

Abstract—Software Fault Injection Testing (SFIT) technique

can determine common error conditions through the behavior
of observations; discover the interaction weaknesses and reveal
how the system react when abnormalities or fault is being
injected. In a nutshell, SFIT is a process of building defensive
mechanism to prevent unwanted consequences emerges from
the system and it is widely considered as an important
technique of developing robust system. This paper offers and
empirical knowledge of SFIT specifically on the testing
practices in Malaysia and factors influencing the success of
SFIT process. Data is collected using semi-structure qualitative
interview approach. This research discovered that there are
three main factors influencing the SFIT process which are
Software Tester Knowledge, Software Tester Experience and
Test Management of FIT Process for a successful SFIT.

Index Terms—Fault injection, software fault injection testing,
software testing.

I. INTRODUCTION
Software testing is an important process throughout the life

cycle of software development in order to support and
enhance the reliability and the qualities of the system
developed. Studies estimate that more than 50% of the
development cost is devoted to the testing [1].

National Institute of Standards and Technology (NIST) in
collaboration with Research Triangle Institute (RTI) have
conducted a survey in 2002 in order to estimate the economic
impact of inadequate software testing method and tools that
resulted USD 59.5 billion annually (Research Triangle
Institute, 2002) [2]. This shows that a proper testing
procedure is very crucial in software development and more
research in software testing area should be done in order to
benefits the software development process.

Besides increasing software development cost, inadequate
testing procedures will lead to low quality of the system
developed, dissatisfied users, increasing the maintenance
costs and might produce unreliable and inaccurate system
(Srivastava, Kumar, Singh & Raghurama, 2011) [3]. The key
issue surrounding the software testing paradigm is the
effectiveness of testing technique to find the hidden defect or
bugs. Aaron and David (2001) [4] claimed that besides faults
through the system codes, the external part of the system
where human interaction accounts for roughly half of the
system outages.

Manuscript received July 16, 2012; revised September 2, 2012. This

work was supported by the Fundamental Research Grant Scheme (FRGS)
under Contracts 600-RMI/ST/FRGS 5/3/Fst (235/2010).

The authors are with the Faculty of Computer and Mathematical Sciences
University Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia.(e-mail:nor_shahida@tmsk.uitm.edu.my,wfaezah@tmsk.uitm.edu
.my, maslina@tmsk.uitm.edu.my, syahmi.iskandar@yahoo.com).

Recent studies had shown that coding is not the main factor
that caused software defect. External factors such as
improper interaction with the system can also be a contributor
[4]. One of the proposed testing technique is to encounter this
software defect is using Software Fault Injection technique.

The scope of this research is Malaysian organizations
involved with system development process which encircles
on the testing phase of the System Development Life Cycle
(SDLC). The testing technique scopes are Fault Injection
Testing (FIT) and Software Fault Injection Testing (SFIT).
This research provide the empirical study on the real SFIT
practices done in Malaysian organization and produced the
SFIT model that can assist software testers in implementing
the process.

II. LITERATURE REVIEW

A. Software Testing in Malaysia
In 2005, a survey with 41 organizations in Malaysia shows

that only 41.5% of the organizations have awareness on
software testing and implement formal software testing at the
end of their coding phase [5]. At present, Malaysia has more
than two thousand MSC local-status companies in the fields
of software development, creative multimedia, support
services, hardware design and others. It is forecasted that
software testing services to be worth USD18.3 billion (about
RM58.5 billion) in 2013, compared to USD12.6 billion in
2009; growing at a Compound Annual Growth Rate (CAGR)
of 9.8 per cent over the period [6].

With the Malaysia aspiration to become a high-income
nation by the year 2020, Malaysian Software Testing Board
(MSTB) as the authority in Malaysian software testing
industry has identified software testing services as a new
source of economic growth under the Tenth Malaysia Plan
(10MP). It is well recognized that a trained, skilled and
well-educated workforce is critical in enhancing work and
economic performance and sustaining competitiveness as
Malaysia transforms into an ICT-driven and
knowledge-based society [7].

B. Fault Injection Testing (FIT)
Modern applications are full-fledged complex systems that

are often heavily technology dependent and error-prone
application, poses a new challenges to quality assurance and
testing. Fault Injection Testing (FIT) is a value added testing
technique that is recommended to be performed in order to
access the system behavior. It is a fault-base technique that
aims specifically to break the system functionality. In this
manner; the weakness of the interaction can be discover, and
how the system reacts can be revealed [8].

Fault injection techniques (FIT) can yield seven benefits:

Strategic Factors Model for Successful Fault Injection
Testing

Nor Shahida Mohamad Yusop, Wan Faezah Abbas, Maslina Abdul Aziz, and Syahmi Iskandar

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

402

an understanding of the effects of real faults, assessment the
efficacy of fault tolerance mechanisms, forecasting of the
faulty behavior of the target system, estimating the failure
coverage and latency, exploring the effects of different
workloads, identifying weak links in the design and finally
studying the system's behavior in the presence of faults [9].

The earliest work for fault injection can be traced back to
Harlan Mill from IBM in early 1972 where the original idea
was to estimate the reliability based on an estimate of the
number of remaining faults in a program. The benefit of
doing this testing is to learn how badly the system can behave
when things go wrong.

Most studies in FIT focus more on hardware system
validation like Simulation based FIT,
Hardware-Implemented FIT (HWIFI) and
Software-Implemented FIT (SWIFI). Simulation based FIT
had been proposed for dependability evaluation. In this
approach, faults are injected into a simulation model of the
system which allows testers controlling the timing, the type
of fault, and the affected component in the model [10].

Basically all these fault mechanisms are categorized as
internal fault where software testers are required to have
basic programming skills. It is important to note that that
software-based fault injection has drawbacks for robustness
testing since injecting faults via software might allows
different parts of a system to be targeted.

C. Software Faults Injection Testing (SFIT)
The Software Fault Injection Testing (SFIT) is one of

known solution to address the software fault problem.
Software FIT is different from traditional black-box software
testing where the testers are required to know the system
process. This technique allows software tester to determine
software robustness by feeding irregular input events. This is
something that traditional software testing typically fails to
address [11].

By using SFIT, a tester can predict whether that the test
cases are able to detect faults. If SFIT process is replayed
with enough test cases and if the test profile frequently
propagates anomalies, testers should be able to assess a
higher reliability score for the software compared to the score
which is strictly based on a single test case [11].

By using SFIT approach in robustness testing of
component-based systems raises an issue whether the faults
injected at interface level to represent possible consequences
of residual software bugs in preceding components. Thus,
forecasting the faulty behavior of the target system must
include the measurement of the coverage provided by the
fault tolerance mechanisms [12].

One of the approaches for the emulation of software faults
is the actual modification of the target code in order to inject
software faults according to the most frequent types of real
software faults found in field studies. In Malaysia; few
researches on SFIT were conducted. Zamli et. al (2007) [13]
believed in optimized test cases using Java unit testing tool
called JTst and combined with fault injection strategy to test
the robustness of the Java classes in the system code. They
used t-way combinatorial test cases that can be used to locate
faults.

Despite injecting the faults through the code, software
tester might break the system by injecting external faults.

Aaron and David (2001) [4] claimed that half of computer
system outages were actually caused by external faults. Their
survey revealed that no research interest in addressing human
error. Thus, the behaviours of the human operator need to be
addressed in testing strategy to increase the testing coverage.

Having SFIT as a testing principle not only helps reduce
defect slippage to customers but also helps to maintain and
subsequently increase the quality of the product if right fault
injection strategy is implemented [14]. This can contribute to
the quality of the product and the test team themselves.
SFIT tries to determine whether the response of the system
matches its specifications in the presence of a defined space
of faults. Normally, faults are injected in the perfectly chosen
system states and points determined by an initial system
analysis.

Software Fault Injection Testing (SFIT) technique is a
flexible approach of injecting faults compared to hardware
injection, but it has disadvantages like its incapability to
inject faults into locations that are inaccessible to software
and might disturb the workload running on the target system.
Careful design of the injection environment can minimize
perturbation to the workload.

III. RESEARCH PROCESS
Generally, this research is categorized under exploratory

research where it studies the current practices and the factors
influencing the software fault injection testing in Malaysia.
This research used a case study as the strategy inquiry
mechanism to get more extensive multitude of SFIT data
from the industry. Semi-structured qualitative interview was
chosen as data collection method due to its ability to provide
complex textual descriptions.

This research used non-probability sampling, which is
Purposive Sampling for the participant selection process.
Purposive sampling used specific predefined groups which
involved assembling sample of persons with known or
demonstrable experience and expertise in some area [15].
We have identified and selected five respondents who work
in software testing industry and involved with SFIT process.
Each respondent had more than three years’ experience in
software testing and responsible with a different type of
project or system testing.

A. Research Design
The research design is divided into three phases where

each phase consists of several activities, objectives, method
used and its deliverables. First phase consists of initiation of
research where research plan are devised. Phase 2 consists of
pilot study where pilot data collection is done to get initial
data analysis. Finally, the third phase is the empirical study is
done after the data from the pilot study have been refined and
analyzed.

B. Data Collection
Semi-structured face-to-face interview was applied during

this data gathering process. SFIT methodology research
model were used as a guideline for the researcher to lead the
interview. During the interview, the research background is
briefed to respondent and conversations were recorded using
a digital recorder as reference.

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

403

IV. ANALYSIS OF DATA
In the following section, we will describe the results of the

analysis. First, the software tester experience and their testing
environments are depicted. Then we describe the SFIT
processes that explain the similarities practices between the
software testers. After that, processes together with affecting
factors describe the successful practice of SFIT.

A. Description of Software Tester Background
Tester 1 is a Senior QA Engineer with CTFL certification

and worked in software testing for more than four years. SFIT
is not a standard practice in his organization, but it is
performed on the initiative of the testers. The white-box
testing is used for SFIT purpose.

Test 2 is the Lead Test Engineer that involved in software
testing for more than eight years. She works with
telecommunication equipment vendor and currently
responsible with testing the Unix-based telecommunication
system. Using white-box testing method, she wrote Korn
shell scripting to inject wrong data conditions and ineffective
data.

Tester 3 is a Software Test Engineer who involved with
software testing for seven years. She works for international
telecommunication system provider and responsible on
testing several telecommunication Network Management
Products. She used scripting and simulation for SFIT process
while testing on different data type like CSV, HTML, SNMP
and few more.

Tester 4 is a Software Test Engineer that involved with
software testing for seven years. She works for international
telecommunication system provider and responsible on
testing Unix-based client-server system. SFIT process is not a
standard testing practice for the product testing. It is only
done base on request by software architect and developer.

Tester 5 is a Software Engineer who involved with
software testing for eight years. He works for international
telecommunication system provider and responsible for
testing the web-based Tivoli products such as ITNM (IBM
Tivoli Network Manager), TBSM (Tivoli Business Service
Manager) and Tivoli OMNIbus. SFIT is a standard practice
used in his organization. Since most the products consist of
multicore functionalities, SFIT helps in evaluating the system
interactions by focusing on the attack point of the core
functions to break its functionalities.

B. Common SFIT Processes Among Malaysian Software
Tester

Software Fault Injection Testing (SFIT) offers a way to
measure the effectiveness of the target-system by purposely
inserting faults at a particular location which intention to
cause the target-system to fail. This technique allows the
software testers to monitor how the system behaves when
something goes wrong and to find solutions to improve the
quality of the system. In most test organizations, SFIT is not a
standard practice but rather to a complementary testing
strategy to increase a number of faults found during system
test.

Based on our findings, there are similarities based on five
software tester testing practices. The first process, “fault
identification” shows different type of faulty data used in
preparing SFIT test cases. Tester 1 focuses on field limitation

on filed limitations and restrictions; tester 2 focus on wrong
data conditions and ineffective data; tester 3 focus on
negative scenario or faulty processes; tester 4 focuses on
positive and negative scenarios and tester 5 focus on injecting
negative values, data beyond valid range and outbound
scenarios. It also identifies the attack point where and when
the faulty data need to be injected.

The process “test case design” denoted how the SFIT test
cases are created and planned. This includes the testing
environment setup and pre requisite test setup. In “test
execution” process, tester will run the execution based on the
defined test cases using manual or automation. A manual
testing meant that the tester will inject the faulty data through
the user interface while automation testing require tester to
write test script to inject the faulty data. Then “behavior
observation” process will observe the defect occurrence and
“test report preparation” process will analyze the defects
found and documented.

The common SFIT processes are divided to three main
stages; a preparation stage, an execution stage and an
evaluation stage (Fig 1).

Fig. 1. Common SFIT process among malaysian software tester

In the preparation stages, SFIT strategy is identified from

two main sources; system requirement analysis and Root
Cause Analysis (RCA) and Escape Defect Analysis (EDA).

The input from the system requirement analysis serve as a
benchmarks and control boundary while the input of RCA
and EDA historical data will give the common problems and
possible scenarios that may be considered in the test strategy.
Software tester studies the function of the target system,
process flow, system parameter and field, system parsing and
time handling in order to gain in-depth knowledge before
conducting the SFIT process. Firstly, fault identification
process will identify the fault type based on field restriction
and limitation, faulty process, data beyond valid range and
outbound scenarios. Then identify the attack point to insert
the faulty data. Usually, this step requires knowledge and
experience of the tester to pinpoint the location that have high
potential interaction fault. Once the fault type and locations
are determined, tester will start creating the test cases that

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

404

incorporated positive and negative scenarios. Sometimes, the
test cases will also include hacking strategies like
manipulation of the process flow, sequence violation, module
penetration and database penetration such as SQL injection.
Other than that, interrelation between modules is considered
to observe interactions behavior.

In the execution stage, tester will start the test execution
either using automation or manual injection according to the
fault type and attack location identified. Manual fault
injection usually involves with user-input testing by inserting
faulty data through the system user interface. While
automation injection is done using test script, which focus on
data-driven input using real customer data in order to
simulate the real system environment. During the test
execution, tester will monitor the system behavior and the
database reaction towards the injected faults or errors.
Sometimes, the neighboring module would be impacted by
the injected faults. By right, when a faulty data is injected to
the system, the system will stop and issue a warning to notify
users. The system is reported as a defect when the system still
resume its operation even a fault is being injected.

The execution stage involved with fault reporting. If errors
persist during the execution, tester is required to perform
RCA and write result evaluation report. The evaluation
process will analyze the log files and identify the defect
severity. The report is used by the developer for bug-fixing
process.

C. Factors Influencing the Success of Software Fault
Injections Testing (SFIT)

In order to accelerate high reliability of software fault
injection, the system should undergo all sort of testing which
require inserting various types of software faults. SFIT
typically can be applied with white-box and black-box testing
methodology. Whitebox testing requires knowledge of the
internal structure of the target-system with the aim of seeking
errors that are difficult to detect while black-box testing
generally compares the application’s behavior with
requirements. Thus, a combination of white-box and
black-box testing techniques (grey-box testing method) is
very useful when developing test case designs or models for
SFIT.

This study has classified three categories of factors which
are testing management, tester knowledge and tester
experience. These factors are identified based on the success
practices of the tester running SFIT. Table I shows the
categories of factors that have been defined.

Fig. 2. Factors model of successful fault injection testing process

Fig. 2 shows the most essential factors that influence the
success of SFIT.

The SFIT process was associated with the software quality.
Software quality becomes dominant objective for software
testing process. The focus was in producing a system which
has six quality attributes; functionality, reliability, usability,
efficiency, maintainability and portability. The success of
SFIT process contributes to the effectiveness of software
quality is determining faults with regards of the fault severity.

Tester knowledge is the most important affecting factor
that determined factors of SFIT process. Tester knowledge
includes system domain, system familiarizations and tester
skill. According to the tester, system familiarizations are
obtained by continuously doing the SFIT process on the
target system and detail observation on the system behaviour
during the testing period. This will help the tester to
determine the type of fault to be injected and which location
to attack. Tester with high knowledge on system behaviour
and the process has an advantage to manipulate the system to
suit their testing purpose and later predict the outcome from
the test. Apart from that, several essential skills for software
tester such as programming skills and knowledge on products
such as Java, Paros, Jmeter, Jbadboy, Oracle, Unix, Linux
and other related products and tools related to system
development process are essential in performing SFIT. The
SFIT process as also associated with tester experience. The
tester experience is based on education background and
working experience. Eventually experience come a long way
and hard to be achieve by level entry software tester. The
tester experience was classified to tester total working
experience and experienced on the system-in-test and. The
more years a tester involves in the testing industry the more
competent and confident they do the testing.

Based on the survey, tester with more than 5 years working
experience dealt with fewer problems in SFIT. According to
testers (more than 7 years working experience), they need
about two or three weeks to fully understand the new system
developed. While inexperience tester (less than 7 years) said
they need at least a month. Experience with system-in-test
also helps tester do the SFIT since they have knowledge of
overall functions, system interactions, faults to inject and
location to attack. Other than that, experienced tester find
SFIT is a challenging testing job to discover defects from a
different angle. The test management was also influenced the
SFIT process. Involvement of test planning was seen as a
means to increase the SFIT strategy by improving test design
and documentation. Most of the testers practiced
documenting the test cases in early testing process. This will
eventually help on testing schedule and prioritizing testing
tasks.

V. CONCLUSION
This paper contributes to new knowledge on software fault

injection testing (SFIT) specifically in Malaysia perspective.
A framework for SFIT has been developed based on software
tester practices in Malaysian context. This framework
highlights three major factors influencing SFIT which are
Tester Knowledge, Tester Experience and Test Management
of FIT Process.

This research found that SFIT is not a compulsory practice
for every type of system testing. It depends on the type of

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

405

system and type of data the system operates. It is also found
that the practices between different organizations are almost
similar.

For future research extension, the study of tester

knowledge and experience in Software Fault Injection
Testing (SFIT) can be broaden and identify what knowledge
have the highest impact in influencing the SFIT process.

TABLE I: CATEGORIES OF FACTORS FROM RESEARCH

Tester Success Practices of
SFIT

Category of Factors

Testing
Manage

ment

Tester
Knowle

dge
Tester Experience

1

Create test planning √

Understanding system
environment and
prerequisite requirements √

A good communication
skill among development
team √

2

Understand product
perspective such as
business rules, system
logic and domain
knowledge

 √

Design associated test
cases √
Incorporated skill such as
a programming language,
Oracle, Unix and etc √

Involved with
experienced tester only √

3

Perform test cases review √

Leads by experienced
tester √

Understanding n system
requirements √

4

Follow the requirement √

Manipulating user
interaction base on tester
logic thinking √

Understanding process
flow √

5

Focus attack on core
functionality √

Insert data beyond
requirement range √

Test different scenarios
on each fields √

ACKNOWLEDGMENT
This work was sponsored by the Fundamental Research

Grant Scheme (FRGS) under Contract 600-RMI/ST/FRGS
5/3/Fst (235/2010).

REFERENCES
[1] B. B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand

Reinhold Co. New York, NY, USA, 1990

[2] The Economic Impact of Inadequate Infrastructure for Software
Testing, National Institute of Standard and Technology (NIST).
Research Triangle Institute, 2002.

[3] P. R. Srivastava, S. Kumar, A. P. Singh, and G. Raghurama, “Software
Testing Effort: An Assessment Through Fuzzy Criteria Approach,”
Journal of Uncertain Systems, vol. 5, no. 3, pp. 183-201, 2011.

[4] B. B. Aaron and P. A. David, “To Err is Human,” in Proceedings of the
First Workshop on Evaluating and Architecting System dependability
(EASY '01), Göteborg, Sweden, 2001.

[5] F. Baharom, A. Deraman, and A. R. R. Hamdan, “A Survey on the
Current Practices of Software Development Process in Malaysia,”
Journal of ICT, vol. 4, pp. 57-76, UUM Press, 2005.

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

406

[6] MSTB, EPU to Hold Forum for Public Conusltation on Software
Testing," Bug Free, vol. 1, 2010

[7] A. A. R. Zainol, “National Workforce Transformation,” in
Proceedings of the 4th National Conference on the Civil Service, Kuala
Lumpur, 1999.

[8] S. Manaseer, F. A Masooud, and A. A. Sharieh, “Testing Loaded
Programs Using Fault Injection,” in World Academy of Science,
Engineering and Technology, no. 3, pp. 86-89, WASET , 2005

[9] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection
Techniques,” The International Arab Journal of Information
Technology, vol. 1, no. 2, 2004.

[10] J. Carreira, H. Madeira, and J. G. Silva, “Xception: Software Fault
Injection and Monitoring in Processor Functional Units,” in
Dependable Computing And Fault Tolerant Systems, vol. 10, pp.
245-266, USA: Springer-Verlag, 1998.

[11] J. M. Voas and C. Norman, “Marrying Software Fault Injection
Technology Results with Software Reliability Growth Models,” in
Fast Abstracts ISSRE 2003: Chillarege Press, 2003.

[12] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation, New York: Kluwer
Academic Publishers, 2003

[13] K. Z. Zamili, N. A. M. Isa, and M. F. J. K. A. S. N. Azizan, “Designing
a Combinatorial Java Unit Testing Tool,” in Proceedings of the third
conference on IASTED International Conference: Advances in
Computer Science and Technology (ACST'07), pp. 153-158, Thailand:
ACTA Press, 2007.

[14] V. Suma and T. R. G. Nair, “Effective Defect Prevention Approach in
Software Process for Achieving Better Quality Levels,” in
International Conference on Software Engineering (ICSE), vol. 42,
Singapore: WASET. 2008

[15] W. Neuman, “Social Research Methods: Qualitative and Quantitative
Approaches 7th Edition,” Boston: Pearson Education, Inc.2011

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

407

Nor Shahida Mohamad Yusop is a Lecturer at

Universiti Teknologi MARA, Malaysia. . She holds

a master degree in Software Engineering, from

CASE Universiti Teknologi Malaysia. She worked

as a Software Engineer at Motorola Multimedia,

Cyberjaya. Her research interests are in software

testing and requirement engineering.

Wan Faezah Abbas is a Lecturer at Universiti

Teknologi MARA, Malaysia. She holds a Msc in

Information Systems Engineering from UMIST,

Manchester, United Kingdom. She previously work at

Motorola Cyberjaya as an Application Engineer in

testing field. Her research areas are in Software

Testing and Enterprise Systems.

Maslina Abdul Aziz is a Lecturer at Universiti

Teknologi MARA, Malaysia. She holds a M(E) in

Software from University of Queensland, Australia.

She worked as an Executive at Multimedia

Development Corporation (MDec) in Cyberjaya. Her

research interest are in Systems and Software

Engineering and Cloud Computing

Syahmi Iskandar Bin Mohd is currently working as

IT Consultant at the eCEOs Sdn Bhd. He holds a MSc

in Information Technology from University

Technologi MARA (UiTM), Malaysia. He previously

works as Testing and Integration Engineer at XYBase

Sdn Bhd which involves testing the web-base and

java-base applications.

