
 
Abstract—Internet TV sites often use source IP addresses in 

received packets to identify users or to retrieve user-related 
information such as organizations, geographic locations, etc. 
Users, on the other hand, consult a blacklist to check whether 
packets are from malicious websites or not. Source IP 
addresses in received packets, however, do not always agree 
with addresses of true source hosts due to VPN, NAT, proxy 
technologies, or malicious attacks. To improve end host 
identification, this paper proposes using video traffic features, 
which are the decay rates of the aggregated variance, as a 
signature of a source or destination host. Experimental results 
show that if sample decay rates of 100 Internet TV sites are 
given as a training dataset, 94.5% of the TV sites are correctly 
identified by the naive Bayes classifier. 

 Index Terms—End host identification, video traffic, decay 
rate, classifier, information gain 

 

I. INTRODUCTION 
Nowadays, there are a large number of Internet TV sites 

all over the world. Many of the sites provide free of charge 
TV channels and make profits through advertising. These 
sites often utilize source IP addresses in received packets to 
identify users or to retrieve user-related information such as 
organizations, geographic locations, etc. to improve 
personalized service and advertisement. Users, on the other 
hand, may feel the need to verify that each received packet 
does not come from malicious servers. This is especially 
true when they are receiving stock quote streams. For this 
requirement, security software companies update the list of 
IP addresses with negative reputation to prevent customers 
from accessing malicious websites. 

In the above-mentioned services, each source IP address 
is related to a host operated by a specific customer, an 
Internet TV provider, or a cyber-criminal. Therefore, by 
using the relations, source IP addresses in arriving packets 
are used to infer persons who sent the packets. However, the 
relations do not always hold since some hosts may use 
temporarily assigned addresses. VPN technologies [1], for 
example, may allocate a different IP address to a remote 
computer. Furthermore, the source IP address in the packet 
header may be replaced by proxy servers [2], NAT devices 
[3], or malicious hosts who are making IP address spoofing 
attacks [4]. 

In addition to source IP addresses, this paper proposes 
using statistical features of video traffic for improving end 
host identification. Previous works in [5]-[7] indicate that 
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the communication environment, which includes application 
software, communication protocols, propagation delays, etc., 
affects variability of Internet traffic over multiple time 
scales. This result suggests that variability of video traffic 
should vary when a source or destination host changes. 
Inspired by this finding, this paper derives a signature of a 
client or a server from sample variances calculated at many 
time scales. The biggest advantage of our approach is that 
there are no message exchanges and no necessary 
negotiations between two end hosts. As far as we know, our 
approach is new and currently there are no ongoing similar 
works. 

This paper is organized as follows: Section II introduces 
the decay rate used for end host identification. Section III 
calculates sample decay rates of four characteristic stream 
types (variable-bitrate, congested, sequential and parallel 
types) to investigate their impacts on the decay rate. Section 
IV obtains the percentage of correctly classified Internet TV 
sites under the condition that a training dataset for all TV 
sites is a priori given. This section also discusses the effect 
of the number of clients on the percentage. Section V 
evaluates the effectiveness of decay rates based on 
information gain and correlation. Finally, Section VI 
presents the conclusions. 

 

II. MULTI-TIMESCALE VARIABILITY 

A. Variance Plot 
We first introduce the variance plot [8] (also called the 

variance-time plot [9] or the aggregated variance [10]) for a 
time series }{ kX , where kX  denotes the number of 
arriving packets during the k -th time interval of length δ . 
The m  aggregated series of NkkX ≤≤1}{ , }{ )(m

kX , are 
obtained by dividing }{ kX  into blocks of length m  and 
averaging the series over each block as  
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where m  is a positive integer, N  is the size of series 
}{ kX , and ⎦⎣x  is the largest integer that does not exceed 

x . The aggregated variance )(mV  is the sample variance of 
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 for various aggregation 
levels m . 
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Fig. 1(a) shows the variance plot for two different video 
streams. Throughout the paper, the sampling interval δ  is 

510−  (s) and the number of samples N  is 6106×  
(therefore, δN  is one minute). The sampling interval δ  
is set to 10 μ s because the packet transmission time is 12  
μ s when the packet size is 1.5 Kbytes (a typical video 
packet size) and the transmission rate is 1 Gbps (the rate of 
our LAN). The exactly second-order self-similar process 

}{ kX  satisfies  

 ,= 22)(
k
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        (3) 

where kXVar  is the variance of kX  and H  is the Hurst 
exponent [5]. From (3), we have  
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Since )(mV  is an estimate of )(m
kXVar , if }{ kX  is 

exactly second-order self-similar, slope β  of the line 
through points of the variance plot satisfies 22= −Hβ . 

B. Decay Rates 
A sampled traffic series shows self-similarity only in a 

limited range of m . In other words, slope β  varies with 
m . Points in Fig. 1(a), for example, indicate two concave 
curves rather than straight lines. Hereafter, we assume that 

1)(≥m  is a real number. Let us consider the decay rate 
)(mβ , the amount of change in )(log ⎦⎣mV , defined by  

 ,loglog=)( )(
10

)10(
10

⎦⎣⎦Δ⎣ − mm VVmβ        (5) 

where Δ  is a positive constant. Decay rate )(mβ  varies 
with m  since it is affected by many factors such as 
protocols, computer software and hardware, routers, 
propagation delays and resource (processors, bandwidth, etc.) 
competition among video streams, etc. In general, decay rate 

)(mβ  at small levels m  (i.e., small timescale behavior of 
)(mβ ) is determined by computer hardwares, 

communication devices, etc. that act quickly. Human users 
and protocols implemented by software affect even larger 
timescale behavior of )(mβ . From the perspective of host 
identification, resource competition is a factor that adds 
noise to attribute )(mβ . This paper assumes that human 
users do not affect video streams. That is, they do not 
change/interrupt streams while collecting traffic data. 

Fig. 1(b) shows decay rate )(mβ  of the two streams in 
Fig. 1(a). In the figure, the interval between two points ( Δ ) 
is constant; that is )(log)(log= 1 ii mm −Δ +  for all i , where 

im  is the i -th smallest level used to obtain the points. For 
simplicity, iβ  is used to denote )( imβ . We obtain Δ  and 

im  as 1)/50)/((log= +Δ MN  and Δi
im 10= , where M  is 

the size of Mii ≤≤1}{β . We use 20=M , unless otherwise 
mentioned. In this case, 0.24≈Δ . Uncorrelated streams (i.e., 

0.5=H ) satisfy Δ−=)(mβ . In general, iβ  fluctuates 
around Δ− . For effective identification, attributes used for 
identification should be mutually independent. Let }{ )( ⎦⎣m

kV  

be the aggregated variances of stream k . Fig. 1(a) shows 
that if there exists j  that satisfies )(

2
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VV , then 
)(

2
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1 < ⎦⎣⎦⎣ imim VV  for all i . In this case, we do not need more 
than one variance. Whereas, Fig. 1(b) shows that }{ iβ  do 
not have such a feature. 

 

 
Fig. 1. (a) Variance plot and (b) decay rate for two streams. 

 

III. CAPTURED PACKETS 
This paper focuses on the client-server model. One 

hundred TV channels are accessed with Flash Player ver. 
11.2, Windows Media Player ver. 12, or Silverlight ver. 4.1. 
They are served by content delivery networks, Web hosting 
companies, live streaming video platforms, etc. All video 
streams use the TCP protocol and most of them flow at 
constant rates. Video bitrates are from 30 Kbps to 2097 
Kbps. All packets from a TV site are captured by a client 
with WinDump [11]. They are used in experiments in 
Section IV. 
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Fig. 2. Ten samples of decay rates 

201}{ ≤≤iiβ  obtained for four 

characteristic streams in Table I. 

 
TABLE I: TCP STATUSES OF FOUR STREAMS MEASURED IN 12 MINUTES. 

Stream  Number of 
Connections 

Number of 
retransmissions 

RTT (ms) 
avg, stdev 

(a)  1 0 6, 35 
(b)  1 1032 46, 82 
(c)  58 (sequential)  25 * - 
(d)  2 (parallel)  0 *   6, 34 ** 

* Totals of all connections. 
** Statistics of the connection carrying a larger number of packets. 

 
Table I shows TCP statuses of four characteristic streams: 

the variable-bitrate, congested, sequential, and parallel types. 
They are calculated by tcptrace [12]. In most cases, one TCP 
connection is established for a TV channel. Streams (a) and 
(b) in Table I correspond to this one connection type. Stream 
(c) is the sequential type, in which a connection is frequently 
replaced with a new one. Stream (d) is the parallel type, in 
which multiple connections are established to deliver video 
packets. There are two sequential-type and three 

parallel-type streams in the 100 TV channels. 
This paper uses decay rates }{ iβ  for host identification. 

Fig. 2 depicts ten samples of decay rates 201}{ ≤≤iiβ  for four 
streams (a)-(d) in Table I. The figure demonstrates that each 
stream has unique decay rates. The uniqueness and 
time-invariance of decay rates are key to successful 
identification, where the time-invariance requires that ten 
samples are not largely different. As shown in the figure, 
points at 19m  and 20m  are particularly dispersing. This is 

because the number of samples is small. From (2), )(mV  is 
calculated with ⎦⎣ mN/  samples, which decreases with m . 
Therefore, )(mβ  is unstable at large m . Due to wide 
dispersion, 19β  and 20β  are not useful for identification. 

Fig. 2(a) shows that most of decay rates are variable. 
Stream (a) is the variable-bitrate type. The largest arrival 
rate X  in ten samples is at least three times greater than the 
smallest. Not all TV channles provide good video quality. 
We experienced video quality degradation when watching at 
least three channels. From Table I, stream (b) must have 
experienced congestion (the congested type) since both the 
number of retransmissions and the standard deviation of 
RTTs in Table I are high. Compared with decay rates of 
streams (b) and (c), those of streams (a) and (d) vary more 
greatly over a wide range of m , even though their TCP 
statuses are normal. This result suggests that the 
variable-bitrate and parallel types have a greater tendency to 
cause identification errors. 

 

IV. SUPERVISED LEARNING 

A. Classifiers 
Classifiers identify which of a set of classes a new sample 

belongs, on the basis of a training set of data that contain 
classes and their attributes, where a class is a client and 
server pair and attributes are decay rates }{ iβ . Note that a 
class agrees with a server if there is only one client. This 
section uses three classifiers implemented in Weka ver. 
3.6.6 [13]: rotation forest (RF) [14], naive Bayes (NB) [15], 
and k-nearest neighbor (KNN) [16], where 1=k  
throughout the paper. They are the best performed classifiers 
evaluated based on the true positive rate. The true positive 
rate (TPR) of class x is the percentage of samples which 
were classified as class x, among all samples which truly 
have class x. Since there is more than one class, the TPR is 
averaged over all classes. 

Evaluations are made according to the cross-validation 
test, which is described as follows: The original sample is 
randomly partitioned into ten subsamples. A single 
subsample of the ten subsamples is retained as the validation 
data for testing the algorithms, and the remaining nine 
subsamples are used as training data. The cross-validation 
process is repeated ten times, with each of the ten 
subsamples used exactly once 

as the validation data. The ten results are averaged to 
produce a single estimation. 

B. One Client 
A client accesses 100 TV channels. For each channel, ten 
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samples of attribute Mii ≤≤1}{β  are calculated. Therefore, 
there are 1000 samples in total. They are used as input data 
for the classifiers. There are nine TV channels whose 
servers coincide with those of other channels. Thus, the 
number of classes results in 91. Fig. 3(a) shows TPRs when 
M  varies. From the figure, the TPR is not very sensitive to 
M . TPRs of NB and RF are roughly 90%. Classifier RF 
achieves good performance, but its computation time is 
longer than those of NB and KNN. Meanwhile, Fig. 3(b) 
shows TPRs when the number of classes changes, where 
classes are selected randomly. The TPR decreases with the 
number. Classifiers RF and KNN correctly classify all 
samples when the number is twenty.  

 

 
Fig. 3. TPRs (%) as functions of (a) the size of 

Mii ≤≤1}{β  and (b) the 

number of classes. 

Let us consider the case where a client receives two 
streams from a cluster of servers, all of which have exactly 
the same performance and functionality and are connected 
to the same LAN. The attributes in this paper cannot 
distinguish two servers in such a cluster. (We think the two 
servers should be regarded as identical.) We refer to this 
issue as the cluster problem. Fig. 4 may correspond to this 
case (but only the company knows it is true). As shown in 
the figure, except for variable decay rates at large levels, 
two servers present extraordinarily similar decay rates. 
Many errors made by three classifiers in Fig. 3(a) are due to 
this cluster problem if every cluster consists of exactly the 
same specification servers. Let us consider the case where 
the cluster problem does not occur. Table II shows that 
TPRs considerably increase by replacing 21 TV channels 
such that any two servers do not belong to the same cluster. 
The number of classes is 100 after the replacement. 

 

 
Fig. 4. Ten samples of 

201}{ ≤≤iiβ  for two Akamai servers in Japan. The last 

decimal numbers of their IP addresses are (a) 126 and (b) 125.  

 

TABLE II: TPRS (%) BEFORE AND AFTER REPLACING 21 TV CHANNELS. 

   before   after  

RF   89.4   93.4  
NB   90.1   94.5  

KNN   87.3   92.6  

TABLE III: TPRS (%) IN THE ONE AND TWO CLIENT CASES. 

   One client   Two clients  

RF   89.4   96.1  
NB   90.1   96.5  

KNN   87.3   93.7  

 

C. Two Clients 
To investigate the sensitivity of attributes }{ iβ  to 

changes in the communication environment, randomly 
selected 50 channels are newly accessed by another PC on 
the same LAN. We use original 100 TV channels in Section 
III. In this case, the number of classes (the combination of 
client and server pairs) increases from 91 to 96. Since the 
number of clients is two, classifiers can make use of 
behavioral differences between two clients if their hardware 
or software configurations are different. Furthermore, since 
there are cases in which two TV channels provided by a 
server cluster are accessed by different clients, the number 
of errors due to the cluster problem decreases. Table III 
demonstrates that all TPRs significantly increase. However, 
some errors made by three classifiers in the two client case 
are still caused by the cluster problem. 

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

399



D. Sampling Period 
To reduce the sampling period from 60 s to 20 s, N  is 

set to 6102× . From (2), aggregated variance )(mV  is 
calculated with ⎦⎣ mN/  samples. Therefore, if N  
decreases, we cannot obtain decay rates )(mβ  at large m . 
Table IV shows TPRs in the one client case. Compared with 
TPRs in the one client case in Table III, all TPRs at 10 
samples are considerably low. However, TPRs steadily rise 
with the number of samples per channel. 

 
TABLE IV: TPRS (%) WHEN THE NUMBER OF SAMPLES PER TV CHANNEL 

VARIES. 17=M  AND 20=δN  S. 
   10 samples  20 samples   30 samples  

RF   77.8   81.2   83.3  
NB   77.4   82.2   84.4  

KNN   70.0   71.5   74.7  
 

V. ATTRIBUTE EVALUATION 
Let C  be a random variable whose value is a class and 

let A  be a random variable whose value is an attribute. The 
information gain is the mutual information );( ACI  of C  
and A  given by  

 ),|()(=);( ACHCHACI −         (6) 

where )(⋅H  stands for the entropy and )|( AH ⋅  is the 
entropy given that the value of random variable A  is 
known. Thus, );( ACI  is the reduction in the entropy of C  
achieved by learning the value of A . We use X , V , and 

iB  to indicate random variables of packet arrival rate X , 
variance (1)V , and decay rate iβ , respectively. 

 

 
Fig. 5. (a) Information gains );( ⋅CI . (b) Correlation coefficients ),( 10 ⋅Bρ . 

Fig. 5(a) shows information gains in two cases: one client 
and two clients. The figure demonstrates that X  and V  
provide the two highest information gains. Table V shows 
that by using X , (1)V , and 201}{ ≤≤iiβ  for classification, 

TPRs of all classifiers are further improved. If X  is used, 
however, we perform stream identification rather than host 
identification since two streams flowing at different rates are 
differentiated even if their source and destination hosts are 
identical. The reason variance (1)V  is not used is that X  
and (1)V  are strongly correlated. The correlation coefficient 
between X  and (1)V  for the 100 streams in Section III is 
0.82. 

Fig. 5(a) shows that gains of 19B  and 20B  are small (i.e., 
useless), since their values largely fluctuate as shown in Fig. 
2. It also shows that as the number of clients increases, 
information gains at decay rates 521 ..,,, BBB  significantly 

grow. Time scales of these decay rates range from δ⎦⎣ Δ10  
s ( 10=  μ s) to δ⎦⎣ Δ610  s ( 280=  μ s). This range is 
governed by client hardware and operating systems. In fact, 
the versions of the Windows operating system are different 
(7 and Vista), but the same version of Internet Explorer and 
Flash/Silverlight/WMP plugins are used on the two clients. 
TABLE V: TPRS (%) FOR VARIOUS ATTRIBUTES. THE NUMBER OF CLIENTS 

IS ONE. 

 X , (1)V , }{ iβ }{ iβ  10 highest iβ  }{ 12 +iβ
RF 94.3 89.4 88.2 81.5 
NB 94.7 90.1 88.2 85.1 

KNN 90.7 87.3 85.7 71.4 
 

Let us consider a sample of decay rates 201}{ ≤≤iiβ  as a 
point ( 1β , 2β ,.., 20β ) in the 20-dimensional space. 
Classification divides the space into J  disjoint regions 
such that points in region kR  belong to class kC , where 

J  is the number of classes. From Fig. 5(a), information 
gains of 19B  and 20B  are smaller than those of 4B  and 

5B . This can be verified by looking at two planes 54 ββ −  
and 2019 ββ −  in Fig. 6. In the 54 ββ −  plane, points 
belonging to the same class tend to form a cluster. Whereas, 
in the 2019 ββ −  plane, various class points are highly 
mixed, so that it is difficult to partition the plane. 

Meanwhile, Fig. 5(b) shows correlation coefficients 
between 10B  and a random variable A  ( ),( 10 ABρ ). From 
the figure, 10B  is strongly correlated with 9B  and 11B . In 
most cases, iB  and 

jB  are highly correlated if 2|| ≤− ji . 

This result suggests that 12 +iβ , ,90,1,= …i , could be used 
to reduce the number of attributes. However, Table V shows 
that the attributes do not provide good performance. The 
table recommends that ten highest attributes with respect to 
the information gain should be used if ten attributes are 
selected from twenty attributes 201}{ ≤≤iiβ . From Fig. 5(b), 
the correlaton coefficient between two decay rates is 
affected by the number of clients only at small levels. This 
result implies that the decay rate changes mostly at small 
levels. 
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Fig. 6. Two planes 

54 ββ −  and 
2019 ββ −  

for the one client case. A 

point style corresponds to one of thirty classes, which are randomly 
selected. 

 

VI. CONCLUSIONS 
To identify end hosts precisely, this paper took a new 

approach that makes use of statistical features of video 
traffic. We proposed using decay rates }{ iβ  and evaluated 
their effectiveness with 100 Internet TV channels and three 
classifiers. Evaluations were made according to the 
cross-validation test. The experimental results are 
summarized as follows: 

The naive Bayes classifier achieved the best performance 
in most cases, and the percentage of the correctly identified 
Internet TV sites was 94.5% if any two servers do not 
belong to the same cluster of servers. 

The percentage steadily rose with the number of sample 
attributes }{ iβ  per TV channel. 

Decay rates }{ iβ  at small levels sensitively responded to 
an increase in the number of clients and increased the 
percentage from 90.1% to 96.5%. 
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