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Abstract: Recently, research on generative adversarial networks (GANs) in deep learning has advanced 

rapidly. For instance, in the field of image recognition, using a GAN, the number of training data was 

increased. GAN have also been used to create new similar images using training images, which can help 

designers such as car designer, character designer, game designer and more. We have been researching a 

method to automatically generate a game stage based on a dot-picture using GAN. So far, we have been 

studying game stage generation using GAN. In this study, we consider an evaluation method for generated 

game stages. Specifically, we consider using the A * search algorithm to evaluate the playability of the 

generated game stage from the number of jumps and the clear time. As a result, the jumping count of an 

automatically player using the A * algorithm was 17 times for the original stage, 12 times for stage No.1, 16 

times for stage No.2, and 18 times for stage No.3. Next, the clear time was 9 seconds for the original stage, 8 

seconds for stage No.1, 10 seconds for stage No.2, and 11 seconds for stage No.3. In other words, we suggest 

stage No.1 is simpler than the original stage, and stage 2 and stage 3 are a little more difficult than the 

original stage. 
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1. Introduction 

Recently, research on generative adversarial networks (GANs) in deep learning has advanced rapidly [1]. 

In the field of image recognition, researchers increased the number of training images using data 

augmentation [2]. In other words, a GAN can generate a new image similar to a training image, thus 

addressing the issue of a lack of data. In addition, GAN-based methods have been applied in various ways to 

support a designer. For example, Reed et al. [3] have studied the generated method of an image from text, 

Yan et al. [4] have studied the generated of a face image from attribute words. In previous researches 

[5]-[10], they have studied the generation new image from the learned images.  

We focus on a method to develop game stage for a game. For the generation of a game stage, in general, 

game designers generate some game stages during game development and players play a game on the stage 

made by the designers. Recently, players have developed game stages using the "Super Mario Maker" which 
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runs on Wii U software developed by the Nintendo Corporation. The players then play a game on the stage 

created by other people. However, games are developed with multiple game stages, and the development 

cost is expensive. Furthermore, when a user creates a game stage, the process is time consuming and 

restricted owing to constraints imposed by the game software. In a study of automatic generation of the 

game stage using GAN, Radford et al. [11] have been studying a game stage of "DOOM" in the first-person 

shooter (FPS) game. In this study, they have conducted an automatic generation of the 3D game stage using 

the image of the viewpoint seen from directly above.  

We have been studying the generation of game stages for 2D action scroll games as an application of GAN 

[12], [13], and describe an evaluation using A* search algorithm to game stages generated by GAN in this 

study as shown in Fig. 1. In this study, we consider an evaluation method for generated game stages. 

Specifically, we consider evaluating the playability of the generated game stage like a game using the A* 

search algorithm. We evaluate the stage using the A* search algorithm in the same way as Vanessa Volz et al. 

[14]. 

 

     

Fig. 1. An evaluation using A* search algorithm to game stages generated by GAN. 

2. Generating Method of a Game Stage 

In this section, we explain a generation method of game stages using GAN. Fig. 2 shows a flow to generate 

game stages. 

 

 
Fig. 2. Increasing learning images. 

 About DC-GAN 

There are several types of GAN using a convolution neural network (CNN), such as the Laplacian pyramid 

of adversarial networks (LAP-GAN). The LAP-GAN was proposed by Denton et al. [15]; it can create a 

high-resolution image. However, the LAP-GAN needs multiple networks and processing time. Therefore, we 

use the DC-GAN proposed by Radford et al. [16], which can generate high-resolution images without using 

multiple networks. DC-GAN has four features. One is that it does not use a pooling layer; the second is that it 

does not use a fully connected layer, the third is that it uses batch normalization, and finally, it uses the leaky 

rectified linear unit (Leaky ReLU). 

Preprocessing DC-GAN Reconstitution
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 Method for Increasing Learning Image 

GANs require many learning images for training; however, each game has a limited number of game 

stages. Hence, we propose a method of dividing a long game stage by constant sliding, as shown in Fig. 3, 

thus increasing the number of learning images. 

A 2D action game has a long vertical or horizontal stage. Therefore, we slide vertically or horizontally to 

divide the game stage. In this study, the window size is 256 px × 224 px, and the sliding window size is 16 

px, which is one slide of a dot picture. Fig. 3 shows an example of a sliding windows using "Super Mario 

Brothers." 

 
Fig. 3. Increasing learning images. 

 Issues Experienced with GAN Using Dot-Picture 

For learning dot pictures, we target nine game stages (1-1，2-1，4-1，5-1，5-2，7-1，8-1，8-2 and 8-3), 

all of which have stages with a ground and blue background, from the game "Super Mario Brothers", and 

increased the number of learning images to 2,080 using the previously described method. In other words, 

we do not target underground game stages, sea stages, and sky stages. We then performed learning using 

the DC-GAN. The result is as shown in Fig. 4. Learning is performed for a total of 100 epochs.  

 

 
Fig. 4. Problems of game stage using DC-GAN. 

 

For learning using the dot-picture of original game stages, as shown in Fig. 1, some problems such as 

collapsing of the game object and noise in the background are observed. The issues shown in Fig. 4 are 

described below: 

(a) Blurring the game object 

The generated game object appears translucent. In this case, the motion of the game object becomes 

16 px sliding

256 px

224 px

16 px sliding

256 px

224 px

(a) Blurring

the game object

(b) Collapsing  

the game object

(c) Noising 
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unclear.  

(b) Collapsing the game object 

The game object of the dot-picture is a quadrangle. However, the game object is generated incorrectly by 

the DC-GAN and causes gameplay issues. 

(c) Noising the background 

The background of this game is blue with dots of different colors in some places. These noises may affect 

the game. 

To solve the above problems, in this research, we focus on training images before learning by 

preprocessing. 

 Proposed the Method of Preprocessing 

To solve the aforementioned problems, we replace some objects in the original images with pure colors 

(RGB) and delete unnecessary color information. The purpose of this pre-processing is to simplify objects 

and backgrounds and to reduce the image blur and noise generated by the DC-GAN. Furthermore, we can 

easily modify the deformation of the object. The specific process consists of three steps;  

(a) Classification of game objects 

We classify the objects in the game into three types of "enemy," "block", and "item" and map them to “R,” 

“G”, and “B” in terms of color information in RGB, respectively.  

(b) Quantization 

We subdivide the behavior of each of the three types of objects and assign numbers between 0 and 255, 

equally spaced. 

(c) Translation 

The value assigned to the game objects is defined as a value on the RGB color scale. However, game 

objects not related to the player character are converted to white. For instance, the background is replaced 

white. 

Table 1 shows the conversion results of preprocessing in "Super Mario Bros." This conversion table 

excludes objects that do not use for learning and cannot apply in the Mario AI Framework. Fig. 5 shows 

stage 1-1 in "Super Mario Brothers" after preprocessing using the conversion table. 

 

Table 1. Type of Object in “Super Mario Bros” 

 
 

 Restoring to a Playable Game Stage 

We restored the game object so that it can be played against the quantized game object shown in Fig. 6 [7]. 

Specifically, the pixel values within the range of the generated object are examined and restored to those 

close to the original object based on Table 1. However, if the pixel values in the range are averaged, it 

becomes the median value of all the pixels, and an object with a pixel value that does not appear in the 

range may be selected. Therefore, we calculated which object is closest to each pixel in the range, and 

decided the object to be restored by their majority vote. As a specific process, the RGB value for each 1px is 

dot color pixcel dot color pixcel dot color pixcel

255 255 255

213 204 170

170 153 85

128 102

85 51

43
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set as a three-dimensional vector, and the vector is closest to the RGB value based on Table 1 by calculating 

the Euclidean distance. This calculation is performed for all pixels. Fig. 5 shows the restored a game object. 

 

 
Fig. 5. The result of preprocessing. 

 
Fig. 6. The result of the restored a game object. 

 Playing Evaluation of Game Stages 

In order to evaluate how similar the restored game stage is to the original stage, we evaluate the number 

of jump actions and the time until the stage is cleared, as in the study by Vanessa Volz et al. [8]. Specifically, 

AI using A* search algorithm plays and evaluates the generated game stages using DC-GAN. The A* search 

algorithm is a widely used best-first graph search algorithm that finds a path with the lowest cost between 

a pre-defined start node and one out of possibly several goal-nodes [17]. This algorithm is used to search 

for the best path in game state space, which is different from simply searching in the space of Mario’s 

positions and requires that a fairly complete simulation of the game’s dynamics is available to the search 

algorithm [18]. 

3. Experiments 

In this study, we chose "Super Mario Brothers" for horizontal scrolling, because the numbers of enemy 

characters and items are few in this game, and stage data of some stages is large. In this experiment, we 

selected 13 stages of the ground type (1-1, 2-1, 3-1, 3-2, 4-1, 5-1, 5-2, 6-1, 6-2, 7-1, 8-1, 8-2 and 8-3). To 

R ed
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increase the number of images, the sliding window was set horizontal, and the system generated 2,912 

training images. After that, we generated 6,336 stages by the method shown in Chapter 2 as shown in Fig. 6. 

For this generated stage, we examined the possibility of game play using the A* search algorithm. In this 

study, the evaluation with A* search algorithm compares the original stage 1-1 and the three-game stages 

generated by DC-GAN.  

4. Results and Discussion 

Fig. 7 shows game stages generated by GAN. The generated game stage had an object's layout that 

appears in the “Super Mario Bros.” stage, and GAN could generate the game stage with the characteristics of 

the original game stage. However, we thought that some of the generated game stages could not clear, such 

as big holes, high walls, and dead ends, as shown in Fig. 7 (b), and excluded those game stages from the 

evaluation. Fig. 8 shows three kinds of game stages generated by GAN, Fig. 9 shows the jumping count and 

the clear time using A* search algorithm on the original stage 1-1 and three kinds of game stages. We 

referred to the study of Vanessa Volz et al. [8]. Fig. 1 shows the playing scene using A* search algorithm. 

 

 
(a) A good stage (subjective evaluation). 

 
(b) A bad stage (subjective evaluation). 

Fig. 7. Parts of game stage the generated by GAN. 

 

 
(a) Game stage No.1. 

 
(b) Game stage No.2. 

 
(c) Game stage No.3. 

Fig. 8. The results of the game stages generated by GAN. 

 

As a result, the jumping count of an automatically player using the A * algorithm was 17 times for the 

original stage, 12 times for stage No.1, 16 times for stage No. 2, and 18 times for stage No.3. Next, the clear 
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time was 9 seconds for the original stage, 8 seconds for stage No. 1, 10 seconds for stage No. 2, and 11 

seconds for stage No. 3. In other words, stage No. 1 is simpler than the original stage, and stage 2 and stage 

3 are a little more difficult than the original stage, however, there is little difference in a game level. 

 

 
Fig. 9. Evaluation Results of game stages using A* search algorithm. 

 

As a reason, we think that there was no significant difference in the difficulty level because we reduced 

the number of enemies and objects in the conversion rule shown in Table 1. In the future, we think that the 

difficulty level can be controlled by adding untargeted objects and untargeted enemies. 

5. Conclusion 

In this study, we evaluated the difficulty level of the game stage generated by GAN using the A * search 

algorithm. Specifically, we compared the jumping count and the clear time for the three types of game 

stages and original stage 1-1 and GAN. As a result, we confirmed that the difficulty level of the game stage 

generated this time is almost the same as the difficulty level of the original game stage 1-1. 

In the future, we plan that conduct a questionnaire with people playing the generated game stage, 

evaluate a subjective of the game, such as a fun, a difficulty by having people play the generated game stage.  
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