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Abstract: A covert channel is an information channel which is used by computer process to exfiltrate data 

through bypassing security policies. The domain name system (DNS) protocol is one of the important ways 

to implement a covert channel. DNS covert channels are easily used by attackers for malicious purposes. 

Therefore, an effective detection of the DNS covert channels is significant for computer system and network 

security. Aiming at the difficulty of the DNS covert channel identification, we propose a DNS covert channel 

detection method based on stacking model. The stacking model is evaluated in a campus network and the 

experimental results show that the detection based on the stacking model can detect the DNS covert 

channels effectively. Besides, it can also identify unknown covert channel traffic. The area under the curve 

(AUC) of the proposed method, reaching 0.9901, outperforms the existed methods.  
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1. Introduction 

The domain name system (DNS) is the infrastructure and the fundamental resource of the modern 

Internet, the main function of which is mapping domain names to IP addresses. However, the potential 

vulnerability of the data exfiltration of DNS is ignored by most of users, because the DNS protocol is widely 

used and most of firewalls do not inspect DNS packets. Therefore, DNS and the DNS protocol are becoming 

the targets of attackers or abused by cybercriminals. Now, many applications leverage the DNS protocol to 

implement the stealth tunnels and most DNS covert channels are used in various cyberattacks, including 

disclosure of sensitive information and enabling stealth tunnels for botnet commands. Although the 

security devices have the strict access control rules, they usually allow the DNS traffic to pass though, which 

is the condition of the malicious communication based on the DNS protocol. 

Many attackers now use DNS covert channels to attack information systems, steal key information, and 

damage the integrity and confidentiality of the data. In response to this threat, many different types of DNS 

tunnel detection methods have been proposed. At present, the detections of DNS covert communication 

behavior mainly include the analysis of network traffic and the analysis based on domain name strings. The 
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analysis of network traffic is generally the deep packet inspection of DNS packets to profile the attributions 

of the covert tunnels. Crotti [1] and Dusi et al. [2] proposed the classification methods based on the 

sequence of packets arrival and the size of packets respectively, which used to detect the data exfiltration 

hidden in the DNS tunnel, HTTP tunnel and SSH tunnel. Casas et al. [3] identified the stealthy DNS 

communication though calculating the amount of data in the communication and the size of single DNS 

packet. In the process of analyzing passive DNS traffic data, Marchal et al. [4] applied machine learning 

methods to DNS channel detection, extracted the attributes such as packet length and bytes, and specifically 

analyzed several tools of the DNS channel. Karasaridis et al. [5] studied the malicious behaviors of 

DNS-related covert channels, calculated the distribution of DNS packet sizes, and identified the packets of 

DNS covert channels based on the statistical attributes such as the distribution difference and the 

cross-distribution entropy. Sheridan and Keane [6] set up a covert channel experimental environment to 

collect the traffic of the active DNS covert channels, extracted fingerprints and implemented matching 

calculations during the detection phase. Shafieian et al. [7] leveraged the ensemble learning techniques 

which combine the multiple machine learning algorithms to improve the accuracy and robustness of the 

classifier. These methods are mainly aimed to the covert channels that transmit the large volume of data, 

which are difficult to detect the DNS covert channels with the small volume. Nussbaum et al. [8] and Aiello 

et al. [9] studied on the capability of data exfiltration of the covert channels, analyzing the number of host 

names related to the domain name, the locations of the domain name, and the history of the domain name. 

They found that the packet sizes of many malware receive commands and exfiltrate sensitive information 

through the DNS covert channels are similar to the packet sizes of the benign DNS traffic. Nadler et al. [10] 

focused on the detection of malicious behavior of the low-throughput data leakage based on the DNS 

protocol, and used the Isolated Forest technology to detect data leakage behavior based on DNS channel. It 

can successfully identify the high-throughput DNS channels and the low-throughput data leakage behaviors 

on large-scale data sets. 

In terms of the domain name string analysis based methods, combine the payload of the DNS packet and 

the domain name characteristics of the covert channel to determine whether the DNS request and response 

packets are abused for the malicious purposes. Farnham [11] used the regular expressions to analyze 

domain name strings in network traffic, and found the behavior of the covert channels in the network. 

Based on this method, a practical and commercial covert channel detection system was established and 

extracted the features of DNS packets that were compared with the preset thresholds. Bilge et al. [12] 

analyzed the characteristics of the benign domain names and the domain names used for DNS covert 

channels, and calculated the proportion of the longest meaningful string (LMS). The CUSUM algorithm was 

applied to count the characters distribution of the segments of the domain name. Both of the two methods 

are to analyze the string characteristics of the domain names used by the covert channels. It is believed that 

the benign domain names for the practical applications usually consist of the meaningful words. Thus, the 

mentioned methods mainly detect the DNS covert channels with the special domain name strings, which 

ignore the DNS covert channels simulating the behavior of the benign domain names.  

Based on the above analysis, the current traditional DNS covert channel identification methods have 

some shortages. Recently, stacking technique in ensemble learning have good performance in the different 

field, which shows the powerful ability to automatically solve problems. We think that the same type of DNS 

covert channel has similar behavior patterns in terms of network communication, and the network 

behavior patterns are difficult to change under the premise of achieving a special purpose. Therefore, we 

propose a method of DNS covert channel detection based on the stacking model. We analyzed the 

characteristics of the DNS covert communication traffic and extracted the features of the DNS covert 

channel packets, which can help to distinguish the traffic of the covert channels from the legitimate traffic. 
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The experiments were carried out in the real-world environment of the campus network and the stacking 

model achieved the ideal performance.  

The remainder of the paper is arranged as follows: In Section 2, the features of the DNS covert channels 

and the patterns of communication behaviors are analyzed. The details of the method will be elaborated 

specifically in Section 3 while the experimental process and results will be presented in Section 4. Finally, 

we summarize the paper in Section 5. 

2. Feature Selection 

 DNS Convert Channel 

The behavior of the DNS covert channel is generally implemented by two methods: one is to establish a 

connection with a specific server during the domain name resolution process, which is called a standard 

DNS covert channel. The other is that the client directly establishes the connection with the server of the 

covert channel, which is called a non-standard DNS covert channel. For a standard DNS covert channel, an 

attacker needs a completely controlled DNS resolution server and a registered domain name. The resolution 

server is must set to the authoritative server of the domain name, then, which can be used as the sever of 

covert channel. When a client of the covert channel sends a request, which contains a subdomain name 

under the controlled domain name, to any DNS recursive server. The information hidden in the subdomains 

is sent to the controlled authoritative server through the standard domain name resolution process of DNS. 

The fundamental premise of the successfully implementing the non-standard DNS covert channel is that the 

client of the DNS covert channel can communicate with any DNS server. The attacker binds the tunnel 

service encapsulated by UDP protocol to port 53 of the server and can directly establishes a connection 

from the client to the server. 

 Features of Deep Packet Inspection 

After the analysis of the implementation methods and processes of DNS covert channels, we consider the 

characteristics of the bidirectional packets of the DNS covert channels, as well as the problems that may 

exist in the deep packet inspection and the characteristics of network packets parsing processes. We try to 

construct a feature set to identify the DNS covert channel.  

The response packets of the standard DNS covert channel contain the most of response data in the 

resource records, which makes the sum of the data length of the resource record greatly different with the 

same statistics in the normal response packets. It also influences the length of the entire packets. Therefore, 

we take the sum of the lengths of resource records in the answer sections and the sum of the lengths of the 

total resource records as the classification features. At the same time, we also take the length of the DNS 

request packet and DNS response packet as classification features. In addition, some DNS covert channels 

use the uncommon record types (such as TXT record) for the data transmission. Therefore, the number of 

the unusual record types used in the DNS packets can be checked as a feature. 

We also noted the characteristics in the process of the client issuing the domain name requests. It is found 

that there is a large difference between the QNAME field of the DNS covert channel packets and the normal 

DNS packets. The fields except QNAME in the DNS question section have the limited data space, according 

the DNS protocol. Thus, the QNAME field contains most of the data exfiltrated through the covert channel. 

We calculated the number of the labels of the domain name (the label is the string separated by dots, and 

for example, the ‘aaaaaaa.com’ has two labels, ‘aaaaaaa’ and ‘com’) and the label length of the second-level 

domain. Therefore, the number of the labels in the domain name and the length of the second-level domain 

are used as classification features. 

The DNS protocol is not designed to transmit the large volume data, so improving the transmission 
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efficiency is especially important. In [4], the work presents that an effective way to improve transmission 

efficiency is to use the binary data in the domain names. Based on the survey of the different DNS covert 

channel tools, most of the tools adopt the unusual characters. The DNS protocol specifies that the domain 

name needs to be encoded by the Base32 algorithm. The proportion between the valid amount of 

information expressed by the binary string itself and the string encoded by Base32 is about 5:3. Therefore, 

the amount of the binary data carried by the subdomain and the amount of the data stored by the 

subdomain are two important characteristics. For example, in the experimental environment, the domain 

name in the communication between DNSCat2 and the command and control server is 

‘3f29016955018bd5b7.malwareserver.com’. It has 3 domain name labels, the length of the secondary 

domain name label is 13, and the binary data volume of the subdomain name is 9 bytes. 

In addition, in order to improve transmission efficiency, it is necessary to occupy all the remaining space 

in the DNS packet or Raw UDP packet as much as possible. This make the lengths of the packets of the DNS 

covert channel are different from the benign DNS packets. However, the packets of the Raw UDP tunnel 

cannot be regarded as the DNS packets, so the length of the UDP payload is additionally considered as a 

feature. 

The benign domain names usually use the words, other meaningful strings or the strings which is easy to 

remember, while the domain names of the DNS channels are often cluttered and incomprehensible. 

Therefore, there is a big difference in the character composition between the domain name of covert 

channel and the benign domain name, that is, the character is selected randomly, which has great 

randomness, and we use entropy to express the randomness of domain names. Besides, the random string 

has a high entropy, while normal string has low entropy. Therefore, the entropy of the domain name string 

is also one of the important factors to identify the DNS covert channels. 

When the client or server parses legitimate network packets according the DNS protocol, there is no 

exception and the resolution is exactly complete. The resolution of the DNS covert channel packet is 

different. It is more likely that the program will throw up the exceptions and the packets cannot be 

completely resolved (referring to the absence of data injection). Therefore, the status of the packet 

resolution and the volume of the injected data should be recorded as classification features. The volume of 

the injected data is the distance between the end position of the DNS packet payload and the end position of 

the UDP packet payload. 

After the analysis of network packets, we finally extracted in total 16 features of the DNS packets to 

identify the DNS covert channel traffic, as shown in Table 1.  

 

Table 1. Features of Deep Packet Inspection 

No Name Comment 

1 isExistCname Whether the response packet has CNAME records. 

2 SumOfRDlengthOfResponse The sum of the lengths of resource records in the answer sections. 

3 totalLengthOfRD The sum of the lengths of the total resource records. 

4 NumOfUnusualRecords The number of the unusual record types. 

5 NumDomainLabel The number of the labels in the domain name. 

6 LenOf2LevelDomain The length of the second-level domain. 

7 AmountOfBinDataInSubdomain The amount of the binary data in the subdomain. 

8 AmountOfDataInSubdomain The amount of the data stored in the subdomain. 

9 EntropyOfDomainStr The entropy of the domain string. 

10 isResolutionException Whether the packet can be successfully parsed. 

11 AmountOfInjectedData The amount of the injected data. 

12 LengOfDNSRequest The length of the DNS request packet. 

13 LenOfDNSResponse The length of the DNS response packet. 

14 LenOfUDPPayload The length of the UDP payload. 
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Specifically, the isExistCname refers to whether the response packet has CNAME records, which has only 

two values of 0 or 1. The SumOfRDlengthOfResponse refers to the sum of the lengths of resource records in 

the answer sections, and we need to count the number and length of resource records only in the answer 

sections. The totalLengthOfRD refers to the sum of the lengths of the total resource records, unlike the 

previous one, we need to count the number and length of all resource records in the packet, not just the 

answer sections. The NumOfUnusualRecords refers to the number of the unusual record types, and the 

more likely it is that DNS covert channels are related. The NumDomainLabel refers to the number of the 

labels in the domain name and the LenOf2LevelDomain refers to the length of the second-level domain, 

these two features reflect the relevance of domain names and the hidden undetected information. The 

AmountOfBinDataInSubdomain refers to the amount of the binary data in the subdomain and the 

AmountOfDataInSubdomain refers to the amount of the data stored in the subdomain, these two features 

reflect the encoding method and the amount of information contained in the domain name, and have a great 

relationship with the DNS covert channel. The EntropyOfDomainStr refers to the entropy of the domain 

string, which reflects the randomness of the domain string and the value indicates whether it is a normal 

domain name or a domain name of covert channel. The isResolutionException refers to whether the packet 

can be successfully parsed, which has only two values of 0 or 1. The AmountOfInjectedData refers to the 

amount of the injected data, the LengOfDNSRequest refers to the length of the DNS request packet., the 

LenOfDNSResponse refers to the length of the DNS response packet, and the LenOfUDPPayload refers to the 

length of the UDP payload. DNS covert channel needs additional information in the original packet, so some 

properties of the original packet will be changed. Therefore, the above four characteristics have a greater 

relationship with the DNS convert channel. 

 Features of the Communication Behaviors 

2.3.1.  Related definitions 

In order to clearly describe the features, we make some definitions which is related to the features. 

Definition 1 (sourIP, subdomain). If the DNS packet is legit and can be completely resolved, we define 

this communication session as (sourIP, subdomain), where the sourIP is the source IP address of the DNS 

request packet or the destination IP address of the DNS response packet, the subdomain is the substring of 

the domain names which remove the same domain suffix. 

Definition 2 (sourIP, destIP). For the invalid DNS packet when the resolution process throws out the 

exceptions, we define the communication session as (sourIP, destIP), where the sourIP is the source IP 

address of the DNS request packet, the destIP is the destination IP address of the DNS request packet. If the 

DNS packet is captured at the gateway, we regard the IP address of the host within the local area network as 

the sourIP. 

2.3.2.  Communication features 

The process of the DNS communication is continuous. Only the features of the DNS packets cannot meet 

the requirements of detecting the DNS covert channels. Therefore, we try to extract the features of the 

communication behavior. We sequentially concatenated the DNS packets which belong to the same 

communication sessions, and then calculated the statistics of the communication sessions. 

We selected the communication features based on the three different aspect observations. (1) The actual 

situation of capturing the packets. (2) The experimental observations of DNS channel tools. (3) The 

similarity between the domain names of the DNS channel and the domain names generated by the domain 

generate algorithm (DGA). 

Normally, an application uses the DNS protocol to get the address of the server IP address for the 

following actions. For instance, DNS queries before issuing HTTP requests. Therefore, DNS requests are 
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related to other types of requests. However, there are only DNS requests in the DNS channel, which we call 

the isolated DNS requests. Therefore, the number of requests isolated in DNS requests can distinguish DNS 

covert channels. In this paper, we consider the number of the isolated DNS requests in the specific time 

window as an indicator of the DNS channel. 

Because the domain name channel mainly depends on a certain server for communication, the client of 

the DNS channel will send the numerous DNS requests of the specific domain. It results in that the number 

of host names who have ever sent the requests of the specific domain name is much more than the number 

of the clients who have sent the requests of the legitimate domain names in the same period. Therefore, the 

domain name with many host names is likely to be the domain name of the DNS channel [12], and we 

consider the number of client host names of each name as a feature. 

In order to prevent malicious domain names from being detected, domain generation algorithm is usually 

used to generate a large number of domain names, and only a small number of registered domains are 

selected. Therefore, most of algorithmically generated domains (AGD) do not exist in the network. 

Therefore, AGDs are always have many non-existent domain responses (NXDomain) [13]. We notice that the 

domain name of DNS channel has great randomness in character composition, and has certain regularity in 

the length of domain name. It is similar to AGDS in string entropy and domain name length. It will also 

generate a lot of NXDomain responses (such as: Heyoka). Thus, these characteristics can be used for 

detecting DNS channels. 

 

Table 2. All the Selected Features 

Set Features 

S1 
1. The total number of the DNS packets sent by the client. 
2. The total number of the DNS packets received by the client. 

S2 

1. The number of the packets which exist CNAME, in the same 
communication session. 
2. The maximum, minimum and mean of each feature of the packets in 
the same communication session (features shown in Table 1). 

S3 
1. The number of the isolated DNS request packets. 
2. The number of the client host names of each domain name. 
3. The number of the NXDomains. 

 

All the features we selected are summarized in Table 2 and we seperated them into 3 sets. S1 describes 

the volume of the communication traffic between the client and the server. S2 is the set which includes all 

the features shown in Table 1 and the features of S2 are extracted through the deep packet inspection. In S2, 

we calculated the maximum, minimum and mean of each feature of the packets in the same session except 

the isExistCname, whereas we counted the number of the packets which have the CNAME. The 

characteristics of the communication behaviors of the DNS covert channel are gathered in S3. In total, 45 

features are selected to represent a communication session. 

3. DNS Convert Channel Detection 

After the analysis of the work mechanism of DNS covert channels, we extracted the features of the 

communication traffic. In this section, we first present the overview of the detection architecture, which is 

shown in Fig. 1. Then how the modules of the architecture cooperate and together detect the DNS covert 

channels will be described. 

 Overview 

The architecture of detecting DNS covert channel consists of three modules, data preprocess module, 

model training module and prediction module. Here we depict how they cooperate for the detection 
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respectively. 
 

 

Fig. 1. The Overview of the architecture. 

 

In the beginning, we have to collect the DNS traffic, including the benign traffic and the malicious traffic, 

for training models and evaluation. In order to simulate the real network environment, we collect the 

benign DNS traffic from a large Internet Services Provider (ISP). As for the traffic of the covert channels, we 

ran the DNS covert tools in the simulated environment and captured traffic generated by the tools. We 

considered that the DNS traffic collected from the ISP may include the suspicious traffic, so data cleaning is 

necessary. Leveraging the Alexa list of the top 1 million websites, we excluded the domains which ranked 

after 5000. Then, we transformed the raw data into the tabular data through extracting the features which 

are selected to represent communication sessions. 

The dataset is split into the training dataset and the test dataset for the downstream tasks. We proposed a 

stacked model consisting of three different machine learning algorithms, the k nearest neighbors (KNN), the 

linear support vector machine (SVM) and the random forest. We try to capture more different details using 

the different techniques including the linear classification and the non-linear classification. Then, the 

prediction of each base model will be ensembled using the stacking technique. The models were trained 

using the 5-fold Cross Validation. 

Finally, the trained model will be evaluated on the test dataset and the experimental results show the 

extraordinary performance of detecting the DNS covert channel with a low false positive rate. 

 Data Preprocess 

In order to save the space of storing the raw traffic data, actually, we just logged the necessary fields of 

each DNS packet such as the timestamp, the IP address and the domain name. We downloaded the Alexa list 

of the top 1 million website and chose the top 50000 domains as the white list to filter the raw data. It 

helped us reduced the about 35% amount of traffic which need to be analyzed.  

For the traffic of the covert channels, we collected five sorts of the DNS covert channel tools, to simulate 

the communication situation in the controlled environment. 

We removed the domains which have only been queried once in the specific epoch (donate as E) for both 

the benign traffic and the covert channel traffic. This process ensures all the domain names in the epoch E 

are queried more than once and the domain names are not occasionally appeared in the observation 

periods. Next, we concatenated the packets belonging to the same sessions in the epoch E. Based on the 

communication sessions, the features of each session can be calculated. The new observations of the 

sessions can be represented as follow, 

 ni aaaR ,...,, 21=   (1) 

where 𝑅𝑖 is the new observation of the vectorized session and 𝑎𝑖  is the value of the selected feature. We 
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can obtain the dataset 𝑂𝑚×𝑛 by transforming all the DNS traffic. 

 m

nm RRRO ,...,, 21=                                  (2) 

For each attribution in the dataset, the values should be standardized in order to have the same 

magnitude between the different attributions. Z-Score is a measure of how many standard deviations below 

or above the mean a raw score is. Taking the column 𝐶𝑖  as the example, we can calculate the z-score of 

elements through the below formula, 

S

cc
z i

i

−
=                                      (3) 

where the 𝑐𝑖  is the element of the attribution, 𝑐̅ is the mean value of 𝑐𝑖  and 𝑆 is the standard deviation 

of 𝑐𝑖 . After the Z-Score standardization, we obtained the new data as the input of the models. 

 Model Training 

In this paper, we proposed a stacking model which ensembles the three different algorithms (KNN, SVM 

and random forest). We will elaborate the configuration of each base model and how they ensemble 

together. In order to clearly describe the mechanism of the models, we consider the problem of each model 

as a binary classification problem where a training set composed of m observations and n attributions. 

3.3.1.  KNN 

The core idea of KNN algorithm is that if most of the k nearest samples in the feature space belong to a 

certain category, then the sample also belongs to this category and has the characteristics of samples in this 

category. In the decision-making of classification, the method only determines the category of the sample to 

be classified according to the category of the nearest one or several samples. The KNN method mainly 

depends on the limited adjacent samples, rather than on the method of identifying the class field. Therefore, 

KNN method is more suitable than other methods for the sample set to be divided with more overlapping or 

overlapping class fields. 

The KNN algorithm leverages the features of the k nearest samples to identify the label of unknown 

samples. Thus, the definition of the distance between two samples is important and, in the experiments, we 

adopted the Euclidean distance. When a KNN classifier decides the label of a target sample, the strategy is to 

label the sample with the label which occurs most in the k nearest samples. It has the shortage when the 

training dataset is unbalanced. In other words, the samples appearing more frequently will dominate the 

prediction of the target sample. Therefore, we weighted the k nearest samples at the classification to 

overcome this bias. 
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where 𝑥𝑖  is the vector of a sample, 𝑥𝑖𝑘  is an attribution of the sample, 𝑦̂𝑡 and 𝑦̂𝑥 are the label of the 

target and the sample respectively, 𝑁𝑘 is the set of the k nearest neighbors, and 𝑐𝑖  is a label of the label set. 

Here, after getting the k nearest neighbors, we chose the Gaussian function to weight the distance of the 

neighbors. For each class in 𝑁𝑘 , the sum of the weighted distances, the result of the Gaussian function, 

needs to be calculated. The label of the target sample is decided by the label of the category having the 

maximum sum value. 
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3.3.2.  Linear SVM 

SVM is a kind of generalized linear classifier which classifies data according to supervised learning. Its 

basic model is the linear classifier with the largest interval defined in the feature space. The basic idea is to 

solve the separation hyperplane which can correctly divide the training data set and has the largest 

geometric interval. Its decision boundary is the maximum margin hyperplane to solve the learning samples.  

SVM is a powerful model that can classify samples without error if the sample data is completely linearly 

separable. It is suitable for solving classification problems with high dimensional feature space and small 

training set size. We applied the SVM to acquire the “linear knowledge” of the input data. The aim of the 

SVM is to create a statistical model to predict the label value ŷt of an element considering only its attribute 

vector xt. Given the training samples, the SVM derives, in n-dimension space, an optimal hyperplane that 

separates the two classes and that will then be used to assess the class of unknown elements. The 

hyperplane equation is: 

0=+ bxw                                       (6) 

where 𝑤 is a coefficient vector and 𝑏 is a scalar offset. The values of the optimal hyperplane parameters 

(𝑤  and 𝑏 ) are found maximizing the distance between the hyperplane and the nearest training 

observations of the two classes.  

3.3.3.  Random forest 

Actually, the size of the training set of the DNS traffic usually is large and the covert channel identification 

is difficult. Therefore, the random forest is introduced as the base model to improve the performance and 

efficiency. The random forest is an ensemble learning algorithm, which belongs to bagging type. By 

combining multiple weak classifiers, the final result is voted or averaged, which makes the results of the 

whole model have high accuracy and generalization performance. Like its name implies, random forest 

consists of a lot of individual decision trees that operate as an ensemble. In the process of classification, 

each individual tree in the random forest splits out a class prediction and the class with the most votes 

becomes our model’s prediction. The training algorithm of the random forest leverages the bagging 

technique, if the forest has B trees, we sample n training observations from X, Y, called these 𝑋𝑏 , 𝑌𝑏 with 

replacement and then train a classification tree 𝑓𝑏 on 𝑋𝑏, 𝑌𝑏 . The prediction of the random forest can be 

acquired through majority-voting of the B trees. 

3.3.4.  Stacking 

After all the base models selected, the way how we combine weak learners to produce the more powerful 

classifier should be discussed. Stacking, that often considers heterogeneous weak learners, learns them in 

parallel and combines them by training a meta-model to output a prediction base on the different weak 

models predictions. Stacking is a multi-layer multi model aggregation method. Each layer can include 

multiple models, and the next layer uses the results of the previous model to learn. Roughly, stacking will 

mainly try to produce strong model less biased than their components. 

For stacking, we chose a two-layer model, and we need to define two things in order to build our stacking 

model: the base models we want to fit and the meta-model that combines them. The base models we 

already selected and we decide to learn a neural network as meta-model. Then, the neural network will take 

as inputs the outputs of our three weak learners and will learn to return final predictions based on them. 

The best way to explain the stacking technique is by Fig. 2. The idea of stacking is to divide the training 

set into N pieces and hold the Nth fold out for validation. For each fold, predictions for each fold is obtained 

from a fit using the rest of the folds and collected in an out-of-sample predictions matrix. Namely, the 

meta-model will train on the predictions matrix to obtain the final predictions for all the samples. 
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Fig. 2. Stacking the base models on training set. 

 

Specifically, stacking model is to further mine the relationship between data and labels on the basis of the 

original model, that is, on the basis of the first level model, the model is further trained according to its 

prediction results to achieve the effect of comprehensive model. In this regard, we divide the data set into 

training set and test set. For the training set, in order to avoid over fitting, each basic model uses cross 

validation method to obtain the prediction value of the model for the training set, and then integrates the 

prediction results of each model as the input training set of the meta model. For the test set, each basic 

model has predicted the test set during cross validation, and takes the average value, and then integrates 

the prediction results of each model as the test set of meta model. In this way, the training set is used to 

train the meta model, and the test set is predicted to get the final result. 

4. Experiments and Analysis 

 Data Set 

The collected data set in the experiments is mixed traffic, including background DNS traffic and DNS 

hidden channel traffic. The benign DNS traffic was collected from a college campus network. Within 20 days, 

we acquired 52,632,469 sessions. As we mentioned in section 3.2, the background traffic should be filtered 

by the white list composed of the top 50k domains in the Alexa list and remove domains which have been 

quired only once in the epoch E (E=1 hour in experiment). At last, we got the 32,748,103 sessions left. 

The traffic of the DNS covert channels was generated by the collected tools, including Indine, Dns2tcp, 

DNSCat2, DeNiSe and Heyoka, which were frequently abused by cybercriminals. The brief descriptions of 

these tools are shown in Table 3. Indoine, Dns2tcp and DNSCat2 can implement multiple types of covert 

communications using different resource record such as NULL, TXT, SRV, MX, CNAME, KEY, etc. 

 

Table 3. The Tools of DNS Convert Channel 

Tool Description 

Indoine 
This is a piece of software that lets you tunnel IPv4 data through a DNS server. This can be usable in 

different situations where Internet access is firewalled, but DNS queries are allowed. 

Dns2tcp 

Dns2tcp is a network tool designed to relay TCP connections through DNS traffic. Encapsulation is 

done on the TCP level, thus no specific driver is needed (i.e.: TUN/TCP). Dns2tcp client does not need 

to be run with specific privileges. 

DNSCat2 
This tool is designed to create an encrypted command-and-control (C&C) channel over the DNS 

protocol, which is an effective tunnel out of almost every network. 

DeNiSe DeNiSe is a proof of concept for tunneling TCP over DNS. 

Heyoka 
Heyoka ia a proof of concept of an exfiltration tool which uses spoofed DNS requests to create a 

bidirectional tunnel. It aims to achieve both performance and stealth. 

TCP-over-DNS A tool leverages encoding data in an address to achieve the communication between client and server. 

OzymanDNS A tool leverages SSH to implement DNS covert channel. 

 

In a controlled network environment, we ran each tool in five hosts and obtained the traffic of the active 
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status (transmit the information) and the inactive status (do not transmit the information) respectively. We 

collected the traffic of the covert channels for 480 hours, in total obtaining 12,617,075 sessions. Domains 

which were queried only once in the epoch E were filtered out. The number of the left sessions is 

11,403,570. We held the 30% of the background traffic and the 30% of the covert channels traffic out for 

testing. The summary of the training set and the testing set is presented in Table 4. 

 

Table 4. Number of Each Type Traffic in Data Set 

Type Training set Testing set 

Indoine 1,468,777 629,476 
Dns2tcp 1,374,824 589,210 

DNSCat2 1,323,550 567,236 

DeNiSe 1,492,795 639,769 

Heyoka 1,487,316 637,421 

TCP-over-DNS 0 603,213 

OzymanDNS 0 589,983 

Background 22,923,672 9,824,431 

Total 30,070,924 14,080,739 

 

 Evaluation 

To evaluate the effectiveness of the DNS covert channel detection, we chose two metrics, the area under 

the curve of receiver operating characteristic (AUC ROC) and the false positive rate (FPR). The x-axis of the 

ROC is FPR and the y-axis is the true positive rate (TPR). They are defined as follow respectively: 

FPTP

TP
TPR

+
=                                      (7) 

TNFP

FP
FPR

+
=                                      (8) 

where TP is the number of the true positive samples, FP is the number of the false positive samples and TN 

is the number of the true negative samples. 

Traditional DNS covert channel detection methods generally include two aspects of DNS packet analysis 

and traffic analysis. The typical method of DNS packet analysis is Farnham [11] proposed a DNS detection 

model that uses regular expressions to match domain names and Karasaridis et al. [5] proposed that detect 

DNS anomalies based on the network traffic statistics. Karasaridis et al. calculated the distribution of data 

message sizes within a certain time window, and estimated a cross-distribution entropy by analyzing and 

comparing the distribution obtained in the experiment and the standard distribution. The entropy was then 

used for the detection. Recent years, Shafieian et al. [7] believe that traditional DNS covert channel 

detection methods are not meet the requirement of detecting DNS covert channels. For example, the wide 

use of Content Delivery Network (CDN) has increased the false positives of traditional detection methods. 

Therefore, they proposed leverage ensemble learning techniques to detect DNS covert channels. In addition, 

according to Nadler et al. [10] investigation and research, low throughput DNS covert channels are often 

abused to leak the credit card information, passwords and other private information. Thus, an isolated 

forest method is proposed for detecting the low throughput and DNS protocol-based data leakage behavior, 

and the performance of the model is tested on a large size data. For the convenience, we called them 

Farnham model, Karasaridis model, Shafieian model and Nadler model. We implemented the four models 

and compared them with our method to verify the advantages of the proposed method in DNS covert 

channel identification. 

We implement the stacking model with scikit-learning library and the parameter setting of the models is 
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concluded in Table 5. 

 

Table 5. Parameter Setting of Models 

Model Parameters 

KNN k=5 

SVM penalty=’12’, c=1.0, max_iter=5000 

Random Forest n_estimators=1000 

Neural Network hidden_layer_sizes=(50,25), solver=’adam’, learning_rate=’adaptive’, max_iter=5000 

 

We trained the stacking model on the training set and evaluated on the testing set for calculating the 

metrics. The experimental result is shown in Table 6. It can be seen from Table 6 that the AUC ROC of the 

stacking model reaches 0.9901, which is a certain improvement compared to the other four methods. The 

Farnham method extracts features of fully qualified domain names and performs complex regular 

expression. Only the information of the domain names is considered, so the performance is bad compared 

to the others. The Karasaridis method uses the statistics of network traffic to identify DNS covert channels. 

In a time window, the entropy of the size distribution of network packets is calculated. The performance is 

improved compared to Farnham's method, but the AUC ROC is still lower than our model. In [7], the DNS 

channel tools used to test the Shafieian method include Iodine, DNSCat2, and Ozyman. The number of trees 

used in the random forest are small. Therefore, when this method is applied to detect multiple different 

types of DNS covert channels, the performance is slightly reduced. The Nadler method [10] can effectively 

detect low-throughput DNS channels on the premise of considering the high-throughput DNS covert 

channel detection. However, the isolated forest algorithm used in this method is an unsupervised learning 

algorithm, which needs to establish a baseline on normal DNS traffic. Different network environments need 

different benchmarks and it results in fluctuations in detection performance. Compared with these two 

methods, our method is similar to the Shafieian method. However, we used the traffic of the multiple types 

of DNS channels as training data, and leveraged neural network and stacking technique to combine multiple 

base models. It has stable detection performance and can effectively identify different DNS covert channels. 

 

Table 6. AUC ROC and PTR of Different Methods 

Method AUC ROC FPR 

Farnham 0.9496 1.68% 
Karasaridis 0.9575 1.53% 

Shafieian 0.9742 0.99% 

Nadler 0.9812 1.01% 

Stacking 0.9901 0.54% 

 

In terms of FPR, compared with the other four methods, the Stacking Model has less false alarms. The 

stacking Model has a more comprehensive identification ability, because of leveraging the depth packet 

analysis and network traffic characteristics for comprehensive analysis. Compared with the Shafieian 

method and the Nadler methods, the Stacking Model can combine the different base models to capture 

more information about DNS channels. Through the stacking technique, the advantages of each base model 

can be effectively obtained, and the predictions of the base models are used as the input of the neural 

network learning. It has a stronger ability to identify the traffic of the DNS covert channels, and the false 

positive rate is lower. 

The testing set include two types of DNS covert channels which are not existed in the training set. In the 

experiment, the stacking model still can successfully detect the unknown traffic (the traffic of TCP-over-DNS 

and OzymanDNS). Different DNS channel tools have the differences in programming, implementation 

details, and application scenarios, but the principles are basically similar. Thus, they have similar 
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characteristics of packets and behavioral features of communication. Therefore, the extracted features can 

be effectively used for identifying other unknown DNS covert channels. 

5. Conclusion 

In conclusion, we analyze the communication forms of the common DNS covert channels. The passive 

DNS data and the typical DNS covert communication channel samples are collected for comprehensive 

analysis. We studied the characteristics of the DNS covert channel packets and the communication behavior 

patterns of the tools. We propose a DNS covert channel detection method based on the stacking model 

which is able to detect the DNS covert channels effectively. It shows the excellent performance on this task 

by using the stacking technique combined with the base models, which improves the detection accuracy 

and reduces false positive rate. 
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