



Abstract—During last two decades, object-oriented paradigm

has arisen as a prevailing software engineering practice for

solving software problems. A large number of object-oriented

metrics are proposed during that period to measure the

properties like abstraction, encapsulation, inheritance,

polymorphism, coupling, cohesion, information hiding and

reusability. Most of the researchers mainly depict attributes like

class, object, and method to measure the properties in their

research. In this paper metrics are defined to depict Member

Access Control mechanism and then employed in the class

hierarchy. By successfully implemented the proposed metrics in

object-oriented programing, we quantify the derived classes

which directly results to reduce code, time and complexity of the

object-oriented software systems. The proposed metrics

provides a new way to understand and imply these concepts in

research and development of the software using object-oriented

approach.

Index Terms—Attributes, access control specifiers, class

hierarchy, inheritance, methods, object-oriented paradigm.

I. INTRODUCTION

The Object oriented approach prevails over the function

oriented approach. The class is the fundamental unit of OO

development system. The class encapsulates methods and

data members. Object oriented product metrics measure the

effectiveness of object oriented technique. The OO approach

metrics get its pace after the proposal of metric suite by

Chidamber&Kemerer [1], [2] in 1994 and its exploratory

analysis in 1998 [3]. Large research works have been

conducted to validate CK Metric suite. Basili [4], Briand [5],

Li [6], Tang [7] made empirical, theoretical, real-time system

study on CK Metric suite. Harrison, Counsell and Nithi [8] in

MOOD metric suite proposedmetrics on method and attribute

hiding factor, inheritance factor, polymorphism and coupling

factor. Lorenz and Kidd [9] proposed class based metrics into

size, inheritance, internal and external categories of software

development.

The six metrics proposed by Chidamber&Kemerer states

 Weighted Method per Class (WMC): WMC is the sum

of complexities of all the methods in a class.

 Depth of Inheritance Tree (DIT): DIT is the maximum

number of classes from the node to the root of the tree.

 Number of Children (NOC): NOC is the number of

Manuscript received May 20, 2014; revised August 29, 2014.
R. S. Chhillar and P. Kajla are with the Department of Computer Science

and Applications, Maharshi Dayanand University, Rohtak, India (e-mail:

chhillar02@gmail.com, pkajla77@gmail.com).
U. Chhillar is with the Computer Science Department, A. I. J. H. M. (PG)

College, Rohtak, India (e-mail: chhillarusha01@gmail.com).

N. Kumar is with the Department of Mathematics, Govt. College for
Women, Lakhanmajra, Rohtak, India (e-mail: nkhooda1970@gmail.com).

immediate subclasses subordinated to a class in the class

hierarchy.

 Coupling between Objects (CBO): CBO is the number of

other classes to which it is coupled.

 Response for a Class (RFC): RFC is a set of methods that

can be executed in response to a message received by an

object of that class.

 Lack of Cohesion of Methods (LCOM): LCOM is a

count of the inter-relatedness between portions of a

program.

This paper is organized into five sections. Section II

describes the class hierarchy of object-oriented software

systems proposed by the various researchers. Section III

states proposed Member Access Control Metrics (MACM)

for object-oriented systems. Section IV indicates the

implementation of MACM by usinginheritance. Section V

depicts observation and results. Section VI refers concluding

remarks and future scope. At last references and biographies

are portrayed.

II. CLASS HIERARCHY OF OBJECT-ORIENTED SOFTWARE

SYSTEMS

A key feature of object-oriented programming languages

like C++ is inheritance. Inheritance allows us to create

classes which are derived from other classes. The derived

class inherits the methods and data members of base class.

Chidamber&Kemerer [2] defines DIT is a measure of how

many ancestor classes can potentially affect this class. The

deeper the class in the hierarchy, the greater the number of

methods it is likely to inherit. MOOD metrics [8] states class

hierarchy as Method Inheritance Factor (MIF) and Attribute

Inheritance Factor (AIF). Lorenz and Kidd [9] proposed class

hierarchy as Number of Operations Added by a subclass

(NOA). If the value of NOA is increased, it drifts away from

the abstraction implied by the superclass. And with the

increase of class hierarchy, the value of NOA at lower levels

in the hierarchy should go down.

III. PROPOSED MEMBER ACCESS CONTROL METRICS

(MACM) FOR OBJECT-ORIENTED SYSTEMS

In Object-oriented approach, most of the researchers

define metrics for classes, objects, methods, coupling,

cohesion, reusability, testing, inheritance and polymorphism

[10]-[17]. Some of the metrics depicts the behavior of the

methods but no such metrics are designed particularly for the

Member Access Control which gives total control over the

reusability and access of data and methods in the class

hierarchy. This section defines Member Access Control

Metrics (MACM) for Object-oriented systems.

An Access Control Metric Suite for Class Hierarchy of

Object-Oriented Software Systems

Rajender Singh Chhillar, Parveen Kajla, Usha Chhillar, and Narender Kumar, Member, IACSIT

International Journal of Computer and Communication Engineering, Vol. 4, No. 1, January 2015

61DOI: 10.7763/IJCCE.2015.V4.383

mailto:chhillarusha01@gmail.com
mailto:nkhooda1970@gmail.com

These metrics are further classified into

1) Member Function Access Control Metrics (MFACM)

2) Data Member Access Control Metrics (DMACM)

3) Member Access Control Factor Metrics (MACF)

A. Classes in a System

If a system is denoted as S and finite number of classes are

referred as , then S is defined as

or

 ∑

where tc is the total number of classes in the system

B. Methods of the Class

For the i
th

 class Ci, Methods of the class are referred as

 , then

C. Attributes of the Class

For the i
th

 class Ci, Attributes of the class are referred as

 , then

In object-oriented language, Inheritance is a process of

creating a new class from an existing class. While deriving

the new classes, the access control specifiers gives the total

control over the data members (attributes) and member

functions (methods) of the base classes. A derived class can

be defined with one of the access specifier, viz. private,

public and protected. These access specifiers during

inheritance are responsible for reusability of the data

members and member functions of the base class.

Considering these access specifiers, number of member

functions (Methods) are quantified which belongs to a

particular access specifier.

D. Private Methods of the Class

For the i
th

 class Ci, Private Methods of the class are

referred as , then

E. Protected Methods of the Class

For the i
th

 class Ci, Protected Methods of the class are

referred as , then

F. Public Methods of the Class

For the i
th

 class Ci, Public Methods of the class are referred

as , then

So, Member Function Access Control Metrics (MFACM)

for the i
th

 class can be defined as

where = i
th

 class in the system,

 = number of private member functions;

 = number of protected member functions;

 = number of public member functions.

Finally, Member Function Access Control Metrics

(MFACM) for the system can be defined as

 ∑

where = total number of classes in the system,

 = number of private member functions;

 = number of protected member functions;

 = number of public member functions.

Considering these access specifiers, number of data

member (Attributes) which belongs to a particular access

specifier.

G. Private Attributes of the Class

For the i
th

 class Ci, Private Attributes of the class are

referred as , then

H. Protected Attributes of the Class

For the i
th

 class Ci, Protected Methods of the class are

referred as , then

I. Public Attributes of the Class

For the i
th

 class Ci, Public Methods of the class are referred

as , then

So, Data Member Access Control Metrics (DMACM) for

the i
th

 class can be defined as

where

 = i
th

 class in the system,

 = number of private data members;

 = number of protected data members;

 = number of public data members.

Finally, Data Member Access Control Metrics (DMACM)

for the system can be defined as

 ∑

where = total number of classes in the system,

 = number of private member functions;

 = number of protected member functions;

International Journal of Computer and Communication Engineering, Vol. 4, No. 1, January 2015

62

 = number of public member functions.

IV. IMPLEMENTATION OF MEMBER ACCESS CONTROL

METRICS BY USING INHERITANCE

Most of the researchers describe theoretically the concept

of inheritance in object-oriented programming. Inheritance

results to the reusability of the code. To implement member

access control metrics in class hierarchy number of programs

illustrating Simple, Multilevel, Multiple, Hierarchical and

Hybrid Inheritance are created using object-oriented

programming language C++. Then based upon these

programs some new metrics are also designed and results are

associated. A derived class extends its features by inheriting

the properties of another class (base class) and adding

features of its own. The declaration of derived class specifies

its relationship with the base class in addition to its own

features. The access mechanism of the individual members of

a class is based on the use of visibility mode as private, public

and protected.

A. Case I: Private Inheritance

As Fig. 1, in a privately derived class, the visibility mode is

private, in which

 Each public member in the base class is private in the

derived class

 Each protected member in the base class is private in the

derived class

 Each private member in the base class remains private in

the base class and hence not accessible in the derived

class.

Fig. 1. Private inheritance.

B. Case II: Protected Inheritance

As Fig. 2, ina protected derived class, the visibility mode is

protected, in which

 Each public member in the base class is protected in the

derived class

 Each protected member in the base class is protected in

the derived class

 Each private member in the base class remains private in

the base class and hence not accessible in the derived

class.

Fig. 2. Protected inheritance.

C. Case III: Public Inheritance

As Fig. 3, ina publically derived class, the visibility mode

is public, in which

 Each public member in the base class is public in the

derived class

 Each protected member in the base class is protected in

the derived class

 Each private member in the base class remains private in

the base class and hence not accessible in the derived

class.

Fig. 3. Public inheritance.

//example of Public Inheritance

class base

{

private:

int x;

voidfun_x();

protected:

int y;

voidfun_y();

public:

int z;

voidfun_z();

};

class derived : public base

{

private:

int d;

void display();

};

//example of Protected Inheritance

class base

{

private:

int x;

voidfun_x();

protected:

int y;

voidfun_y();

public:

int z;

voidfun_z();

};

class derived : protected base

{

private:

int d;

void display();

};

//example of Private Inheritance

class base

{

private:

int x;

voidfun_x();

protected:

int y;

voidfun_y();

public:

int z;

voidfun_z();

};

class derived : private base

{

private:

int d;

void display();

};

International Journal of Computer and Communication Engineering, Vol. 4, No. 1, January 2015

63

The Table I shows the visibility scope of private, protected

and public inheritance.

TABLE I: VISIBILITY SCOPE

Base Class

visibility

Derived Class Visibility

Private

Derivation

Protected

Derivation

Public

Derivation

Private Not accessible Not accessible Not accessible

Protected Private Protected Protected

Public Private Protected Public

To determine the scope of reusability the proposed metrics

are used quantitatively. Further new metrics are also depicted

from the existing metrics.

To determine the reusability scope of members in the class

hierarchy a new Member Access Control Factor Metrics for

visibility modes are produced.

∑

∑

∑

∑

∑

∑

V. OBSERVATION AND RESULTS

The observations of proposed metric suite are

 MFACM is used to determine total number of methods

in a class

 MFACM is also used to determine total number of

methods in the whole system

 MFACM also determines the number of private,

protected and public member functions in the system.

 DMACM is used to determine total number of attributes

in a class

 DMACM is used to determine total number of attributes

in the whole system

 DMACM also determines the number of private,

protected and public attributes in the system.

 MACFM provides percentage of private member

 MACFM provides percentage of protected member

 MACFM provides percentage of public member

The proposed metric suite results in

 Determining the scope of reuse of code using

inheritance.

 Determines effectiveness of private, public and

protected members to inherit base class features in the

system.

 Evaluating estimates/improves execution time of the

system.

 Evaluating estimates/improves size and effort of the

system.

 It in turn results in cost effectiveness.

VI. CONCLUSION

We proposed a number of member access control metrics

or object-oriented software systems by using inheritance.

These metrics are useful for estimating time, cost and effort

for object-oriented software development. In future work we

will implement these proposed metrics for large and complex

object-oriented software systems and may play an important

role for controlling complexity and thus improving quality of

object-oriented systems.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, “Towards a metric suite for

object-oriented design,” in Proc. the Conference on Object-Oriented

Programming Systems, Languages and Applications, ACM Press: NY,
1991, pp. 197-211.

[2] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object

orienteddesign,” IEEE Transactions on Software Engineering, pp.
476-492, 1994.

[3] S. R. Chidamber and C. F. Kemerer, “Managerial use of metrics for

object-oriented software: An exploratory analysis,” IEEE Transactions
on Software Engineering, vol. 24, issue 8, pp. 629-639, 1998.

[4] V. R. Basili, L. Biand, and W. L. Melo, “A validation of

object-oriented design metrics as quality indicators,” IEEE

Transactions on Software Engineering, vol. 22, pp. 751-761, 1996.

[5] L. C. Braind and S. Morasoa, “Defining and validating measures for

object-based high level design,” IEEE Transactions on Software
Engineering, vol. 25, pp. 722-743, 1999.

[6] W. Li and S. Henry, “Object-oriented metrics that predict
maintainability,” Journal of Systems and Software, vol. 23, 1993.

[7] M. H. Tang, M. H. Kao, and M. H. Chen, “An empirical study on

object-oriented metrics,” in Proc. 23rd Annual International Computer
Software and Application Conference, IEEE Computer Society, 1999,

pp. 242-249.

[8] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of MOOD
set of object oriented software metrics,” IEEE Trans. Software

Engineering, vol. SE-24, no. 6, pp. 491-496, 1998.

[9] M. Lorenz and J. Kidd, “Object-Oriented software metrics: A practical
guide,” PHI, A Pearson Education Company, 1994.

[10] F. B. Abreu, “The MOOD Metrics Set,” in Proc. the 9th European

conference on Object-Oriented Programming, Workshop on Metrics,
Springer: Berlin, 1995.

[11] K. Morris, “Metrics for object oriented software development,” Master

thesis, M.I.T., Sloan school of management, Cambridge, MA, 1998.

[12] R. Singh and P. S. Grover, “A new program weighted complexity

metric,” in Proc. International Conference on Software Engg.

(CONSEG’97), Chennai, India, 1997, pp. 33-39.
[13] K. K. Aggarwal, Y. Singh, and R. Malhotra, “Empirical study of

object-oriented Metrics,” Journal of Object Technology, vol. 5, pp.

149-173, 2006.
[14] S. Mishra, “An object oriented complexity metric based on cognitive

weights,” in Proc. 6th IEEE International Conference on Cognitive

Informatics, 2007.
[15] R. S. Chhillar and P. Kajla, “Metrics to study constructor in class

hierarchy,” in Proc. National Conference on Advanced Computing

Technologies-2013 (NCACT-2013), vol. 2, pp. 923-926.
[16] R. S. Chhillar, P. Kajlaand, and U. Chhillar, “Developing a nested class

complexity metric for nested classes,” presented in 6th International

Conference on Computer and Electrical Engineering (ICCEE2013),
Paris, October 12-13, 2013

[17] R. S. Chhillar, P. Kajlaand, and U. Chhillar, “Developing a nested class

complexity metric for nested classes,” International Journal of
Electrical Energy (IJOEE), vol. 1, no. 4, pp. 244-248, 2013.

Rajender Singh Chhillaris is working as a professor
and the head of Department of Computer Science and

Applications, Maharshi Dayanand University (MDU),

Rohtak, Haryana, India. He acted as a director of
University Institute of Engineering and Technology

(UIET), M. D. University, Rohtak from April, 2006 to

August 2007 and remained to be the head of
Department of Computer Science and Applications, M.

D. University, Rohtak earlier also from March 2003 to

March 2006.
He also worked as a director of Computer Centre, MDU from 2003 to

2010. He was a member, a monitoring committee of campus wide

networking, M. D. University, Rohtak. He obtained his Ph.D. degree in
computer science from Maharshi Dayanand University, Rohtak and master’s

degree from Kurukshetra University, Kurukshetra.

Dr. Chhillar’s research areas include software engineering, software
testing, computer network security, software metrics, component and aspect

International Journal of Computer and Communication Engineering, Vol. 4, No. 1, January 2015

64

based metrics, data ware housing and data mining, information and network

security and it management. He had published more than 150 publications in

International and National journals/ conferences. Professor Chhillar has also
authored two books–Software Engineering: Metrics, Testing and Faults,

Excel Books House, New Delhi; and Application of Information Technology

to Business, Ramesh Books House, Jaipur. He is senior member of various
National and International academic bodies/associations and reviewer of

various international journals.

Parveen Kajla is a research scholar in the Department

of Computer Scienceand Applications, Maharshi
Dayanand University (MDU), Rohtak, Haryana,

India. He is a coordinator of PG Courses at Vaish

Mahila Mahavidyalya, Rohtak and senior lecturer in
Department of Computer Science and Applications,

Vaish Mahila Mahavidyalya, Rohtak. He obtained his

master’s degree in computer science from Maharshi
Dayanand University, Rohtak and M.Phil. degree

(computer science) from Chaudhary Devi Lal University (CDLU), Sirsa. His

research interests include software engineering focusing on object-oriented
and component-based metrics.

Usha Chhillar is working as the head of Department

of Computer Science, A.I.J.H.M. PG College, Rohtak,

Haryana, India. She obtained her Ph.D. degree in
computer science from Department of Computer

Science and Applications, Kurukshetra University,

Kurukshetra, Haryana, India. She pursued her master
degree in computer science from Maharshi Dayanand

University (MDU), Rohtak and M.Phil. degree

(computer science) from Ch. Devi Lal University
(CDLU), Sirsa. She has total more than thirteen years teaching experience.

Her research interests include software engineering, object-oriented and

component-based software metrics.

Narender Kumar is working as an assistant professor in Mathematics at
Govt. College for Women, Lakhanmajra, Rohtak, Haryana, India. He

obtained his M.Phil. degree in mathematics from Kurukshetra University,

Kurukshetra.

International Journal of Computer and Communication Engineering, Vol. 4, No. 1, January 2015

65

