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Abstract: Recently, deep learning has emerged as a powerful technique and been successfully employed for 

various tasks. It has also been applied to human activity recognition and showed better performance than 

traditional machine learning algorithms. However, the success of deep learning always comes with large 

labeled datasets when the learning model goes deeper. If the training data is limited, the performance of the 

classification model may not generally perform well due to overfitting of the networks to the training data, 

which can be alleviated through data augmentation. Generative adversarial networks (GANs) can be used as 

a technique to produce data artificially. GAN-based approaches have made rapid progress in generating 

synthetic data, but they are mostly studied for image data. Comparatively little research has been conducted 

to examine the effectiveness of generating sensor data using GANs. This study aims to investigate the data 

scarcity problem by using conditional generative adversarial networks (CGANs) as a data augmentation 

method. The proposed approach was experimentally evaluated on a benchmark sensor dataset for activity 

recognition. The experimental results showed that the proposed approach can boost the model accuracy and 

has better performance when compared with existing approaches.  
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1. Introduction 

Human activity recognition (HAR) has many important potential applications such as driving behavior 

analysis [1], video surveillance, and healthcare [2]. In terms of sensor types used for classifying activities, the 

approach to HAR can be generally categorized into vision-based and sensor-based directions [3]. Vision-

based approaches recognize activities by analyzing image sequences captured by image sensors such as video 

cameras, while sensor-based approaches use inertial measurement units (IMUs) such as accelerometers and 

gyroscopes or environmental sensors such as status sensors and pressure sensors to identify activities based 

on sensor signal variations. Although image sensors can capture rich information that helps recognize 

complex activities, visual monitoring is considered intrusive and could raise privacy and ethical issues. 

Therefore, sensor-based approaches are more popular when it comes to privacy concerns. This study focused 

on sensor-based HAR, specifically, IMU-based wearable sensors. 

Sensor-based HAR requires sensor deployment to acquire information. Sensors can be attached to the 

subject being observed in a wearable fashion to gather activity data. However, sensor data generally contains 

noise and the data variation could be irregular. As such, it is difficult to identify activities accurately through 

observation of signal variations. Hence, feature extraction from sensor data plays an important role and is the 

key to activity recognition applications in earlier studies [4]. Previous studies heavily rely on experts’ 
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experience and knowledge to perform feature extraction before feeding raw sensor data into the activity 

classifier [5]. As the HAR can be considered as a classification problem, the algorithms used for classification 

in machine learning have been widely explored, such as decision trees, random forests, support vector 

machines, and Naive Bayes [6]. 

Traditional machine learning approaches for HAR require feature extraction and need much labor work to 

label the training data, which is time-consuming. In addition, the performance of the recognition system 

developed by such approaches is easily affected by humans’ subjective judgments on feature selection. Deep 

learning has been proven effective to learn and extract features automatically from data without human 

intervention. Hence, current research for HAR tends to circumvent the aforementioned issue of handcrafted 

features by exploiting deep learning-based approaches [7]. 

When we train a machine-learning model, we adjust its model parameters such that the trained model can 

map the input into the desired output. State-of-the-art deep neural networks typically contain parameters 

that need to be tuned in the order of millions or more. Limited data only provides a small amount of data, so 

it can not cover the input space well and will fail to construct a good model to capture the underlying pattern 

of the dataset.  

In practice, sufficient data for training the learning model is not always available. Data augmentation is a 

common way to deal with the lack of data problems. In image recognition tasks, data augmentation can be 

implemented by artificially increasing the number of training samples via performing scaling, shifting, 

flipping, translating, or rotating on the original images [8]. Those operations provide more data and increase 

a variety of training samples leading to better model performance.  

Sensor data is a time series of data points sampled from raw sensor signals in a one-dimension format, 

which is different from image data. Therefore, augmented techniques successfully employed to image data 

are not necessarily applicable to wearable sensor data. In addition, unlike the image data, the physical 

meaning of sensor data can hardly be explained by visual observation. In general, augmentation for sensor 

data yet to be well studied. In this study, we proposed an effective approach to data augmentation for sensor 

data based on conditional generative adversarial networks (CGANs).  

The remainder of this paper is organized as follows. Section 2 provides an overview of HAR and major 

existing methods for deep learning-based HAR. Section 3 introduces the concept of generative adversarial 

networks and sensor data augmentation in the application of HAR. Section 4 demonstrates the experimental 

results to verify the effectiveness of the proposed approach. Conclusions are drawn in Section 5. 

2. Overview of Human Activity Recognition 

Activity recognition is a well-known problem and has been studied for decades. Sensor-based HAR can be 

considered as the problem of classifying inertial sensor data such as tri-axial signals of accelerometers and 

gyroscopes into well-defined human activities. Traditional approaches to the HAR problem involve a two-

stage design process. The first stage is to extract features from sensor signals based on human knowledge. 

Examples of features are the mean, variance, frequency, and amplitude of the sensor signals. Then, the 

extracted features are used to train a classifier in the second stage. Therefore, previous studies on HAR mainly 

work on discovering effective features for sensor signals in the first stage and/or exploring better algorithms 

for training classifiers in the second stage to increase the classification accuracy.  

Although past studies have made much progress on HAR, the feature engineering requires strong domain 

knowledge and the exploration of good features is still a challenge as they heavily affect the performance of 

classification models. 

Recently, deep learning methods have shown state-of-the-art results in many tasks. Taking advantage of 

deep learning on feature learning, deep learning-based HAR has become the research trend. A brief review of 
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major HAR-based deep learning is described as follows.  

 HAR Based on Dense Neural Networks (DNNs) 

In the earlier research, fully-connected dense neural networks were used to serve as a classification model 

after feature extraction based on human experience and domain knowledge. Although some authors used 

multi-layer DNNs as a learning model, those networks were rather shallow compared to the current deep 

neural structure. In [9], the authors used human selected features to feed into a multi-layer feedforward 

neural network with two hidden layers to train the classifier. As fully connected neural networks are not able 

to capture local dependencies of sensor signals, they may not always perform well. Deeper networks provide 

better representation as suggested in [10], which can help increase the model performance in identifying 

complex activities, but it needs more data to train the deep network. 

Today, it is widely recognized that a deep network structure has a direct impact on model performance, but 

how to find the best network structure remains an open question. In addition, many fine-tuning works are 

required to obtain a good generalization model. 

 HAR Based on Convolutional Neural Networks (CNNs) 

Convolutional neural networks are a type of neural networks with convolutional layers, which were 

originally designed for image classification tasks. As such, the operation of CNNs is well suited for the two-

dimensional (2-D) data format. A typical architecture of CNNs contains a mix of convolution layers, pooling 

layers, and fully-connected layers [11].  

CNN has the ability to extract features from data in a deeper fashion and can achieve promising results in 

many tasks such as image classification and speech recognition. When applied to HAR, CNN has its merits to 

capture local dependency by convolution oprations in convolutional layers and scale invariance by pooling 

operations in pooling layers. Local dependency in HAR means that the nearby sensor signals are likely to be 

correlated, while scale invariance refers to being invariant for different movements.  

As the raw sensor signal is a sequence of one-dimension data, when applying CNNs to HAR, the input sensor 

data has to be pre-processed. A common way to do this is to formulate sensor data into a two-dimension 

format to adapt itself for performing convolution and pooling operations. Otherwise, a strategy has to be 

made to perform 1-D convolution and pooling operations. 

 HAR Based on Recurrent Neural Networks (RNNs) 

DNNs and CNNs are feedforward networks. There is no difference in the order of each input for a 

feedforward network and the only input is the current observation it receives, while recurrent neural 

networks are different from feedforward networks. An RNN has the feedback loop connected to past states. 

An RNN take the current observation and what it has perceived previously as inputs. The abililty of RNNs in 

discovering the temporal relationship of input data make RNNs well-suited for time series analysis. Variations 

of RNNs with gating mechanisms such as long short-term memory (LSTM) or gated recurrent units (GRUs) 

provide a solution to overcome the gradient vanishing or exploding problem, which brings LSTMs and GRUs 

models to the research of HAR.  

LSTMs have become a popular HAR model in past few years till the rise and success of attention model. The 

authors in [12] explored deep, convolutional, and recurrent approaches across three sensor datasets and 

provided guidelines for applying deep leaning to HAR.  

 HAR Based on Hybrid Models 

Each network structure of neural networks has its pros and cons. Combining CNNs and RNNs to train a 

hybrid model can take advantages from both CNN and RNN models and achieve better results in recognizing 
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various activities [13]. The use of attention mechanisms in deep learning models has recently attracted much 

interest for its success in language processing [14] and computer vision tasks. A hybrid model includes 

attention mechanism is an emerging research direction. With the inclusion of attention component in HAR 

models, a new state-of-the-art performance has been reported on four diverse HAR benchmarks [15].  

3. Data Augmentation Using Generative Adversarial Networks (GANs) 

Data augmentation is a technique to avoid overfitting by generating synthetic data to improve the model 

generalization. In [16], the authors used CNNs to augment data by transforming existing labelled samples for 

time-series classification and presented a window slicing with warping technique to increase the number of 

training samples. They showed that the mixing dataset could improve the classification accuracy. However, 

window slicing is similar to image cropping for reducing the dependency on event locations, which may cause 

the problem of data label change. In addition, the CNN-based architecture will not be able to capture the 

temporal dependency. As such, it may not be applicable to sensor data in the application of HAR.  

An effective way to increase the data size is to make use of the invariant properties of the data with certain 

operations. In [17], several operations on original data for data augmentation are addressed. Those 

operations aim to add synthetic data to enrich training sets and help the model learn the range of intra-class 

invariances. In image recognition, minor changes in an image such as jittering, scaling, permutation, cropping, 

and rotating are proven to be effective as they do not change the data labels. Although those transformations 

have been shown effective in the computer vision community, they are not always applicable to sensor data.  

GANs are a type of generative models comprising two different networks, a generator network (G) and a 

discriminator network (D) [18]. Both G and D networks are trained as a two-player minimax zero-sum game. 

The generator’s task is to learn how to generate samples that are similar to the real data, while the 

discriminator is responsible for distinguishing the generated data from the real data. The task is expected to 

end up at an equilibrium point where the generator can generate samples that are not able to be distinguished 

by the discriminator. 

In general, the generator in a typical GAN is trained to learn the synthetic data that is likely to come from 

the sample space by taking a latent variable drawn from some distribution such as normal distribution or 

uniform distribution. The discriminator then evaluates the generated data and gives a scale value 

representing the probability that the generated sample comes from the real dataset. When the training is 

complete, the generator can be used to produce data to increase the amount of the required training data as 

the purpose of data augmentation. 

There are many GAN variants and applications since its debut in 2014 [18]. In this study, we investigate 

data augmentation based on conditional generative adversarial networks [19] to generate synthetic data for 

wearable sensors. Various methods for using GANs to expand training datasets have been proposed. In [20], 

the authors employed GAN-based data augmentation techniques to increase the emotion classification 

accuracy and showed their success on three benchmark datasets. Data augmentation using GANs has also 

been applied to medical image classification with promising results [21].  

The results reported in previous research suggest that GANs could have a significant benefit when used for 

data augmentation in image classification tasks. However, limited studies associated with GAN-based data 

augmentation have been conducted on wearable sensor data. In this work, we adopted a GAN-based 

framework that can effectively generate available sensor data for HAR.  

4. Experimental Results 

 Benchmark Dataset 

The objective of this experiment was to observe the impact of training data size on recognition accuracy. 
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The dataset used in this study was derived from [22]. It was collected by attaching a smartphone on the waist, 

with 30 participants at the age from 19 to 48, conducting six activities (walking, walking upstairs, walking 

downstairs, sitting, standing, and lying) in a laboratory environment. The sensor readings were sampled at 

50 Hz on tri-axial accelerometers and tri-axial gyroscopes. We set the time step for the LSTM parameter to 

100 and preprocessed the original data by removing unfilled data points within a time step for each activity, 

as listed in Table 1. 

 
Table 1. Experimental Dataset 

Activities Instances Training set(ratio) Test set(ratio) 

Walking 1,162 924 (16.36%) 238 (16.84%) 

Upstairs 1,079 879 (15.55%) 200 (14.16%) 

Downstairs 982 776 (13.73%) 206 (14.58%) 

Sitting 1,212 972 (17.21%) 240 (16.98%) 

Standing 1,317 1,049 (18.56%) 268 (18.96%) 

Lying 1,312 1,051 (18.59%) 261 (18.48%) 

Total 7,064 5,651 (100%) 1,413 (100%) 

 

 Performance Evaluation 

There are several performance metrics used in the study of recognition problems, such as the confusion 

matrix, accuracy, precision, and recall. As the instances of the dataset used in this experiment were an 

imbalance, a simple accuracy metric is unable to fairly evaluate recognition performance. As such, we used 

the F1-measure to calculate the number of misclassified activity instances and evaluated the recognition 

performance. Defined in (1), the F1-score is a measure of the test accuracy by combining the measure that 

assesses the precision and recall scores in (2) and (3), respectively. 
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where  

N is the total number of class instances  

TP is true positive  

FN is false negative 

FP is false positive 

 Classification Model 

In this study, a CNN-LSTM architecture, as illustrated in Fig. 1, was adopted as the base classification model 

for evaluating the performance of data augmentation. CNNs are used to extract features as a sequence of 

sensor input for the LSTMs. To adapt the sensor inputs to form a virtual image or 2-D format, we treat each 

axis of the accelerometer and gyroscope as a channel and then perform convolution and pooling operations 

separately. The parameters for this experiment are shown in Fig. 1 with the stride size set to one in 

convolution operations. 
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Fig. 1. A CNN-LSTM architecture as a base model for activity classification. 

 

We use different portions of the training set listed in Table 1 to train the base model. To investigate the 

impact of augmented data on model performance, we trained a CGAN to generate synthetic data using 20%, 

50%, and 80% of the training set conditioned on their activity labels, encoded as one-hot vectors and 

generated the required amount of data equal to 100% in total. The results are listed in Table 2 and Fig. 2. 

From Table 2, we can observe that the amount of generated training data has an impact on model 

performance.  
 

Table 2. Test Performance with Various Sizes of Training Data 
Percentage of training data without Augmented data 𝐅𝟏𝒔𝒄𝒐𝒓𝒆 

20% Training set 84.80% 

50% Training set 88.21% 

80% Training set 91.53% 

100% Training set 94.27% 

 

 

Fig. 2. Test performance with various percentages of the training set.  
 

Table 3. Test Performance with Augmented Data Using CGANs 
The mixture of the training set and augmented data  𝑭𝟏𝒔𝒄𝒐𝒓𝒆 

20% Training set and 80% Augmented data 85.01% 

50% Training set and 50% Augmented data 90.1% 

80% Training set and 20% Augmented data 92.91% 

 
In the generator network of the CGAN, a noise prior z was drawn from a normal distribution. Both z and 

the activity label y are mapped into hidden layers with the rectified linear unit (ReLU) activation, and the 

layer size was set to 600. The number of units of the LSTM was set to 64. The dimension of latent vector was 

set to 100. In the discriminator network of the CGAN, the discriminator maps input x to a layer with 240 units, 

and y to a layer with 50 units. The model was trained using stochastic gradient descent with the learning rate, 
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batch size, and time step set to 0.0002, 64, and 100, respectively. We then have a final layer as our output for 

generating the 6-dimensional (tri-axial accelerometers and tri-axial gyroscopes) sensor samples.  

 

Fig. 3. Test Performance with various amounts of augmented data.  

 

The results indicated that data augmentation is effective for boosting model performance with limited 

training data. Table 3 and Fig. 3 show the test performance with various amounts of training data and 

augmented data.  
 

Table 4. Comparison with Other Approaches 
Sources  Methods Performance 

Zhao, Y. et al. [23] Deep residual bidirectional LSTM 93.57% 

Ronao, C. A., et al. [24] Deep CNN with temporal FFT 95.75% 

Our Approach GAN-based data augmentation 96.39% 

 

Table 5. The Confusion Matrix of the Proposed Approach 

Activities Walking Upstairs Downstairs Sitting Standing Lying 

Walking 225 5 7 0 1 0 

Upstairs 6 192 2 0 0 0 

Downstairs 7 0 199 0 0 0 

Sitting 0 0 0 232 8 0 

Standing 0 0 0 14 253 0 

Lying 0 0 0 0 0 261 

 

 

Fig. 4. A visual representation of the confusion matrix derived from the proposed approach. 
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To make a comparison with other deep learning approaches for sensor-based HAR, we used the entire 

training dataset listed in Table 1 to train the CGAN model and generate additional 1,000 samples for each 

activity class. By combing the original training data and the data generated by CGAN, we can increase the 

number of training samples and obtain better performance at 96.39% accuracy on the test set. The results 

also outperform deep residual bidirectional LSTM [23] and deep CNN with temporal fast Fourier transform 

[24] as listed in Table 4. The corresponding confusion matrix derived by our approach was listed in Table 5 

and Fig. 4. 

5. Conclusion 

In this study, we have presented a CGAN-based framework for synthetic sensor data generation to improve 

the model performance for sensor-based HAR applications. As a complex learning model will generally not 

perform well with limited data, the proposed CGAN-based approach allows us to increase the amount of the 

training data, resulting in better performance. In addition, we have experimentally demonstrated the 

proposed approach on a benchmark dataset and made a comparison with other approaches to validate the 

effectiveness of the proposed approach. 
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