growth, so correctness with a witness-function using its bounds. Since these bounds do not 

depend on substitutions, then we can now, and only now, verify a protocol through its set of generalized 

roles and extend any conclusion to the traces.  

Although, the application given in the Definition 4.2 is naturally independent of any substitution in 𝑚, 

using it to verify protocols is an error-prone process. Let us see that in the following example. 

5. Case Study: Verification of the Woo-Lam Protocol (Flawed Version) Using a 
Witness-Function 

In this section, we run an analysis of the flawed version of the Woo-Lam protocol using the 

witness-function 𝜙𝑝, 𝜑𝑀𝐴𝐾
𝐸𝐾 . The flawed version of the Woo-Lam protocol is denoted by p and defined in 

Table 1. 

 

Table 1. The Woo-Lam Protocol 

 

 

The role-based specification of p is 𝑅𝐺 (𝑝), = {𝒜𝐺,
1 𝒜𝐺,

2 ℬ𝐺,
1 ℬ𝐺,

2 ℬ𝐺,
3 𝒮𝐺

1}, where the generalized roles 𝒜𝐺,
1 𝒜𝐺,

2 , of 

A are as follows: 

 

𝒜𝐺
1 = 〈𝑖. 1, 𝐴 → 𝐼(𝐵) ∶ 𝐴〉 

 

𝒜𝐺
2  =  〈𝑖. 1, 𝐴 → 𝐼(𝐵) ∶ 𝐴〉 

 〈𝑖. 2, 𝐼(𝐵)  →  𝐴 ∶ 𝑋〉 

〈𝑖. 3, 𝐴  𝐼(𝐵) →  𝐼(𝐵): {𝑋. 𝑘𝑎𝑏
𝑖 }𝑘𝑎𝑠  〉 

 

The generalized roles ℬ𝐺,
1 ℬ𝐺,

2 ℬ𝐺,
3  are as follows: 

 

ℬ𝐺 
1 = 〈𝑖. 1, 𝐼(𝐴)  → 𝐵 ∶ 𝐴〉 
〈𝑖. 2, 𝐵 →  𝐼(𝐴) ∶ 𝑁𝑏

𝑖〉 
 

ℬ𝐺 
2  = 〈𝑖. 1, 𝐴 → 𝐵 ∶ 𝐴〉  

 〈𝑖. 2, 𝐵 →  𝐼(𝐴):𝑁𝑏
𝑖〉  

 〈𝑖. 3, 𝐼(𝐴)  →  𝐵: 𝑌〉 

 〈4, 𝐵 →  𝑆 ∶  {𝐴. { 𝑁𝑏. 𝑘𝑎𝑏} 𝑘𝑎𝑠}𝑘𝑏𝑠〉 
〈5, 𝑆 →  𝐵 ∶  {𝑁𝑏 . 𝑘𝑎𝑏 }𝑘𝑏𝑠〉 

p= 〈1, 𝐴 →  𝐵 ∶  𝐴〉. 
〈2,𝐵 →  𝐴 ∶  𝑁𝑏〉. 
〈3, 𝐴 →  𝐵 ∶  {𝑁𝑏 . 𝑘𝑎𝑏} 𝑘𝑎𝑠〉  
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〈𝑖. 4, 𝐵 →  𝐼(𝑆) ∶ {𝐴. 𝑌}𝑘𝑏𝑠〉 
 

ℬ𝐺 
3 = 〈𝑖. 1, 𝐴 → 𝐵 ∶ 𝐴〉 
〈𝑖. 2, 𝐵 →  𝐼(𝐴):𝑁𝑏

𝑖〉 
〈𝑖. 3, 𝐼(𝐴) →  𝐵: 𝑌〉 

〈𝑖. 4, 𝐵 →  𝐼(𝑆): {𝐴. 𝑌}𝑘𝑏𝑠〉 

 〈𝑖. 5, 𝐼(𝑆)  → 𝐵 ∶ {𝑁𝑏
𝑖 . 𝑍}𝑘𝑏𝑠〉 

 

The generalized roles 𝒮𝐺
1 are as follows: 

 

𝒮𝐺
1 = 〈𝑖. 4, 𝐵 → {𝐴: {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠〉  

〈𝑖. 5, 𝑆 → 𝐼(𝐵) ∶ {𝑈. 𝑉}𝑘𝑏𝑠〉 
 

Let us have a context of verification such that: ⌈𝑘𝑎𝑠⌉ = {A, S};⌈𝑘𝑏𝑠⌉ = {B, S}; ⌈𝑘𝑏
𝑖 ⌉= {A, B, S}; ⌈𝑁𝑏

𝑖⌉ = ⊥; ∀A 

∈I, ⌈𝐴⌉ = ⊥. 

The principal identities are not verified since they are set public in the context. 

Let 𝜑 = 𝜑𝑀𝐴𝑋; 
𝐸𝐾 𝛷𝑝,𝜑 = 𝛷𝑝,𝜑𝑀𝐴𝑋𝐸𝐾 ; 

We denote by Φ′
𝑝,𝜑(𝑎,𝑚) the lower bound: ⊓  𝜑(𝛼,𝜕[𝛼]𝓂′𝜎 ′) of the witness-function 𝛷𝑝,𝜑(𝑎,𝑚) 

 

 𝓂′ ∈ ℳ𝑃
𝒢

 
∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑚𝜎 ′ 

 

Let 

 

𝑀𝒫 
𝒢
= {𝐴1 , 𝑋1 , {𝑋2. 𝑘𝐴2𝐵1

𝑖 }𝑘𝐴2𝑆1 , 𝐴3, 𝑁𝐵2
𝑖 , 𝑌1, {𝐴4. 𝑌1}𝑘𝐵3𝑆2 , {𝑁𝐵4

𝑖 . 𝑍1}𝑘𝐵4𝑆3 , {𝐴5. {𝑈1. 𝑉1}𝑘𝐴5𝑆4}𝑘𝐵5𝑆4 , {𝑈2. 𝑉2}𝑘𝐵6𝑆5} 

 

After elimination of duplicates 𝑀𝒫 
𝒢
= {𝐴1 , 𝑋1 , {𝑋2. 𝑘𝐴2𝐵1

𝑖 }𝐾𝐴2𝑆1 , 𝑁𝐵2
𝑖 , 𝑌1, {𝐴4. 𝑌1}𝐾𝐵3𝑆2 , {𝑁𝐵4

𝑖 . 𝑍1}𝐾𝐵4𝑆3 ,

{𝐴5. {𝑈1. 𝑉1}𝑘𝐴5𝑆4}𝐾𝐵5𝑆4 , {𝑈2. 𝑉2}𝐾𝐵6𝑆5} 

The variables are denoted by 𝑋1 , 𝑋2  𝑌1 , 𝑍1 , 𝑈1 , 𝑈2 , 𝑉1  and 𝑉2 . 

The static names are denoted by 𝐴1 , 𝐴2 , 𝐵1 , 𝐾𝐴2𝑆1  , 𝑁𝐵2
𝑖 , 𝐴4 , 𝐾𝐵3𝑆2  , 𝑁𝐵4

𝑖
 
, 𝐾𝐵4𝑆3  , 𝐴5 , 𝐾𝐴5𝑆4  , 𝐾𝐵5𝑆4  

and 𝐾𝐵6𝑆5  . 

5.1. Verification of the Generalized Role of A 

As defined in the generalized role of A, an agent A can participate in some session 𝑆𝑖 in which she 

receives an unknown message X and sends the message {𝑋. 𝑘𝑎𝑏
𝑖 }𝑘𝑎𝑠 . This is described by the following rule: 

 

𝑆𝑖 ∶  
𝑋

{𝑋. 𝑘𝑎𝑏
𝑖 }𝑘𝑎𝑠 

 

 

1) For 𝑘𝑎𝑏
𝑖 : 

 When receiving: 𝑅
𝑆𝑖
− = 𝑋 (on receiving, we use the upper bound) 

 

𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] 𝑋) = ⊤(1.0) 

 

 When sending: 𝑟
𝑆𝑖
+ = {𝑋. 𝑘𝑎𝑏

𝑖 }𝑘𝑎𝑠 , (on sending, we use the lower bound) 
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𝑘𝑎𝑏
𝑖 . {𝑚′ ∈  M𝒫 

𝒢
|∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = 𝑟

𝑆𝑖
+𝜎 ′} =  ∀𝑘𝑎𝑏

𝑖 . {𝑚′ ∈  M𝒫 
𝒢
|∃𝜎 ′ ∈  Γ,𝓂′𝜎 ′ = {𝑋. 𝑘𝑎𝑏

𝑖 }𝑘𝑎𝑠 𝜎 
′}

=  {({𝑋2. 𝑘𝐴2𝐵1
𝑖 }𝑘𝐴2𝑆1 , 𝜎1

′), ({𝐴4. 𝑌1}𝑘𝐵3𝑆2 , 𝜎2
′), ({𝑁𝐵4

𝑖 . 𝑍1}𝑘𝐵4𝑆3 , 𝜎3
′), ({𝑈2. 𝑉2}𝑘𝐵6𝑆5 , 𝜎4

′)}  

 

Such that: 
 

   

{
 
 

 
 
      𝜎1

′ = {𝑋2 ⟼ 𝑋, 𝑘𝐴2𝐵1 ⟼ 𝑘𝑎𝑏 , 𝑘𝐴2𝑆1  ⟼ 𝑘𝑎𝑠}

𝜎2
′ = {𝑋 ⟼ 𝐴4, 𝑌1 ⟼ 𝑘𝑎𝑏

𝑖 , 𝑘𝐴2𝑆1  ⟼ 𝑘𝑎𝑠}

𝜎3
′ = {𝑋 ⟼ 𝑁𝐵4

𝑖  , 𝑍1 ⟼ 𝑘𝑎𝑏
𝑖 , 𝑘𝐵4𝑆3 ⟼ 𝑘𝑎𝑠}

𝜎4
′ = {𝑈2 ⟼𝑋,𝑉2 ⟼ 𝑘𝑎𝑏

𝑖 , 𝑘𝐵6𝑆5 ⟼ 𝑘𝑎𝑠} 

 

 

Φ𝑝,𝜑
′ (𝑘𝑎𝑏

𝑖 , {𝑋. 𝑘𝑎𝑏
𝑖 }𝑘𝑎𝑠 )= {Definition of the lower bound of the Witness-Function} 

 

𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] {𝑋2. 𝑘𝐴2𝐵1
𝑖 }𝑘𝐴2𝑆1𝜎1

′) ⊓  𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] {𝐴4. 𝑌1}𝑘𝐵3𝑆2  𝜎2
′) ⊓ 𝜑 (𝑘𝑎𝑏

𝑖 ,𝜕 [𝑘𝑎𝑏
𝑖 ] {𝑁𝐵4

𝑖 . 𝑍1}𝑘𝐵4𝑆3𝜎3
′) ⊓

  𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] {𝑈2. 𝑉2}𝑘𝐵6𝑆5𝜎4
′)= {Renaming the static neighborhood} 

 

𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] {𝑋2. 𝑘𝑎𝑏
𝑖 }𝑘𝑎𝑠𝜎1

′) ⊓ 𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] {𝐴4. 𝑌1}𝑘𝑎𝑠𝜎2
′) ⊓  𝜑 (𝑘𝑎𝑏

𝑖 ,𝜕 [𝑘𝑎𝑏
𝑖 ] {𝑁𝐵4

𝑖 . 𝑍1}𝑘𝑎𝑠𝜎3
′) ⊓

 𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] {𝑈2. 𝑉2}𝑘𝑎𝑠𝜎4
′)= {Definition 4.2} 

 

𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ] {𝑋2. 𝑘𝑎𝑏
𝑖 }𝑘𝑎𝑠) ⊓ 𝜑(𝑌1,𝜕[𝑌1]{𝐴4. 𝑌1}𝑘𝑎𝑠) ⊓  𝜑(𝑍1,𝜕[𝑍1]{𝑁𝐵4

𝑖 . 𝑍1}𝑘𝑎𝑠)  ⊓

 𝜑(𝑉2,𝜕[𝑉2]{𝑈2. 𝑉2}𝑘𝑎𝑠)= {Derivation in the Definition 4.1} 

 

𝜑(𝑘𝑎𝑏
𝑖 , {𝑘𝑎𝑏

𝑖 }𝑘𝑎𝑠) ⊓  𝜑(𝑌1, {𝐴4. 𝑌1}𝑘𝑎𝑠)  ⊓  𝜑(𝑍1, {𝑁𝐵4
𝑖 . 𝑍1}𝑘𝑎𝑠)  ⊓  𝜑(𝑉2, {𝑉2}𝑘𝑎𝑠) = {Since φ =φ𝑀𝐴𝑋

𝐸𝑋 } 

 

{𝐴, 𝑆} ∪ {𝐴4, 𝐴, 𝑆} ∪ {𝐴, 𝑆} ∪ {𝐴, 𝑆} =  {𝐴, 𝑆, 𝐴4}                   (5.1.1) 

 

2) ∀ X: 

Since when receiving, we have  𝜑(𝑋,𝜕{𝑋}𝑋) = 𝜑(𝑋, 𝑋) = ⊥, then we derive:  

 

Φ𝑝,𝜑
′ (𝑋, {𝑋. 𝑘𝑎𝑏

𝑖 }𝑘𝑎𝑠 ) ⊒  ⌈𝑋⌉ ⊓  𝜑(𝑋,𝜕{𝑋}𝑋) = ⊥                   (5.1.2) 

 

3) Compliance with the security criterion in the theorem 4.6: 

From (5.1.1) and (5.1.2), we have 

 

Φ𝑝,𝜑
′ (𝑘𝑎𝑏

𝑖 , {𝑋. 𝑘𝑎𝑏
𝑖 }𝑘𝑎𝑠) =  {𝐴, 𝑆, 𝐴4}  ⋣  ⌈𝑘𝑎𝑏

𝑖 ⌉ ⊓ 𝜑 (𝑘𝑎𝑏
𝑖 ,𝜕 [𝑘𝑎𝑏

𝑖 ]𝑋) = {𝑆, 𝐴, 𝐵, }            (5.1.3) 

 

From (5.1.3), we have: the messages of the session 𝑆𝑖  (i. e. 𝑘𝑎𝑏
𝑖  ) are not compliant with the security 

criterion in the Theorem 4.6. (I). 

5.2. Verification of the Generalized Role of 𝑩 

As defined in the generalized roles of 𝐵, an agent 𝐵 can participate in two consequent sessions: 𝑆𝑖 and 

𝑆𝑗 such that j > i. In the former session 𝑆𝑖, the agent  𝐵 receives the identity A and sends the nonce 𝑁𝑏
𝑖 . In 

the consequent session 𝑆𝑗 , she receives an unknown message 𝑌 and she sends the message {𝐴. 𝑁𝑏
𝑖 . 𝑌}𝑘𝑏𝑠. 
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This is described by the following rules: 

 

𝑆𝑖 ∶  
𝑋

𝑁𝑏
𝑖        𝑆

𝑗 :   
𝑌

{𝐴. 𝑌}𝑘𝑏𝑠
 

 

5.2.1. Verification of the messages in the session 𝑺𝒊: 

1) For 𝑁𝑏
𝑖 : 

Since 𝑁𝑏
𝑖  is declared public in the context (𝑖. 𝑒.  ⌈𝑁𝑏

𝑖⌉ = ⊥), then we derive: 

 

Φ𝑝,𝜑
′ (𝑁𝑏

𝑖 , 𝑁𝑏
𝑖)  ⊒  ⌈𝑁𝑏

𝑖⌉  ⊓  𝜑 (𝑁𝑏
𝑖 ,𝜕 [𝑁𝑏

𝑖 ]𝐴) =⊥                    (5.2.1) 

 

5.2.2. Verification of the messages in the session 𝑺𝒋: 

1) ∀𝑌:  

Since when receiving, we have: 𝜑(𝑌,𝜕[𝑌]𝑌) = 𝜑(𝑌. 𝑌) =⊥, then we derive: 

 

Φ𝑝,𝜑
′ (𝑌, {𝐴. N𝑏

𝑖 . 𝑌}𝑘𝑏𝑠)  ⊒  ⌈𝑌⌉  ⊓  𝜑(𝑌,𝜕[𝑌]𝑌) =⊥                  (5.2.2) 

 

2) Compliance with the security criterion in the Theorem 4.6: 

From (5.2.1) and (5.2.2) we have: the messages of the session 𝑆𝑖 and 𝑆𝑗 respect the security criterion 

in the Theorem 4.6. (II) 

5.3. Verification of the Generalized Role of 𝑺 

As defined in the generalized role 𝑆, an agent 𝑆 can participate in some session 𝑆𝑖 in which she receives 

the message {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 and sends the message {𝑈. 𝑉}𝑘𝑏𝑠. This is described by the following rule: 

 

S𝑖 ∶  
{𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠

{𝑈. 𝑉}𝑘𝑏𝑠
 

 

1) ∀𝑈: 

 When receiving: 𝑅
𝑆𝑖 
− = {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (on receiving, we use the upper bound) 

 

φ(𝑈,𝜕[𝑈]{𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠) =  φ(𝑈, {𝐴. {𝑈}𝑘𝑎𝑠}𝑘𝑏𝑠) = 

 {
{𝐴. 𝐵. 𝑆}           if 𝑘𝑏𝑠 is the external protective of 𝑉 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (5.3.1.1)

{𝐴. 𝑆}                 if 𝑘𝑎𝑠 is the external protective of 𝑉 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (5.3.1.2)
         (5.3.1) 

 

 When sending: 𝑟
𝑆𝑖 
+ = {𝑈. 𝑉}𝑘𝑏𝑠  (on sending, we use the lower bound) 

 

∀𝑈. {𝑚′ ∈  𝑀𝒫 
𝒢
|∃𝜎 ′ ∈  𝛤,𝓂′𝜎 ′ = 𝑟

𝑆𝑖
+𝜎 ′} =  ∀U. {𝑚′ ∈  𝑀𝒫 

𝒢
|∃𝜎 ′ ∈  𝛤,𝓂′𝜎 ′ = {𝑈. 𝑉}𝑘𝑏𝑠𝜎 

′}  

= {{𝑋2. 𝑘𝐴2𝐵1
𝑖 }𝑘𝐴2𝑆1 , 𝜎1

′), ( {𝑈2 . 𝑉2}𝑘𝐵6𝑆5 , 𝜎2
′  )} 

 

Such that: 
 

{
𝜎1
′ = {𝑋2 ⟼𝑈,𝑉 ⟼ 𝑘𝐴2𝐵1

𝑖 , 𝑘𝐴2𝑆1 ⟼ 𝑘𝑏𝑠}

𝜎2
′ = {𝑈2 ⟼𝑈,𝑉2 ⟼𝑉,𝑘𝐵6𝑆5 ⟼ 𝑘𝑏𝑠}
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Φ𝑝,𝜑
′ (𝑈, {𝑈. 𝑉}𝑘𝑏𝑠)= {definition of the lower bound of the witness-function} 

 

𝜑(𝑈,𝜕[𝑈]{𝑋2. 𝑘𝐴2𝐵1
𝑖 }𝑘𝐴2𝑆1𝜎1

′ )  ⊓  𝜑(𝑈,𝜕[𝑈] {𝑈2 . 𝑉2}𝑘𝐵6𝑆5𝜎2
′  )= {Renaming the static neighborhood} 

 

𝜑(𝑈,𝜕[𝑈]{𝑋2. 𝑘𝐴2𝐵1
𝑖 }𝑘𝑏𝑠𝜎1

′ )  ⊓  𝜑(𝑈,𝜕[𝑈] {𝑈2 . 𝑉2}𝑘𝑏𝑠𝜎2
′  )= {Definition 4.2} 

 

𝜑(𝑋2,𝜕[𝑋2]{𝑋2. 𝑘𝐴2𝐵1
𝑖 }𝑘𝑏𝑠𝜎1

′ )  ⊓  𝜑(𝑈2 ,𝜕[𝑈2 ] {𝑈2 . 𝑉2}𝑘𝑏𝑠𝜎2
′  )= {Derivation in the Definition 4.1} 

 

𝜑(𝑋2, {𝑋2. 𝑘𝐴2𝐵1
𝑖 }𝑘𝑏𝑠 )  ⊓  𝜑(𝑈2 , {𝑈2 }𝑘𝑏𝑠 )= {Since 𝜑=𝜑MAX

EX } 

 

{𝐵, 𝑆}  ∪ {𝐵, 𝑆} =  {𝐵, 𝑆}                              (5.3.2) 

 

2) ∀𝑉: 

 When receiving: 𝑅
𝑆𝑖 
− = {A. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (on receiving, we use the upper bound) 

 

𝜑(𝑉,𝜕[𝑉]{𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠) =  𝜑(𝑉, {𝐴. {𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠) = 

 {
{𝐴, 𝐵, 𝑆}           if 𝑘𝑏𝑠 is the external protective key of 𝑉 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (5.3.3.1)

{𝐴. 𝑆}                 if 𝑘𝑎𝑠 is the external protective key of 𝑉 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (5.3.3.2)
       (5.3.3) 

 

 When sending: 𝑟
𝑆𝑖 
+ = {𝑈. 𝑉}𝑘𝑏𝑠  (on sending, we use the lower bound) 

 

∀V. {𝑚′ ∈  M𝒫 
𝒢
|∃𝜎 ′ ∈  Γ.𝓂′𝜎 ′ = 𝑟

𝑆𝑖
+𝜎 ′} 

= ∀V. {𝑚′ ∈  M𝒫 
𝒢
|∃𝜎 ′ ∈  Γ.𝓂′𝜎 ′ = {𝑈. 𝑉}𝑘𝑏𝑠𝜎 

′} 

= {{𝐴4. 𝑌1}𝑘𝐵3𝑆2 , 𝜎1
′), ( {𝑁𝐵4

𝑖 . 𝑍1}𝑘𝐵4𝑆3 , 𝜎2
′  ), ({𝑈2 . 𝑉2}𝑘𝐵6𝑆5 , 𝜎3

′)}  

 

Such that: 

 

{

𝜎1
′ = {𝑈 ⟼ 𝐴4, 𝑌1 ⟼𝑉,𝑘𝐵3𝑆2 ⟼ 𝑘𝑏𝑠}

𝜎2
′ = {𝑈 ⟼ 𝑁𝐵4

𝑖 , 𝑍1 ⟼ 𝑉, 𝑘𝐵4𝑆3 ⟼ 𝑘𝑏𝑠}

𝜎3
′ = {𝑈2 ⟼𝑈,𝑉2 ⟼𝑉,𝑘𝐵6𝑆5 ⟼ 𝑘𝑏𝑠}

 

 

Φ𝑝,𝜑
′ (𝑉, {𝑈. 𝑉}𝑘𝑏𝑠)= {definition of the lower bound of the witness-function} 

 

𝜑(𝑉,𝜕[𝑉]{𝐴4. 𝑌1}𝑘𝐵3𝑆2𝜎1
′) ⊓  𝜑(𝑉,𝜕[𝑉] {𝑁𝐵4

𝑖 . 𝑍1}𝑘𝐵4𝑆3𝜎2
′  )  ⊓  𝜑(𝑉,𝜕[𝑉] {𝑈2 . 𝑉2}𝑘𝐵6𝑆5𝜎3

′  )= {Renaming the 

static neighborhood} 
 

𝜑(𝑉,𝜕[𝑉]{𝐴4. 𝑌1}𝑘𝑏𝑠𝜎1
′) ⊓  𝜑(𝑉,𝜕[𝑉] {𝑁𝐵4

𝑖 . 𝑍1}𝑘𝑏𝑠𝜎2
′  )  ⊓  𝜑(𝑉,𝜕[𝑉] {𝑈2 . 𝑉2}𝑘𝑏𝑠𝜎3

′  )= {Definition 4.2} 

 

𝜑(𝑌1,𝜕[𝑌1]{𝐴4. 𝑌1}𝑘𝑏𝑠𝜎1
′) ⊓  𝜑(𝑍1,𝜕[𝑍1] {𝑁𝐵4

𝑖 . 𝑍1}𝑘𝑏𝑠𝜎2
′  )  ⊓  𝜑(𝑉2,𝜕[𝑉2] {𝑈2 . 𝑉2}𝑘𝑏𝑠𝜎3

′  )= {Derivation in the 

Definition 4.1} 
 

𝜑(𝑌1, {𝐴4. 𝑌1}𝑘𝑏𝑠)  ⊓  𝜑(𝑍1, {𝑁𝐵4
𝑖 . 𝑍1}𝑘𝑏𝑠 )  ⊓  𝜑(𝑉2, {𝑉2}𝑘𝑏𝑠 )= {Since 𝜑=𝜑MAX

EK } 

 

{𝐴4, 𝐵, 𝑆}  ∪ {𝐵, 𝑆} ∪ {𝐵, 𝑆} =  {𝐴4, 𝐵, 𝑆}                      (5.3.4) 
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3) Compliance with the security criterion in the Theorem 4.6

For any 𝑈, from (5.3.1) and (5.3.2) we have:

{
 
 

 
 Φ𝑝,𝜑

′ ({𝑈, {𝑈. 𝑉}𝑘𝑏𝑠}𝑘𝑏𝑠) = {𝐴, 𝐵, 𝑆} ⊒  ⌈𝑈⌉  ⊓ 𝜑(𝑈,𝜕[𝑈]{𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠) =

⌈𝑈⌉ ⊓ {𝐴, 𝐵, 𝑆}  if 𝑘𝑏𝑠 is the external protective key of 𝑈 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠(5.3.5.1)   

Φ𝑝,𝜑
′ ({𝑈, {𝑈. 𝑉}𝑘𝑏𝑠}𝑘𝑏𝑠) = {𝐴, 𝐵, 𝑆} ⋣  ⌈𝑈⌉  ⊓ 𝜑(𝑈,𝜕[𝑈]{𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠) =

⌈𝑈⌉ ⊓ {𝐴, 𝑆}  if 𝑘𝑎𝑠 is the external protective key of 𝑈 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (5.3.5.2)

   (5.3.5)

For any 𝑉, from (5.3.3) and (5.3.4) we have:

{
 
 

 
 Φ𝑝,𝜑

′ (𝑉, {𝑈. 𝑉}𝑘𝑏𝑠) = {𝐴4, 𝐵, 𝑆} ⋣  ⌈𝑉⌉ ⊓ 𝜑(𝑉,𝜕[𝑉]{𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠) =

⌈𝑉⌉ ⊓ {𝐴, 𝐵, 𝑆}  if 𝑘𝑏𝑠 is the external protective key of 𝑉 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠(5.3.6.1)   

Φ𝑝,𝜑
′ (𝑉, {𝑈. 𝑉}𝑘𝑏𝑠) = {𝐴4, 𝐵, 𝑆} ⋣  ⌈𝑉⌉ ⊓ 𝜑(𝑈,𝜕[𝑉]{𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠) =

⌈𝑉⌉ ⊓ {𝐴, 𝑆}  if 𝑘𝑎𝑠 is the external protective key of 𝑉 in {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 (5.3.6.2)

   (5.3.6)

From (5.3.5) and (5.3.6) we have: the messages of the session 𝑆𝑖 are not compliant with the security 

criterion in the Theorem 4.6 (III).

5.4. Discussion 

The verification results of the Woo and Lam protocol are given in Table 2.

From Table 2, we conclude that this version of the Woo-Lam protocol is not compliant with the security 

criterion in the Theorem 4.6. For this reason, we cannot make any conclusion concerning its confidentiality. 

All that we can say is: "If the protocol contains a law, it must be because of one of the security decay in the 

rows 1, 5 and 6 of Table 2.

Consistent with this conclusion, in the literature, we report a law in this protocol that exploits the decay 

of security of the variable 𝑉 in the generalized role of the server S as shown in the row 6 of Table 2. The 

attack scenario is described by Table 3. In fact, the server S may receive a message (the session key 𝑘𝑎𝑏
𝑖 ) 

substituting the variable 𝑉 in the message {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 such that it is protected by 𝑘𝑎𝑠 only (see 

(5.3.3.2)), after that he sends it encrypted by the key 𝑘𝑏𝑠 in the message {𝐴. {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠. This encryption 

key was not unfortunately enough strong to ensure its confidentiality in that message as shown in the 

statement (5.3.6.2).

Now that we are aware that this protocol involves this flaw, we can conclude by modus-tollens of the 

Theorem 4.6 that: "There is no hope to find any Witness-Function such that this protocol might be increasing 

using it".

Table 2. Compliance of the Woo-Lam Protocol with the Theorem 4.6
𝛼 Gen. Role 𝑅− 𝑟+ Theorem 4.6

1 𝑘𝑎𝑏 
𝑖 A X {𝑋. 𝑘𝑎𝑏 

𝑖 }𝑘𝑎𝑠 ✖

2 ∀X A X {𝑋. 𝑘𝑎𝑏 
𝑖 }𝑘𝑎𝑠 ✔

3 𝑁𝑏 
𝑖 B A 𝑁𝑏 

𝑖 ✔

4 ∀Y B Y {𝐴. 𝑌}𝑘𝑏𝑠 ✔

5 ∀U S {𝐴, {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 {𝑈. 𝑉}𝑘𝑏𝑠 ✖

6 ∀V S {𝐴, {𝑈. 𝑉}𝑘𝑎𝑠}𝑘𝑏𝑠 {𝑈. 𝑉}𝑘𝑏𝑠 ✖



  

Table 3. Attack Scenario in the Woo-Lam Protocol 

 
 

We conjecture that the amended version p’ of the Woo-Lam protocol given in Table 4 is secure for 

confidentiality and we prove this using the witness-functions in a future work. 

 

Table 4. The Woo and Lam Protocol (Amended Version) 

 
 

6. Related Works  

We compare our method of protocol verification by the witness-functions to the method by 

Interpretation Functions proposed by Houmani in [35]-[38] and the method by Rank-Functions proposed 

by Steve Schneider in [39] and the method by typing proposed by Abadi in [25], [40], [41]. We believe that 

our method is more efficient and flexible than Houmani’s one, simpler than Schneider's one and less 

restrictive than Abdi's one. We think that it can be used on wider range of protocols. 

7. Conclusion and Future Works 

In this paper, we presented a new framework for verifying cryptographic protocols statically using the 

witness-functions for the property of confidentiality. We tested them on the lawed version of the Woo-Lam 

protocol and we showed that they can even describe laws. In a future work, we intend to extend our 

witness-functions to authentication. In this respect, we believe that this property could be reached by 

slightly modifying the criterion set in the Theorem 4.6. 
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