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Abstract: This paper presents a new method of feature extraction for signal waveform. Selection of a
feature extraction method is probably the single most important factor in achieving high recognition
performance. Over the past four decades, considerable work has been done in the area of power spectrum
estimation. However, a problem with this method is that it is phase blind. Situations arise in science and
engineering whereby signal analysts are required to look beyond second-order statistics and analyze a
signal’s Higher-Order Statistics (HOS). In this paper, bispectrum is used to extract the feature of signal.
Feature of the signal can be extracted by selecting the eigenvector whose corresponding eigenvalue’s
module is the largest as the template of recognition. The experiment being made by our research group
suggests that recognition accuracy rate of bispectrum-method can be no less than 90 percent in additive
white Gaussian noise channel when SNR (Signal to noise rate) is no less than 8dB.

Key words: Eigenvalue and eigenvector, feature extraction, higher order spectrum (HOS), signal processing,
signal recognition.

1. Introduction

For the last forty years the use of bispectrum has become a growing field of interest. Classification of
signal modulation type has received increasing attention as it can be used in identifying monitoring,
detecting transmissions, spectrum management and electronic warfare.

Automatic communication signals recognition plays an important role for various applications. Automatic
signal classification techniques, usually, are divided in two principle techniques: decision theoretic (DT)
approaches and pattern recognition (PR) approaches [1]. The major drawbacks of DT methods are their too
high computational complexity, lack of robustness to the model mismatch as well as careful analysis that are
required to set the correct threshold values. Pattern recognition approaches, however, do not need such
careful treatment. They are easy to implement. PR methods can be further divided in two main subsystems:
the feature extraction subsystem and the classifier subsystem [2].

Traditionally, a zero-mean random process is described via its second-order statistics, i.e. its
autocorrelation function or equivalently its power spectrum. In general, these measures are only a partial
description of an arbitrary random process. Decision theoretical approaches require a statistical
description of the signals and usually involve the definition of likelihood ratio tests [3]. As a result, they are
usually extremely complex to compute. High-order cumulants is one of the most effective methods in
statistical pattern recognition approaches, because it can remove the influence of Gauss noise completely in
theory. The higher-order statistics (HOS) [4] of primary concern is the third-order spectrum, the
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‘bispectrum’. The bispectrum [5] of a signal is the Fourier transform of its triple correlation. This is the
simplest of HOS [6]. While second-order statistics [7] (e.g., correlation function, power spectrum, etc.) do
not provide any information about the phase of the signal, third-order statistics [8] (e.g., triple correlation,
bispectrum, etc.) allow the recovery of the phase of the signal. The bispectrum provides information in
cases when the random process has a ‘skewed’ distribution [9] (skewness is a measure of asymmetry of
data around the mean).

In this work, we combine bispectrum with eigenvalue decomposition method. As the eigenvalues of
practical signal’s bispectrum have an interesting property that most of absolute value of the eigenvalues are
much smaller than the rest eigenvalues [10]. According to the property of eigenvalue, it is reasonable to
believe that the eigenvector of the eigenvalue whose absolute value is the largest can reflect the feature of
the signal [11]. As a result, we choose the eigenvector of the eigenvalue whose absolute value is the largest
as the recognition template to distinguish the signal from other types of signal [12].

This paper is organized in the following manner. In the Section 2, the approach of modulation signal
recognition will be presented. In Section 3, we will introduce the definition of bispectrum. The prosperity of
eigenvalue of bispectrum is presented in Section 4. Finally simulations are provided in Section 5.
Conclusions are drawn in Section 5.

2. Definition of Bispectrum

2.1. Base Definition

Although there are several different methods for estimating second-order spectrum (Bispectrum), the
direct method is selected to estimate bispectrum in this paper. The bispectrum is defined as the triple
product:

B(fl’ fz):X(f1)X(f2)X*(f1+f2) (1)

where B is the bispectrum evaluated at frequencies fi1 and f;, X denotes the Fourier transform of the signal,
and * denotes the complex conjugate.
The Fourier transform is a complex quantity, and so is the bispectrum. Bispectra fall in the category of

higher-order spectra, or polyspectra and provide supplementary information to the power spectrum. The
third order polyspectrum (bispectrum) is the easiest to compute, and hence the most popular. From
complex multiplication, the magnitude of the bispectrum is equal to the product of the magnitudes of each
of the frequency components, and the phase of the bispectrum is the sum of the phases of each of the
frequency components.

A similar analysis applied to the fourth order leads to a definition of the trispectrum (for a non-stochastic
signal) as

Bxxx(fl’ f2’ f3) = X(fl)X(fZ)X(f3)X*(fl+ f2+ f3) (2)

2.2. Characteristics of Higher-Order Spectrum (HOS)

Gaussian processes are intimately connected with the study of second-order methods since it is only
Gaussian processes which can be completely described by their second-order properties. Hence, if a process
is Gaussian then the HOS contain no new information, i.e. no information that cannot be obtained from the
second-order statistics. This leads us to one desirable property of HOS, namely that one would like them to
be identically zero for a Gaussian process.

The first of the HOS is the third-order spectrum, given the name bispectrum. This quantity has received
most attention in the literature since it is the simplest of the HOS. However, the bispectrum only yields
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information in cases where the random process has a skewed distribution. In a significant number of
physical problems, systems are symmetrical and yield unskewed output signals. In these circumstances, the
bispectrum is an uninformative measure. One of the aims of this paper is to show how the concepts
associated with the bispectrum carry over to the fourth-order spectrum, referred to as the trispectrum, and

to discuss how the trispectrum can be used to analyze symmetric non-linearities.

2.3. The Relationship between Cumulant Functions and HOS

The Wiener-Khintchine theorem states that the autocorrelation function and power spectrum are related

via the Fourier transform, i.e.
Bo(f)=[" Ry (e 2*'"de=[" C, () 1> "d7 (3)

Similar results relate HOS to cumulant and moment functions. The bispectrum can be defined as the
double Fourier transform of the cumulant (or moment) function:

Boo (fi £) = [ [7 Cpu(m 1, ) 127 edd ryd o, ()

In the trispectral case, one has to take more care, since the moment and cumulant functions are different,

which leads to two possible definitions of the trispectrum:

Bxxxx(fl’ f,, f3) _ J'ij':jjocwx (Tl,Tz,Ts)e_jZE(f1T1+f2T2+f3T3) dTle'Zde )

2.4. Matric Form of Bispectrum
From the definition of bispectrum, we can find that bispectrum is two-dimensional signal. So, a matrix

can be used to describe the bispectrum (6):

B(-2, -2) B(-2, -1) B(-2, 0) B(-2,1) B(-2,2) X (-2) X(-2) X(4) X (-2) X(-1) X(3) X (-2) X(0) X(2) X(-2) X(1) X(1) X(-2) X(2) X(0)
B(-1,-2)  B(-L,-1)  B(-1,0)  B(-1,1)  B(-12) - XD X(2) X)X (A1) X(-D) X(2) X (1) X(0) X(1) X(-1) X(1) X(0) X (-1) X(2) X(-1)
B(0, -2) B(0, -1) B(0, 0) B(0,1) B(0, 2) w =] X (0) X(-2) X(2) X (0) X(-1) X(1) X (0) X(0) X(0) X (0) X(1) X(-1) X(0) X(2) X(-2)
B(1, -2) B(1, -1) B(L, 0) B(L, 1) B(1,2) X (1) X(-2) X(1) X (1) X(-1) X(0) X (1) X(0) X(-1) X (1) X(1) X(-2) X (1) X(2) X(-3)

B(2, -2) B(2, -1) B(2, 0) B(2,1) B(2,2) X (2) X(-2) X(0) X(2) X(-1) X(-1)  X(2) X(0) X(-2) X (2) X(1) X(-3) X (2) X(2) X(-4)

(6)

Such definition of bispectrum is based on an assumption that the signal is infinite. However, the actual
signal is often truncated and the bispectrum of signal is also finite. In this paper, the size of bispectral matrix
is defined as 128x128 matrix. As a result, bispectrum can also be expressed as (7):
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2.5. Symmetry Properties of Bispectra and Trispectra

Just as the continuous power spectrum has symmetrical properties, so do the continuous bispectrum and
trispectrum. It is only necessary to evaluate the bispectrum and trispectrum in the principal domain or
non-redundant area, as all other regions can be found by symmetrical transformations of this area. In
addition to the symmetrical properties of the continuous bispectrum and trispectrum, the discrete versions,

like the discrete power spectrum, are periodic.
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(7)

Knowledge of the bispectrum in the triangular region f1, f2>0, and f2> f1 is enough for a complete
description of the continuous bispectrum. There are in fact 12 regions of symmetry in the continuous
bispectrum. As the discrete Fourier transform is periodic, the discrete bispectrum is also periodic which
means that there are added symmetries for the discrete bispectrum, and it can be shown that it is only
necessary to estimate the discrete bispectrum in the region 0< f2< f1, and f1+ f2< fs/2. This region is known
as the principal domain and can be further subdivided into two regions. There are shown by the two
triangles in Fig. 1 (bispectrum), the inner triangle and the outer triangle.

(114,1/1; ) Outer \
. triangle e i Outer
S : & - (050, volume
Ly T
. 2,0 f, L s
¢ 0 Inner
Inner T VC}ETEL
triangle e

Fig. 1. Principal domain of the bispectrum and the trispectrum.

The discrete trispectrum has 96 regions of symmetry. The principal domain is shown in Fig. 1
(trispectrum). Like the bispectrum, it is divided into two regions: an inner volume (shown in dark grey);
and outer volume (shown in light grey). Referring to Fig. 1 (trispectrum), both the inner and outer volume
can be subdivided into two further regions: above and below the f3=0 plane. Above the plane, all the
frequency indices are positive and so the sum of three frequencies is equal and opposite of the fourth.
Below the plane, only two of the first three frequencies are positive and so this region contains interactions
where the sum of two frequencies is equal and opposite to the sum of the other two.

3. Feature Extraction
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3.1 Property of Eigenvalue of Modulation Signal’s Bispectrum

In order to extract the feature of signal, eigenvalue and eigenvector will be calculated. The eigenvalue
equation can be defined as follow

|JE-BI=0 8)

where E is a unit matrix whose size is the same as the matrix B and B is a bispectral matrix whose size is
128x128. After doing a large numbers of experiments, we unexpectedly find that the eigenvalue of the
matrix B has an interesting property that most of the eigenvalues are much smaller than the rest of the
eigenvalues.

Through large number of experiment, we find that there are only a few eigenvalues which are
comparatively very large while the rest eigenvalues are close to zero (Fig. 2). Of course, such properties will
not be true when the signal spectrum accounts for the most part of frequency domain.

3.2 Scope of Application of Our Recognition Algorithm

Fig. 3 is the spectrum of 2ASK, 2FSK, 2PSK, 16QAM, 4FSK, GMSK which are drawn to state the above
theory clearly.

From the Fig. 3, we can find that the signal spectrum just accounts for small part of total frequency
domain. In the actual engineering, the sample-rate will always be twice larger than maximum of signal
frequency. Moreover, practical signals in engineering are often band-pass signals, which will result in that
signal spectrum just accounts for small part of total frequency domain. As a result, our experiment
corresponds to the reality.
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Fig. 2. The absolute value of eigenvalue of bispectrum of 2ASK, 2FSK, 2PSK, 16QAM, 4FSK, GMSK. (The
absolute value of eigenvalue is arranged from smallest to largest).
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Fig. 3. The spectrum of 2ASK, 2FSK, 2PSK, 16QAM, 4FSK, GMSK.

3.3 The Method of Modulation Signal Recognition Based on Bispectrum and
Eigenvector Extraction

As the eigenvalue of bispectrum of modulation signals always have such property as Fig. 2 shows that, the
eigenvector of eigenvalue whose absolute value is largest can be regarded as the template which reflects the
essence of signal to distinguish the signal from the other types of signal. In the experiment, six kinds of
modulation signal (2ASK, 2FSK, 2PSK, 16QAM, 4FSK and GMSK) are chosen to simulate the process of signal
recognition. Then, eigenvalue and eigenvector of bispectral matrix are calculated and the eigenvector whose
eigenvalue’s absolute value is the largest is chosen as the template of signal.

The eigenvalue equation for a matrix A is:

Bv-iv=0 or (B-JE)=0 (9)

where E is the identity matrix whose size is the same as B and B is a bispectral matrix whose size is
128x128. Then, we will get the formal definition of characteristic polynomial of matrix B:

pg (1) = det(AE - B) (10)
and the characteristic equation:

det(AE-B) =0 (11)

In the complex domain, the characteristic polynomial of an nXn matrix B, being a polynomial of degree n,

has exactly n complex roots. More precisely, it can be factored into the product of n linear terms:
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det(B-AE) = (4, - (4, - HL(4, - 1) (12)

where each Ai is a complex number. The numbers A1, A2 ... An are roots of the polynomial and are precisely
the eigenvalues of B. To find eigenvectors v = [v1, v2 ... vn] corresponding to an eigenvalue A, we simply
solve the system of linear equations given by:

(B-JE)V =0 (13)
Using the above method, we will calculate the eigenvector v corresponding to an eigenvalue A whose

absolute value is largest as the template which reflects the essence of signal to distinguish the signal from
the other types of signal.

4. Simulation and Results

Considering the above character of bispectral eigenvalue, the eigenvector of eigenvalue whose absolute
value is largest can be regarded as the template which reflects the essence of signal to distinguish the signal
from the other types of signal. As a result, the following method is designed to realize modulation signal

recognition.
Bispectrum
i eigenvalue
Signal generation
frequency Choose the
Signal time Frequency domain Bispectrum Signal eigenvector
domain domain waveform _| generation | hispectrum whose
i : ’ emplate
waveform transform (direct eigenvalue’ s
method) absolute value
Bispectrum is the largest
eigenvector
generation

Fig. 4. The flow chart of template training.

The flow chart of template training (Fig. 4) is made to describe the process of template training. In the
first place, computer is used to simulate a kind of modulation signal. In the experiment, six kinds of
modulation signal are chosen to simulate the process of signal recognition. In the second place, signal
bispectrum is calculated through the direct method. In the experiment, signal bispectrum is expressed as a
128x128 matrix. In the third place, eigenvalue and eigenvector of bispectral matrix are calculated and the
eigenvector whose eigenvalue’s absolute value is the largest is chosen as the template of signal. The above
process will rum for five hundred times so as to get the average of template which serves as the final
template to recognize the type of signal.

7 Bispectrum Template 1
Signal — eigenvalue — h h B SN | Integrator—
frequency generation Choose the
T domain | Bispectrum Signal | _— eigenvector Template 2
~Signal timeé™ Frequency waveform  generation | bi ; whose I L5
/ . 1 ispectrum | —=()— Integrator —>
I._ domfam domfam (direct eigenvalue s . g © | Comparator —— The.typel of
~waveform~ | transform method) " Bispectrum | absolute value : RN slgna
> eigenvector | | = thelareest | | Template m
i L —
generation L% integrator -

Fig. 5. The flow chart of signal recognition.

The flow chart of signal recognition (Fig. 5) is made to describe the process of signal recognition. In the
experiment, six modulation signal (2ASK, 2FSK, 2PSK, 16QAM, 4FSK and GMSK) are chosen as the objects to
be recognized. Firstly, the eigenvalues and eigenvectors the signal to be recognized are calculated by the
method like template training. Secondly, the eigenvector of eigenvalue whose absolute value is the largest
among all the eigenvalue will be extracted and be multiplied with the six templates which have been trained
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before. The product of two signals will be integrated so as to get the correlation coefficient between
practical signal and template signal. Six correlation coefficients will be calculated by the method of mutual
correlation in the same way and be sent to the comparator in order to find out the largest correlation
coefficient. Finally, the template with the largest correlation coefficient will be regarded as the correct type
of signal.

In this experiment, we choose six signals (2ASK, 2FSK, 2PSK, 16QAM, 4FSK and GMSK) to be recognized
in different SNR (5dB, 8dB, 12dB, 16dB, 20dB). At training process, ten thousand groups of signal of each
modulation type are used to calculate the template of signal. At test process, one thousand groups of signal
of each modulation type are used to calculate the accuracy of recognition.

In the Table I, accuracy rate is no less than 90 percent when SNR is no less than 8dB. The recognition
accuracy rate of signal of 2ASK, 2PSK and 16QAM decreased rapid when the signal channel is deteriorating.
The possible reason is that the correlation coefficient among 2ASK, 2PSK and 16QAM are relatively larger
than others.

Table 1. Accuracy of the Recognition Method (%)

SNR(dB) 2ASK 2FSK 2PSK 160QAM 4FSK GMSK
5 92.0 96.2 85.2 89.1 98.2 90.0
8 97.2 98.9 90.1 93.3 99.2 94.3
12 98.6 99.9 94.3 97.0 99.0 94.7
16 99.2 100 96.2 98.5 100 99.6
20 100.0 100.0 100.0 100.0 100.0 100.0

5. Conclusion

We present a new recognition algorithm which combines the bispectrum with eigenvalue extraction. The
proposed algorithm is capable of recognizing different modulation schemes with high accuracy at low SNRs.
In order to reduce the dimension of the signal bispectrum, the largest eigenvector whose corresponding
eigenvalue’s module is the largest is selected as the template of recognition. Our experimental results
confirm that modulation signal recognition using bispectrum and eigenvector as the template of recognition
is indeed possible and viable. Our classifier has high modulation recognition performance when the SNR is
not lower than 8 dB.

However, there is a foible in this method that it is relatively complicated in the training process, but this
method not only reduces the dimension of bispectrum and extract the feature of signal but also overcomes
the shortage of the phase blind of power spectrum. Another advantage of our method is that any Gaussian
signal and narrow-band Gaussian signal will be filtered by bispectrum, which increases the recognition rate
in low SNRs. Simulations justify the efficiency of this classification algorithm. In future work, we plan to
extend our techniques to incorporate other types of classification methods to increase the recognition rate
in other types of noise.
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