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Abstract: Pattern matching is an important process in various applications such as information and 

network security, bioinformatics, image processing, etc. Aho-Corasick (AC) is one of the most representative 

algorithms for multiple pattern matching. As the data becomes extraordinarily large, GPUs have been adopted 

to accelerate pattern matching because of their great power for parallel computing. However, if the 

automata of AC algorithm contains more than hundreds of thousands of nodes, its State Transition Table (STT) 

takes up quite large storage space which is beyond GPU memory. In this paper, we present an improved AC 

algorithm named as STT-partition-based parallel AC (SPAC) to reduce the storage space for GPU by 

separating the original STT into two parts, one is kept in GPU and the other is stored in CPU. GPU is in 

charge for the major filtering task in the first step and then the relatively small-scale filtered results are 

further processed on CPU. Experiments are carried out on three different datasets and results show that our 

method reduces the storage space by 45%~50% compared with state-of-the-art algorithms with 

comparable matching speed. 
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1. Introduction 

Nowadays, Network Intrusion Detection System (NIDS) has been widely used in Internet to keep the 

security of network operations. Among the representative network-based intrusion detection techniques, 

pattern matching is most commonly used for its excellent performance in both matching speed and 

matching accuracy.  

Many pattern matching methods have been proposed in the past, most of which derive from the idea of 

Aho-Corasick (AC) [1], which is widely used in various pattern matching applications such as network 

intrusion detection, bio-sequence analysis, and image processing. Many popular NIDS and anti-virus 

systems, such as Snort [2] and ClamAV [3], apply AC algorithm in their multi-pattern matching engines since 

its worst performance is deterministic, linear to the length of the input stream and independent of the rule 

set size. Therefore it is impossible for an attacker to construct a worst-case traffic that can slow down the 

NIDS and let malicious traffic escape the inspection. With rule sets fast-growing, implementing AC algorithm 

with limited memory without sacrificing performance becomes a major bottleneck in NIDS design.  

In the past few years, many approaches have been proposed to accelerate pattern matching based on 

hardware improvement. These approaches can be classified into two categories, logic architecture-based 

approaches [4]-[6] and memory architecture-based approaches [7]-[9]. In the first category, attacking 
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patterns are synthesized into logic circuits that are typically implemented on field-programmable gate array 

(FPGA) to match multiple patterns in parallel. In the second category, memory architectures compile attack 

patterns into an automata and perform pattern matching by traversing the corresponding state transition 

table that is stored in a commodity memory. 

Recently, GPUs have been adopted to accelerate pattern matching because of their enormous power for 

massive data parallel computing. User friendly programming environment has been developed recently such 

as CUDA [10] and OpenCL [11]. Using such environment, one can have more direct control over the cores of 

GPU and the memory hierarchy. Taking advantages of these tools, lots of innovative improvements for 

large-scale pattern matching have been made and many more are still to come. 

The rest of the paper is organized as follows. Section 2 reviews the related work by analyzing 

representative works in pattern matching using AC algorithm on GPU. We pointed out some deficiencies 

existed in these algorithms. In Section 3, we propose a performance-driven SPAC algorithm on GPU and CPU, 

which makes full use of the CPU and GPU hardware features. In Section 4, we describe the implementation 

details of SPAC algorithm.  Experiments and results are detailed and analyzed in Section 5. We conclude the 

paper in Section 6. 

2. Related Work 

In this Section, we first introduce the Aho-Corasick (AC) [1] algorithm and then describe two 

representative improved methods on GPU for pattern matching. Their contributions and problems are 

analyzed in the end.  

2.1. Aho-Corasick (AC) Algorithm   

The main idea of AC algorithm is to use failure transitions to backtrack a automata to recognize patterns 

starting at any location of an input stream. Given a current state and an input character, the AC automata 

first checks the information of the character, the AC automata first checks the information of the next state 

from the valid transition table to determine whether there is a valid transition for the input character. If not, 

the state jumps to the corresponding failure state according to the failure transition table. Then, the 

automata process the same input character until the character end in a valid transition. Fig. 1 shows an 

automata of the AC algorithm for matching patterns {era, her, heroic, oil}. The purple-circled nodes and 

white-circled nodes respectively represent the final states of the matched patterns and the middle states. The 

solid lines and the dotted lines respectively represent the valid transitions and the failure transitions. Any 

node without failure transitions has a failure transition pointing to the root node. As shown in Fig. 1, states 3, 

6, 9 and 12 are the final states of the patterns “era”, “her”, “heroic”, “oil”. The pattern “her” is a prefix of the 

pattern “heroic”, so there are several “shared node” like state 4, 5, 6, in the AC automata.  

 

 
Fig. 1. AC automata of the patterns {era, her, heroic, oil}.       

 

For example, consider the case that we want to match an input stream containing “hera” via the AC 
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automata in Fig. 1. The AC automata starts from state 0 with the following travel path 0—>4—>5—>6, 

where the state 6 is the final state of the pattern “her”. Because the state 6 has no valid transition for the next 

character “a”, the AC automata first takes a failure transition to jump to the state 2 to process the previously 

failed character “a”. As there exists a valid transition for “a” from the state 2 to the state 3, the AC automata 

reaches state 3 that is the final state of pattern “era.” Finally, this AC automata matches the patterns “her” 

and “era” at the positions of “h”, “e” respectively. In summary, the AC algorithm matches all patterns in O(n) 

time for processing an input stream of length n, regardless of the patterns. 

2.2. Data Parallel AC Algorithm Implemented on GPUs 

One kind of the data parallel approaches [12]-[15] aim to parallelize the AC algorithm, which is referred to 

as the data-parallel AC (DPAC) approach. The key point of DPAC approach is to divide an input stream into 

multiple chunks and allocates each chunk an individual thread to perform the AC algorithm separately. For 

example, Fig. 2 shows the general framework of the data-parallel AC (DPAC) algorithm, where the input 

stream is divided into two chunks and two threads are assigned to the two chunks to traverse the same AC  

automata. However, the obvious problem of DPAC approach is that it cannot detect a pattern occurring in 

the boundary of adjacent chunks. This problem is called the “boundary detection” problem. For example, in 

Fig. 2 the pattern “her” occurs in the boundary of chunk 1 and chunk 2 and cannot be identified by either 

thread 1 or thread 2. As DPAC focuses on the partition of the input data for parallel computing, it doesn’t 

change the original AC scheme. Due to the nature of AC algorithm, single direction scanning for using the 

prefix information of the scanned data is not suitable for parallel execution. 

Another kind of the data parallel approaches [16] for parallelizing the AC algorithm is referred to as the 

parallel failureless-AC (PFAC) algorithm. In this approach, the failure transitions are removed from all states. 

As shown in Fig. 3, for each substring starting from each byte of the input stream, the PFAC algorithm 

allocates an individual thread to identify the pattern beginning with the first input byte. If the first input 

byte in one thread doesn’t match any pattern’s beginning state, that thread will be terminated immediately 

without taking failure transitions to backtrack the automata.  

 

 
Fig. 2. The data-parallel AC (DPAC) algorithm. 

  
Fig. 3. The data-parallel Failureless AC (PFAC) 

algorithm. 
 

Though all the approaches mentioned above are designed on GPU taking the advantage of parallel 

computing, they have all ignored the important features of the length distribution of the pattern strings as 

well as the size of the AC automata: 

1) The pattern string length distribution: We have computed the length distribution of the pattern strings 

in the rule sets of both Snort and ClamAv. The results indicate that the length distribution is quite 

unbalanced, where the relatively short patterns have the largest proportion in all the patterns. In the 

rule sets of Snort, 90% of the patterns are shorter than 36 bytes, though the longest pattern is 122 

bytes. A similar distribution occurs in the rule sets of ClamAv. 90% of the patterns are shorter than 70 
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bytes, though the longest one is 172 bytes. In GPU programming language OpenCL all threads within a 

wave (thread group) execute a set of instructions as SIMD [17] units. SIMD describes computers with 

multiple processing elements that perform the same operation on multiple data points simultaneously. 

Therefore, we need to consider the distribution of the pattern length, making the execution of all the 

threads in a wave as consistent as possible to better improve the parallel capability.  

2) The size of the AC automata: The size of the AC automata point to the storage space of the AC 

automata’s corresponding state transition table (STT). When using GPU for large-scale pattern matching, 

the matching speed is mainly limited by the memory storage capacity, which is not big enough to load 

both the STT and all the input data at one time. The trade-off strategy is to separate the input data into 

several chunks according to the memory capacity of GPU, and load each chunk into the memory for 

processing sequentially. Therefore, how to compress the storage space of the AC automata becomes 

one important aspect to improve the matching efficiency on GPU. 

2.3. Stt-Partition-Based Parallel Ac Algorithm 

In this section, we propose a novel algorithm that efficiently exploits the parallelism of the AC algorithm. 

We call the new algorithm STT-partition-based parallel AC (SPAC for short). Systematic illustration of the 

new algorithm is as follows. 

2.4. State ID Reordering 

As data parallel approach [16], in order to make full use of GPU's parallel computing capability, our design 

of the automata is based on the scheme of failureless-AC automata. Fig. 4 shows the original automata of the 

patterns {era, her, heroic, oil} with state IDs. In our approach, we use breadth-first search algorithm (BFS) to 

reorder the state IDs. The automata in Fig. 5 is given with reordering IDs. We can see that in the same layer, 

the state IDs range continuously. In this way, adjacent states in the automata will appear in the 

corresponding STT within short distance. The state ID reordering procedure is a pre-processing step for 

further compressing the AC automata.  

 

 

Fig. 4. Failureless-AC automata of the patterns {era, her, heroic, oil}. 

 

    

Fig. 5. State’s ID reordering of Failureless-AC automata. 
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2.5. State ID Reordering 

A 2-dimensional matrix, called State Transition Table (STT for short), is used to store the automata 

structure. Each row represents a state in the automata and each column represents a character. The entry 

STT[i][j] denotes the next state to jump to when given a state i and an input character j. Suppose the input 

data has 256 possible characters (256 characters in ASCII table), the corresponding STT needs 257 columns. 

Fig. 6 illustrates the STT structure for the failureless-AC automata.  

 

 
Fig. 6. State transition table of Failureless-AC automata. 

 

When given a large-scale input data, the automata may contains hundreds of thousands of nodes. Both the 

STT and the input data, as well as the processed results need to be stored in GPU’s memory, which would 

greatly exceed GPU’s memory. In our work, we focus on reducing the size of the STT store in GPU without 

affecting the matching performance. 

From previous analysis we can conclude that in the actual pattern set, most of the pattern strings are very 

short and they can be matched within relatively short path in the failureless-AC automata. In previous 

procedure, we have reordered the state IDs and that the adjacent states in the automata will appear in the 

corresponding STT within short distance. In this way, a large number of the pattern strings can be matched 

by just referring to a relatively small part of the STT from the front. In our method, we partition the 

reordered STT into two parts: “upper part” and “bottom part”, where “upper part” is stored in GPU for 

matching the majority data of the input string while the “bottom part” is stored in CPU of the same computer 

for matching the remaining part of the input string. This approach has several important features which 

reduce the storage space for STT in GPU and guarantee the matching efficiency. 

1) In the actual pattern set, the proportion of long pattern strings is very small. Therefore, the 

“upper-part” of the STT stored on GPU can finish the majority part of the matching task. The size of the 

“upper-part” depends on the length distribution of the pattern strings. In our work, we use the average 

length of all the pattern strings as the partition depth of the automata. The “upper-part” of the STT will 

contain all the states within this depth in the automata. Thus the partial STT stored in GPU is just 

45%~50% of the original size. 

2) Since “upper-part” of the STT save the state thread for pattern matching will not experience as many 

transitions as before since they will stop in the STT partition boundary. Therefore, it makes all the 

threads in the same wave as consistent as possible, which improves the parallel performance. 

In order to ensure complete match, the results of the GPU need to be further processed by CPU. After the 

processing of GPU, nearly 95% of the input text has been filtered since it is proved to contain patterns or 

absolutely not. So only less than 5% of the input text need further processing on CPU in extremely short 
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time. 

3. Implementation 

The large-scale pattern matching algorithm SPAC takes full advantages of GPU and CPU. The algorithm will 

report a matched pattern at its starting position in the input text. If a pattern is a prefix of another longer 

one, they would be reported at the same position. In the following, we will explain our implementation of the 

algorithm in detail. 

3.1. The Architecture of SPAC 

Fig. 7 shows the architecture of SPAC, each GPU can manipulate a fixed-size text. Given a large-scale text, 

we split it into several small parts and sent them sequentially to GPU for processing. For  each text part, GPU 

first matching the text according to the “upper-part” of the STT.  In order to ensure complete match, the 

non-finished positions in the text will be further processed by CPU according to the “bottom-part” of the 

STT. Since the large-scale text need to be processed iteratively, operations on GPU and CPU can be executed 

parallel.   

 

 
Fig. 7. The architecture of our proposed SPAC. 

 

We also take full advantages of the hierarchical storage structure on GPU, including its global memory and 

local memory. As we split the input text into chunks, each work-group processes a chunk. In order to 

accelerate the scanning process, each work-item (or thread) will load the text chunk from global memory to 

its corresponding local memory. 

3.2. Pattern Matching on GPU  

GPU is suitable for parallel computing by keeping the consistency between different threads. As illustrated 

in Section 3(B), we proposed the STT partition method to guarantee the consistency and reduce the STT 

storage space on GPU. 

In our algorithms on GPU, each character is allocated to a thread. Fig. 8 is the pseudo code of a work-item 

(or thread) executing pattern matching at the text position thread_id in the local memory on GPU. In 

pseudo-code 1, state_id is referred to the current matching state (0: the root state). tag marks the current 
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matching results (0: no pattern matched; 1: matched). local_end represents the length of current processed 

chunk in the local memory. STT_partition_id is a STT partition ID indicating the corresponding relation 

between “upper-part” and “bottom-part” in STT. Line 5 is to determine whether the current state has next 

state transition. Whether the current state can be matched to a pattern is checked in line 7. If the current 

state ID exceeds STT_partition_id, this thread on GPU will end the matching process and wait for further 

processing by CPU”. 

 

 
Fig. 8. The algorithm of SPAC on GPU. 

 
Fig. 9. The algorithm of SPAC on CPU. 

 

3.3. Pattern Matching on CPU 

CPU needs to finish two tasks: one is to send input text to GPU for coarse matching and the other one is to 

further process the matching results from GPU. 

Fig. 9 shows the pseudo code of SPAC on CPU. The gpu_out is an array, which denotes the GPU’s results 

needed to be further processed by CPU. The resultCount is the size of gpu_out. In pseudo-code 2, code from 

line 6 to line 16 describes the matching procedure of a thread on CPU. Line 7 is to determine whether the 

current state has next state transition. Whether the current state can be matched to a pattern is checked in 

line 9. To accelerate execution on CPU, we use Open MP for multithreading programming. 

 

Table 1. Experimental Results of the Evaluated Algorithms AC, PFAC, SPAC on Various Datasets 

Dataset 
Test Data 

Size(MB) 
#Pattern Algorithm 

STT Storage 

Space(MB) 
Run-Time(ms) Matching Speed 

(Gbps) 
GPU CPU GPU CPU I/O Total 

URL 

blacklist 
700 10,000 

AC - 122.81 - 2550 - 2550 2.14 

PFAC 122.81 - 83.10 - 13.80 96.90 56.44 

SPAC 58.95 63.83 82.70 0.001 13.80 96.50 56.67 

Sythetic 

Dataset 

1 

800 10,000 

AC - 116.67 - 1910 - 1910 3.27 

PFAC 116.67 - 59.44 - 15.56 75 83.33 

SPAC 50.17 66.01 56.34 0.035 15.56 71.94 86.88 

Sythetic 

Dataset 

2 

800 20,000 

AC - 223.98 - 2110 - 2110 2.96 

PFAC 223.98 - 82.38 - 17.66 100.04 62.48 

SPAC 105.27 118.71 72.99 0.152 15.56 88.70 70.46 

 

4. Experiment and Evaluation 

In the experiment settings, we compared our proposed STT-Partition-based Parallel AC (SPAC) algorithm 

with some representative algorithms, including classic Aho-Corasick designed on CUP and PFAC designed on 
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GPU. Our implementation is in C++ on Inter Core i7-3820 CPU with 32GB memory, and in OpenCL (version 

1.2) on AMD Hawaii GPU with 1GB dynamically allocated memory. 

The experiments are carried out on three different kinds of datasets, including the URL blacklist [18] 

benchmark and two synthetic datasets. Some details of the datasets are described as follows. 

1)   URL blacklist: 10,000 URLs (length > 7) are obtained from the URL blacklist website as the pattern strings. 

The URL blacklist is searched against about 8 million URLs (763MB) extracted from WLAN traffic. 

2)   Synthetic dataset 1: The input text is constructed by randomly generating 800MB characters and 

randomly inserting all the patterns in above URL blacklist dataset.  The test pattern strings are the same 

as the ones in URL blacklist. 

3)  Synthetic dataset 2: The construction procedure is similar to synthetic dataset 1, differing in that we 

randomly insert  each the pattern string to the generated text two times, finally forming the datasets 

containing 800MB input text and 20,000 pattern strings. 

Table 1 shows the experimental results on the above datasets. Since our SPAC algorithm partitions the 

original STT, the partition depth here is set to the average length of all the pattern strings in each dataset. We 

compare the performance in the following two aspects. 

4.1. Memory Space 

It is clear to see in Table 1 that, on average, our approach only costs 45%~50% of PFAC’s storage space 

for STT on GPU.  In our experiments, the maximum size of dynamical memory on GPU is 1GB.  With the 

increasing size of the pattern set, the scale of STT increases at the same speed.  The second synthetic dataset 

is more than 800M and the corresponding STT is more than 200MB, which is two times of the first synthetic 

dataset. Faced with data in such scale or even larger scale, PFAC cannot load the whole STT and input data 

into GPU at one time. As algorithm requires loading the whole STT into GPU, it has no choice but to separate 

the input text into several small part and transmit each part to GPU sequentially. As a contrast, our SPAC just 

needs to load partial STT (45%~50% of the original size) into GPU, thus sparing larger space to load more 

input text at one time. In this way, our approach decreases the I/O times compared with PFAC on large-scale 

dataset. In Table 1, the total run time of our approach on synthetic dataset 2 is shorter than that of PFAC, 

which has strongly proved our conclusion.  

4.2. Run-Time 

In this section, we compare the total run time of each algorithms. For the classic Aho-Corasick algorithm, 

the run time refers to the execution time on CPU only. For PFAC, the run time contains both the processing 

time on GPU and I/O time for data transmission between GPU and CPU. The run time of our proposed SPAC 

includes the processing time on both GPU and CPU, as well as I/O time. The comparison in Table 1 shows 

that our approach is faster than the original AC algorithm designed on CUP by 26 times on average. The 

performance is comparable with PFAC on the URL blacklist dataset and synthetic dataset 1. Meanwhile, the 

running time of our SPAC is 11.3% shorter than that of PFAC on synthetic dataset 1 because of the decrease 

of  I/O time analyzed in above section. From the point of run-time, our approach is comparable with AC and 

PFAC for relatively small-scale testing data and will outperform these two approaches for large-scale testing 

data. 

5. Conclusion 

In this paper, we proposed a STT-Partition-based Parallel AC (SPAC) algorithm on GPU and CPU. It can 

effectively reduce the storage space on GPU by separating the original state transition table into two parts, 

one small part is kept in GPU for major filtering tasks and the other part is stored in CPU for further 
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processing the relatively small-scale filtered results. Experimental performance indicates that our approach 

costs only 45%~50% of the space compared with the representative data parallel approach on GPU. 

Furthermore, our total matching time is comparable with that of state-of-the-art approaches, which is about 

26 times faster than the original AC algorithm on CPU. We proposed a STT-Partition-based Parallel AC (SPAC) 

algorithm that partitions the automata and adopted the average length of pattern strings in rule sets as 

partition depth. Therefore, our future work will be studying the impact of the partition depth of the 

automata on the algorithm performance.  
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