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Abstract: A new car-following model is proposed based on Internet-connected vehicles. In this model, a 

vehicle is controlled by the information of arbitrary number of vehicles obtained from the 

Internet-connected vehicles system. The stability condition is investigated by using the linear stability 

theory. The result shows that the stability of traffic flow is improved by taking into account the headway of 

vehicles ahead and the relative velocity. By applying the nonlinear analysis, the modified Korteweg-de Vries 

(mKdV) equation is derived to describe the traffic jams. From the numerical simulation, it is shown that the 

traffic jams are suppressed efficiently by taking into account the headway of vehicles ahead and the relative 

velocity.  
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1. Introduction 

Traffic flow, especially of traffic jams, is an interesting problem. To understand the rich variety of 

vehicular traffic, many traffic flow models are proposed to describe traffic flow, such as car-following 

models, cellular automaton (CA) models, gas kinetic models and hydrodynamic models [1]-[19]. 

The advantage of car-following models is that we can easy analyze the analytical structure of the models. 

One car-following model is proposed and analyzed by Newell [20] and Whitham [21]. The optimal velocity 

(OV) model, another version of car-following model, is proposed by Bando et al [22] without introducing a 

delay time. The OV model successfully describes the dynamical formation of traffic jams and reveals the 

transition mechanism very simply. In the OV model, acceleration of vehicle is described by a simple 

differential equation using the optimal velocity function, which is depended on the headway (the distance 

between two successive vehicles), that is, the driver is supposed to look at the preceding car only. In more 

realistic situation, the driver considers more vehicles around him/her. From the viewpoint of control theory 

for traffic flow, that is important to suppress the formation of traffic congestion. So there have been many 

works to extending the OV model to more realistic traffic model [23]-[25]. 

The Internet-connected vehicles era comes based on the technologies of wireless network 

communication, GPS and other information technology. Vehicles can communicate with each other by 

vehicle to vehicle (V2V) communication and with roadside base stations by vehicle to infrastructure (V2I) 

communication in vehicular network [26]. Based on the fact that real-time systems of traffic information are 

becoming widely available, where each vehicle can receive information of other vehicles and then decide its 
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optimal behavior, the studies have been focused on how to use the information owned to suppress the 

appearance of traffic congestion efficiently. Hasebe et al. [27] discuss the property of the forward looking 

OV model, in which the headway of arbitrary number of vehicles that precede are considered. Ge et al. 

[28]-[29] discuss the stability condition of the model which take into account the headway of arbitrary 

number of vehicles ahead and derive the modified Korteweg-de Vries (mKdV) equation and Korteweg-de 

Vries (KdV) equation respectively. Li and Liu [30] introduce relative velocity of arbitrary number of vehicles 

ahead into the OV model and find that the stability of traffic flow is improved.  

The purpose of this paper is to analyze the Newell- Whitham-type car-following model which considers 

not only the headway of arbitrary number of vehicles ahead but also the relative velocity. We analyze the 

effect of the headway of vehicles ahead and the relative velocity upon the stability of traffic flow by using 

the linear theory. The result shows that the stability of traffic flow is improved by taking into account the 

headway of vehicles ahead and the relative velocity. Moreover, we apply the nonlinear analysis to derive the 

mKdV equation near the critical point and obtain its kink-antikink soliton solution to describe traffic jams. 

Finally we carry out the computer simulation for the extended model with periodic boundary condition. 

The numerical simulation is good agreement with the analytic results. 

2. Model 

Newell [20] and Whitham [21] propose a model which is given by a first-order differential equation by 

introducing a delay time which plays an important role in the occurrence of traffic congestion. The motion 

of j th car is given as follows 
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where 1( )  j j jx t x x  is the headway between two successive vehicles of the   th vehicle at time  , 

( ( ))jV x t  is the optimal velocity function and    is the delay time. 

According to the idea mentioned above, we extend the Newell-Whitham-type model (1) to take into 

account the headway of  - cars ahead and the relative velocity. Then the motion of   th car is described by 

the following differential equation 
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where   is the extended optimal velocity function including variables of the relative velocity        and the 

headway of  -cars ahead of the   th vehicle. We assume that the driver can obtain the information 

of   -vehicles that precede based on Internet-connected vehicles. We assume that the extended optimal 

velocity function is 
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where the weighted coefficient of the relative velocity   is a constant independent of time, velocity and 

position      . Then, the extended model (2) can be rewritten as  
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If 0  , Eq.(3) is the model which is proposed by Ge et al. [28]-[29]. 

We rewrite Eq.(3) to obtain the difference equation 
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1 1( 2 ) ( ) ( ( ), ( ), , ( )) ( ( ) ( )).j j j j j n j jx t x t V x t x t x t x t x t                        (4) 

 

The optimal velocity function is selected similar to that proposed by Bando et al. [22] 
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where      is the maximal velocity,   is the safety distance and   is the weighted coefficient of         . 

We suppose that    have the following properties: 

1)                 decrease monotonically with increasing  , that is,        . The reason is that as 

the distance between the car ahead and the considered car increases the effect of cars ahead on the car 

motion reduces gradually. 
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x t  in Eq. (5) as the weighted headway. The optimal velocity function V  in Eq. 

(5) is a monotonically increasing function of the weighted headway and has an upper bound (i.e. the 

maximal velocity). When the weighted headway is less than the safety distance, the vehicle reduces its 

velocity to prevent from crashing into the vehicle ahead. Otherwise, if the weighted headway is larger than 

the safety distance, the car velocity increases to the maximal velocity. The optimal velocity function V  has 

the turning point (inflection point) at 
1

0
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x t h . It is important that the optimal velocity 

function V  has the turning point. Otherwise, we cannot derive mKdV equation which has the 

kink-antikink soliton solution to describe the traffic jams. 

For later convenience, Eq. (4) can be rewritten in terms of the headway as follows 
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3. Linear Stability Analysis 

We apply the linear stability theory to analyze the extended model described by Eq. (4). The stability of 

the uniform traffic flow is considered, which is such a state that all cars move with identical headway h  

and optimal velocity         . The solution   
       representing the uniform steady state of Eq. (4) can 

be written as 

                                                                  
                      

 

 
                               (7) 

 

where N  is the total number of vehicles and L  is the road length. 

Suppose       to be the small deviation from the uniform steady state   
               

            . 

Substituting it into Eq.(6) and linearizing the resulting equation, we can obtain 
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where                     . For simplicity, 'V  indicates the derivative of the optimal velocity 

function                               at                                 in the above 

equation and hereafter. By expanding,                    the following equation of   is obtained 
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By expanding            
2(i )k    and inserting it into Eq.(9), the first- and second-order terms of 

ik are obtained 
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If    is a negative value, the uniform steady state is unstable for long wavelength modes, while the 

uniform flow is stable when    is a positive value. The neutral stability condition for the uniform steady 

state is given by 
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For small disturbances of long wavelength, the uniform traffic flow is stable if 
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The neutral stability line in the parameter space ( , )x a ( 1/ )a is shown in Fig. 1 for the extended 

model which is expressed by Eq.(4) where the word "CC" represents the coexisting curve and the word "SL" 

represents the spinodal line in the legend. From Fig. 1(a), it can be seen that the spinodal lines are lowered 

with taking into account larger value of   with same n . For 3n  and 5  with different  , the curves 

related to the neutral stability lines and the coexisting curves are almost coincided in Fig. 1(b) and (c). It 

demonstrates that considering three cars ahead for     (i.e. 3n ) is enough for the driver which is 

consistent with Ref. [28]. So considering two cars ahead for       (i.e. 2n ) is enough for the driver 

from Fig. 1. In fact, these number of cars are closely related to the selection of               and  , 

that is, the weighted coefficients of the headway and the relative velocity. With different weight coefficients, 

a slightly different result will be obtained. 

 

 
 Fig. 1. The phase diagram in the parameter space ( , )x a . 
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From Fig. 1 it can be seen that the critical points and the neutral stability lines are lowered with taking 

into account more vehicles ahead and larger value of  , which means the stability of the uniform traffic flow 

have been strengthened. The traffic jams are thus suppressed efficiently. 

4. Nonlinear Analysis 

The reductive perturbation method is applied to Eq. (6). We introduce slow scales for space variable j  

and time variable t  and define slow variables X  and T  for        as (see Ref. [31]) 
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where b  is a constant to be determined. We set the headway as 
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Substituting Eqs. (13) and (14) into Eq. (6) and making the Taylor expansions about  , we obtain the 

nonlinear partial differential equation given by Eq. (15)  
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correspond to '( )cV h  and '''( )cV h  in the above equation and hereafter. 

Near the critical point, 
2(1 ) c     and taking b V  , the second- and third-order terms of   are 

eliminated from Eq. (15). Then Eq. (15) can be rewritten as the simplified equation 
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In order to derive the standard mKdV equation with higher order correction, we can do the same 

procedure as Ref. [25]. The propagation velocity A  for the kink-antikink solution which is the solution of 

mKdV equation is as follows 
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Substituting the values       into Eq. (17), we can obtain the value of propagation velocity for any 

vehicle that precede. The solution of the mKdV equation is obtained  

 

1
1

2

( , ) tanh ( ) .
2

g A A
R X T X Ag T

g

 
  

 

                        (18)  

5. Numerical simulation 

To check the validity of our theoretical results above, we carry out numerical simulation for the model 

described by Eq. (4) and (5) under the periodic boundary condition. First, we consider the impact of local 

small disturbances on the whole system. The vehicles move with the constant headway 4.0h  . The initial 

conditions are chosen as follows 
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where the total number of cars is 100N  , the safety distance is max4.0, 2, 2.26.ch v a    
Fig. 2 shows the space-time evolution of the headway after a sufficiently long time       for the 

extended model described by Eq. (4) and (5). The space-time evolution of the headway for     and 

          are exhibited by the patterns (a), (b), (d) and (d). For      and          , those are 

exhibited by the patterns (c), (d), (d) and (d). The pattern (d) also exhibits the space-time evolution of the 

headway for       and    . In patterns (a), (b) and (c), the traffic flow is unstable because the stability 

condition (12) is not satisfied. The patterns (a) and (c) exhibit the coexisting phase in which the 

kink-antikink density waves appear as traffic jams and the density waves propagate backwards. That is to 

say, when small disturbances are added to the uniform traffic flow, the disturbances are amplified with time 

and the uniform flow changes finally to inhomogeneous traffic flow. The pattern (d) exhibits the freely 

moving phase after a sufficiently large time, that is, the traffic flow are stable with the same sensitivity. 

The above analyses show that considering two cars that precede are enough for suppressing the traffic 

jams quickly and efficiently when       or three cars when    . And one car is enough when      . 

The influence of cars ahead is almost invariant after     when       or     when     , which is 

consistent with the results in Fig. 1. 

Fig. 3 shows the headway profile obtained at sufficiently large time         correspond to Fig. 2. 

From Fig. 3, we find that the amplitude of the density wave decreases as the considered number of cars 

ahead and the value of  increases. In pattern (d) the density waves disappear and traffic flow is uniform 

over the whole space. 

6. Summary 

An extended car-following model is proposed by introducing the headway of arbitrary number of cars 

and the relative velocity for suppressing the traffic jams based on Internet-connected vehicles. The 

extended model has been analyzed by using the linear stability theory and the reductive perturbation 

method. The stability condition of the extended model is obtained and the results show that the stability of 

traffic flow is improved by taking into account not only the headway of arbitrary number of cars ahead but 

also the relative velocity. The kink-antikink soliton, solution of the mKdV equation near the critical point, is 
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derived to describe the traffic jams. From the numerical simulation, the kink-antikink soliton is found. The 

simulation results confirm the linear stability analysis for the extended model and give the optimal state as 

3( 0), 2( 0.1)n n     and 1( 0.2)n   , that is, considering both the headway of cars ahead and the 

relative velocity are necessary to suppress the appearance of traffic jams efficiently based on 

Internet-connected vehicles. From the theoretical analysis and the numerical simulation, we can conclude 

that the traffic jams are suppressed efficiently by taking into account not only the headway of arbitrary 

number of cars ahead but also the relative velocity. The theoretical results are in good agreement with the 

simulation results. 

 

 

 
Fig. 2. Space-time evolution of the headway after t=10,000 for small disturbances. 

 

    
Fig. 3. Headway profile of the density wave at t=10298 correspond to Fig. 2. 
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