
 


 

Abstract—At present, recommender systems are emerging 

as a growing application and research field in several domains 

of computing research, from artificial intelligence to 

information systems. In the past, these systems have been 

primarily used to reduce information overload and to identify 

the items that are of interest to the user more precisely. 

Recommender systems development is a complex task, on the 

other hand, abstraction and modularity are powerful concepts 

for handling the complexity of software development, 

especially if the problem domain is particularly complex, 

changeable, or large scale. This paper presents our attempt to 

reduce the complexity of recommender systems development 

via using software architecture concepts as well as multi agent 

system. 

 
Index Terms—Recommender systems (RS), multi-agent 

system (MAS), software architecture. 

 

I.   INTRODUCTION 

Since the emergence of the first paper on collaborative 

filtering in the mid-1990s, recommender systems (RS) 

became one of the most active research areas, and much 

research has been done resulting in numerous 

recommendation algorithms including the most basic − 

content-based filtering, collaborative filtering, and 

knowledge-based approach − and more advanced 

techniques, such as case base reasoning technique. As all 

currently available recommender systems have strengths 

and weaknesses, numerous research studies have attempted 

to develop techniques that would overcome the existing 

limitations by combining available techniques in different 

ways [1], [2], [3] . 

In this paper, we present a powerful tool to reduce the 

complexity in recommender systems development via the 

following: 

 Using software architecture concepts that provide a 

useful abstraction [4], as strategy to reduce the 

complexity of developing the recommender systems. 

 Partitioning the overall problem into a number of 

simpler components, which would be easier to develop 

and maintain, by using an agent-based approach. 

The paper is organized as follows: Section 2 presents a 

brief background of recommender systems and agent 

technology. Section 3 introduces related work. Section 4 

describes our contribution in develop recommender systems 

by using multi-agent systems (MAS). Section 5 presents a 
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case study to demonstrate the practical implementation of 

the proposed work. Finally, section 6 is the conclusions of 

this work. 

 

II.   BACKGROUND 

A. Recommender Systems 

Each recommender system consists of three basic 

components. These components are [5], [6], [7]: 

 Items to be recommended: such as books, movies, 

music, courses, web pages...etc. 

 Target consumer preference profile: this profile is 

created after the user preferences are identified 

through various techniques; the process is also called 

user modeling. 

 The recommender algorithm - also called 

recommender methods or techniques: this component 

is the mechanism that generates recommendations. 

There are many approaches (methods, approaches or 

techniques) in recommender systems field, each of them has 

strengths and weakness points so many researchers attempt 

to solve the various limitations of current recommender 

systems by combining some approaches in hybrid systems. 

The basic recommendation approaches are content-based 

filtering (CBF), collaborative filtering (CF), and 

knowledge-based approach. Collaborative Filtering 

Approach attempts to simulate the collaboration between 

the users aimed at sharing recommendations. Thus, it 

recommends items to the consumer based on the matches 

between the gathered data about his/her preferences and 

those of other users in the system. Most of collaborative 

systems apply the nearest neighbor model to compute the 

recommendations [8], Examples of Collaborative 

recommender systems are Eigentaste [9], and GroupLens 

[10]. Content-Based Filtering approach generates 

recommendations based on the correlation between the 

items’ content and user’s preferences; in other words, these 

systems recommend items that are similar to previous user 

preferences [11]. Examples of content-based recommender 

systems are described by Syskill and Webert [12], and a 

recommender system for the dspace open repository 

platform is given in [13]. 

The knowledge-based approach exploits its knowledge 

base of the items domain for generating recommendations 

to a user, and then reasoning about what items meet user's 

requirements [3]. An Example of knowledge-based 

recommender systems is Entree [14]. Each of the previous 

approaches has its own shortcomings, when considered 

individually, but some solve many shortcomings found in 

the other techniques; for example, pure collaborative 

systems solve all content-based system's problems, and 

content-based systems solve all collaborative system's 
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problems. Hence, to utilize these advantages, many 

researchers have combined two or more recommendation 

approaches to reduce the problems associated with 

individual techniques [8], [15], [16]. 

Burke [15] classified hybrid recommender approach into 

four groups: Weighted, Mixed, Switching and Feature 

Combination. Examples of hybrid recommender systems 

are WEBSELL [6], and hybrid recommender systems for 

electronic commerce [7].  

B. Agent Technology 

Recently, the agent technology has become one of the 

hottest research topics, promising to develop flexible and 

intelligent systems; thus there are a number of literature 

sources where researchers in mainstream computer science 

broadly discuss the agent technology. The majority of 

publications that relate to agent technology categorized 

agents into computational, biological, and robotic agents, 

and further subdivide computational agents into software 

agents and artificial life agents [17], [18]. agent technology 

incorporates structures that enable representing knowledge, 

achieving goals, interacting with the environments, and 

responding to unexpected changes, which, occur in its 

environment [19]. These structures could provide a 

significant advantage if used in the recommender systems’ 

field, where they can make the recommender systems 

capable of taking personal preferences into account, 

intelligently aggregate opinions and relationships from 

heterogeneous sources and data, make systems scalable, 

protect privacy, create open systems, and provide 

recommendations with minimal user involvement [20]. 

Multi-agent system can be seen as “loosely coupled network 

of agents that work together as a society aiming at solving 

problems that would generally be beyond the reach of any 

individual agent” [21]. There are many benefits of using 

multi-agent system for developing software systems, such 

as those given in [22], [23], [24]. 

 

III.   RELATED WORKS 

The available literature in the field of recommender 

systems [5], [7], [25], [26], [27] reveals many studies 

conducted in this domain. However, the studies vary in 

nature and some attempt to improve one of the 

recommender system components at the expense of other 

components. Alternatively, they focus on the use of new 

methods to be integrated into recommender systems, 

without attempting to solve the existing problems or 

consider quality of recommendation in their works. Others 

focus on the improvement in the recommendation 

algorithms. Chaptini [5] investigated the use of discrete 

choice models as a radically new technique for giving 

personalized recommendations. Moreover, he presented a 

software package that allows the adaptation of generalized 

discrete choice models to the recommendation task. The 

work focused on user modeling, and was not intended to 

overcome the weaknesses of any recommender techniques. 

As a test case for investigating the effectiveness of the work, 

he explored the application of discrete choice as a solution 

to the problem of recommending academic courses to 

students. Sotomayor et al. [25] investigated integrating 

singular value decomposition (SVD) with collaborative 

filtering approach to enhance CF approach by reducing the 

dimensionality of recommender systems databases. The 

work was aimed at supporting and facilitating a demanding 

customer in the task of searching for items to purchase by 

bundling a set of products and creating a feedback list. The 

system allows users to identify their own recommendation 

list and it personalizes the shopping experience by 

aggregating new items that were unknown to them. 

Marivate et al. [26] took MAS approach to solve the 

problem of recommending training courses to engineering 

professionals; the system reduces the need for users to 

search a wide variety of sources of information as well as 

dispensing with any need to monitor these sources for 

changes and updates. The recommendation system was built 

as a proof of concept and is limited to the electrical and 

mechanical engineering disciplines. Collaborative filtering 

recommendation was implemented using intelligent agents. 

 The agents work together in recommending meaningful 

training courses and updating the course information. The 

system used individual user profiles and keywords from 

courses to rank courses. The limitation of this system is in 

the use of the supervised learning neural network for 

ranking. Thus if a new discipline was to be added, the 

neural network would need to be retrained with new survey 

data. Mukherjee et al. [27] built software agent that 

employed user modeling techniques to facilitate information 

access and management tasks. This system focused on 

personalized recommendation based on user preferences 

that were explicitly specified or inferred from interactions. 

The system generates recommendations from stored 

preferences by using both voting schemes and text-based 

learning. The authors have developed a movie recommender 

system that caters to the interests of users to demonstrate the 

applicability of their technique. The interactive agent in this 

system learns a user model by gaining feedback about the 

recommended movies from the user. Tran and Cohen [7] 

presented architecture for designing a hybrid recommender 

system that combined collaborative filtering and the 

knowledge-based approach. Their architecture used an 

interactive interface agent −”Interface agents are computer 

programs that employ Artificial Intelligence techniques in 

order to provide assistance to a user dealing with a 

particular computer application” [19, p. 258] − to switch 

between the two approaches; depending on the current 

service. The agent also coordinates the operations of the two 

subsystems to make the best possible recommendations to 

users. As any knowledge-based systems, this system suffers 

from the drawback of requiring knowledge engineering, 

with all of its attendant difficulties. 

 

IV.   PROPOSED APPROACH 

Based on the core components of recommender systems 

(see Section 2. 1), and on the advantages of using multi-

agent technologies in software development (as given in 

[22], [23], [24]), our study presents a general architecture 

supported by agent technology, using switching hybrid 

method to switch between three individual recommendation 

algorithms − collaborative filtering, content-based and 

knowledge-based − to reduce the shortcomings of these 
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algorithms. 

Fig. 1 illustrates the proposed architecture and presents 

its key components:  

 Preferences gathering  

 Recommendation generator  

 Items collector  

 

Fig. 1. A general architecture for building recommender systems. 

The generic functions of each component in the presented 

architecture are supported by agent technology. Each agent 

is responsible for a relatively simple task, but cooperatively 

they present the powerful recommendation. Fig. 2 shows the 

conceptual overview of the presented architecture to 

illustrate its component configuration and interactions in 

detail. 

 

Fig. 2. Conceptual overview of the proposed architecture. 

1) Preferences gathering component 

This component provides the main graphical user 

interface (GUI). It functions as an intermediary between the 

user and the system, and is responsible for interaction with 

the users to collect their preferences and display the 

recommendation. Gathering user preferences is the first step 

in making the recommendation. If the system gathers 

sufficient information which enables creation of precise 

knowledge of user needs and preferences, the 

recommendations will be a closer match to the user 

requirements. A user interface design depends on the nature 

of the recommender system, but it should be designed to be 

easy to use; hence the designer should use suitable 

technology with good graphical capabilities, such as a Java 

Server Pages. Java Server Pages provide an efficient and 

simplified way to build dynamic graphical interface [25]. In 

the presented architecture, the graphical interface should 

select one of the following two subcomponents: (1) profile 

generation and maintenance component that will be 

activated when the user requires the system to produce 

recommendation based on his/her preferences; (2) user 

needs determination component that will be activated when 

the user requests recommendation based on current needs. 
An example of the scenario whereby the user requests a 

recommendation based on his/her current needs is a user 

wants an item, such as book to give as present to his/her 

friend [7]. To determine which component to employ, the 

system can simply ask the user if he/she wants the 

recommendation to be based on his/her preferences or not. 

The system can make the enquiry via the GUI. An example 

of such interface is shown in Fig. 3. 

 

Fig. 3. Determine user requirements. 

a)   Profile generation and maintenance component  

This component (Fig. 4) is responsible for creating and 

updating an active user profile. It contains a profiling agent 

(PA) that acts on behalf of the user to gather his/her 

preferences, as well as to build and update user profile. The 

profiling agent can explicitly ask the user about his/her 

preferences, or ask the user to rate a number of items that 

he/she knew before. 

 
 Fig. 4. Profile generation and maintenance component. 

The profiling agent gathers this information and uses it in 

addition to observing the user behavior through, for 

example, following the URL to capture his/her interests. 

This agent will use proven AI techniques, such as learning 

technique to learn user preferences. It creates an active user 

profile if the user is new (the profiling agent can determine 

if the user is using the system for the first time during a log-

in process) via graphical user interface, such interface can 

be like one shown in Fig. 5. 
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Fig. 5. Determine if the user is new or a registered user. 

If the user is a registered user, the profiling agent use the 

gathered information to add new preferences to the existing 

user profile and delete preferences that had changed; in this 

way the agent adapts to changes in user preferences over the 

time. The profiling agent transfers active user preferences to 

the filtering agent to inform it that there is a new 

recommendation request. After the user receives the 

recommendation, he/she can give feedback to the system. 

This feedback can be explicit, such as rating the items (e.g. 

a system can provide the user with list of items and request 

his/her opinion by rating each item on the scale from 1 to 5), 

or implicit, such as purchasing the product or placing it in a 

purchases basket. Profiling agent uses suitable implicit 

feedback methods to learn user preferences and update user 

profile. 

The active user profile can be based on content analysis 

approach as described by [28], whereby the profile contains 

information about the content of items of interest. By 

applying this approach, the architecture can use CF and 

CBF as a hybrid approach; where it gives the system ability 

to compare user profiles to recommend items that rated 

highly by users with similar profiles if CF approach applied; 

or to recommend items that similar to those stored in the 

user profile if CBF approach applied. 

b) User needs determination component  

This component (Fig. 6) takes responsibility of gathering 

user's current needs. It comprises of a need determination 

agent (NDA), which has capability to interact with the user 

and gather his/her, requirements. The NDA can do that via 

queries (the developer chooses an appropriate way to show 

the queries, either as lists or questions). After the user 

requirements are gathered, the NDA transfers them to the 

filtering agent. 

 
Fig. 6. Needs determination component 

A.  Recommendation Generator Component 

The responsibility of this component is to generate the 

recommendations and translate them to the user interface. 

Fig. 7 illustrates Recommendation Generator component. 

Within this component, there is a filtering agent (FA), 

responsible for producing recommendations by applying a 

switching hybridization method. According to its up-to-date 

knowledge about the active user, items, other users in the 

system, and the context (i.e. it considers whether the user is 

a new or a registered user in the system, if received message 

came from NDA or PA, etc.), it switches between the CF, CBF and 

KB approaches.  

 
Fig. 7. Recommendation generator component  

The filtering agent needs knowledge about when each 

approach is best suited to provide recommendation in order 

make a decision about which approach is best suited to 

produce recommendation. The filtering agent incorporates 

situation–action rules to switch between recommendation 

approaches. By following these rules, the presented 

architecture aims to avoid the disadvantages found in some 

existing recommender systems. As illustrated in Section 

2.1.2, the systems based on individual algorithm have 

number of disadvantages, and the presented work aims to 

avoid some of them. Table I illustrates the three algorithms 

used in this work together with their disadvantages. This 

table shows only the disadvantages that this study solved.  

TABLE I: RECOMMENDATION ALGORITHMS AND THEIR DISADVANTAGES 

Disadvantages CBF CF KB 

New system Yes Yes No 

New user Yes Yes No 

New item No Yes No 

Unusual user No Yes No 

Sparsity problem No Yes No 

Over specialization Yes No No 

In this study, some situation–action rules are proposed. 

Filtering agent should follow these rules to switch between 

recommendation approaches. Furthermore, the agent can 

learn, so that it can add other situation–actions, because “An 

agent’s behavior can be based on both its own experience 

and the built-in knowledge used in constructing the agent 

for the particular environment in which it operates.” [29, p. 

35]. The proposed rules are based on the advantages and 

disadvantages of each recommendation approach, known 

weakness points in these approaches, and when one 

recommendation approach can compensate for the 

shortcomings of another approach. The rules that the 

filtering agent will follow to decide which approach will be 

selected to produce recommendation are illustrated in Fig. 8.  
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a. If received message from NDA or PA Then 

           send message to retrieval agent (RA) to request available 

items. 

b. If the message came from  NDA Then apply KB approach 

     Else  /*  if the message came from PA */ 

                If  new user Then apply KB approach 

                    Else Compare available items list with active user 

profile and other users’ profiles 

       If there is item found in available items list and not found 

in users’ profiles Then apply CBF approach. 

             Else Apply CF approach. 

c. If CF approach fails to produce recommendations  Then  

switch to apply CBF approach. 

d. Match active user profile with recommendation list, if there 

is an item found in both Then  remove it from 

recommendation list. 

e. Match the recommendation list with available items, If 

there is an item found in the recommendation list and not 

found in available items list Then remove it from the 

recommendation list. 

Fig. 8. Situation–action rules that applied by filtering agent. 

When the filtering agent is activated, it sends message to 

the retrieval agent to request the available items, and then 

checks the message source; if the source is the need 

determination agent, this implies that the user wants 

recommendations not to be based on his/her preferences. In 

this case, the filtering agent applies the KB approach to 

produce recommendations, where this agent generates query 

to the knowledge base based on the user requirement that it 

received from the need determination agent or the profiling 

agent. When the query is completed, the filtering agent 

selects items that satisfy user needs to recommend them, 

and then it matches the recommendations list with the items 

that it received from the retrieval agent to remove 

unavailable items from the recommendation list. It 

subsequently transfers the recommendation list to the user 

interface. If the message source was the profiling agent, the 

filtering agent checks if the user is a new user or a 

registered user. For a new user, the FA will apply the KB 

approach; in this way the system avoids the new user 

problem (see [26] for more details about recommendation 

algorithms' problems), and if the system is newly developed, 

it helps to avoid new system problem. If the user is a 

registered user, the FA compares his/her active user profile 

and other users' profiles with the available items. If it found 

item in the available items list and the item is not found in 

any user profiles, the FA will apply the CBF approach, thus 

the system avoids new item problem. When the filtering 

agent applies the CBF, it does matching between the active 

user profile and the available items to produce the 

recommendations, where it recommends items that are 

similar to the items that the user preferred in the past. Then 

it transfers the recommendation list to the user interface. If 

the filtering agent does not find the new item, it applies the 

CF approach. By applying the CF approach, the system 

generates cross-genre recommendation (i.e. it recommends 

items not similar to those the user has already seen before). 

In this way the system will avoid over specialization 

problem. When the filtering agent applies the CF approach, 

it does matching between the active user profile and the 

other users' profiles to produce the recommendations based 

on the similarity between the active user and the other users 

in the system database. After generating the 

recommendation, the filtering agent matches the 

recommendations list with the active user profile to remove 

the items that the user has known before from the 

recommendation list. Then it matches the recommendations 

list with the items that it received from the retrieval agent to 

remove unavailable items from the recommendation list and 

transfers the recommendation list to the user interface. 

When the filtering agent fails to produce the 

recommendation by applying the CF approach, because the 

number of other users’ profiles insufficient to apply the CF 

approach, or there is no user with a profile similar to that of 

the active user, it switches to apply the CBF approach, 

hence the system avoids new system problem and gray 

sheep problem.  

The knowledge base contains knowledge on how well a 

specific item will satisfy the user's needs. The developer 

should have a good understanding about the 

recommendation domain and should use appropriate 

methods for its development and updates, such as 

production rules or frames.  

B. Items Collector Component  

This component (Fig. 9) is responsible for collecting the 

items _ and their features _ related to recommendation 

domain, from the different resources. Within this 

component, there is a Retrieval agent that takes the 

responsibility for searches in the resources to retrieve the 

items. These resources may be websites or internal database 

or both, according to the nature of the recommender system. 

 
Fig. 9. Items collector component. 

The retrieval agent subsequently stores the available 

items and their features in the items database. This ensures 

that the system is updated with new items in the 

recommendation domain. The retrieval agent retrieves the 

items continuously at offline stage (i.e. not during 

generating the recommendations); in this way, the 

recommendation computation time will be reduced. When 

the retrieval agent receives the message from the filtering 

agent, it extracts the items from the items database and 

sends list of available items to the filtering agent. The 

retrieval agent should be mobile agent. There are several 

benefits to using a mobile agent, such as reduction in the 

communication bandwidth, load balancing and overcoming 

latency of the network [30]. 

 

V.  CASE STUDY 

We present a case study to demonstrate the practical 

implementation of the proposed work. A recommender 

system for course selection is built to demonstrate how the 

proposed recommender system will be adapted to the 

structure of the implemented architecture. The course 

recommender system helps students to decide which 

courses to take. The system can switch between three 

recommendation approaches (CF, CBF and KB) for 
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recommending courses to students. The recommended 

courses can be similar to other students' preferred courses, 

or similar to the courses that the student has enrolled before. 

Furthermore, the suggested courses can be a result of the 

extraction of the system knowledge domain, which 

recommends courses that the student may have interest in. 
A number of characteristics for the course recommender 

system in this case study are summarized below: 

 User profile: each student registered in the system has 

a profile that contains his/her preferences and all the 

information related to the courses to which the student 

has enrolled in the past.  

 Course resources: this case study assumes that the 

resource is an internal database that contains the 

courses that the university is offering. Additional 

information about these courses; such as their 

description and availability is also included.  

 Domain knowledge base: It contains knowledge about 

how the specific course meets the student needs and it 

should be represented by rules or ontology.  

The Jason platform is used to implement the simple 

course recommender system. The reasons for selecting 

Jason are summarized below [31], [1]:  

 It enables agents to communicate and coordinate with 

each other in a high-level way.  

 It uses Saci, which is an infrastructure that provides 

(KQML-based) communication, as well as the ability 

to run MAS distributed over a network.  

 It has extensibility ability by means of user defined 

“internal actions.”  

 It enables running test scenarios (i.e. can simulate a 

real environment) before deploying the system.  

The proposed agents and their tasks for course 

recommender system are shown in table II.  

TABLE II: AGENTS AND THEIR TASKS 

Agents Purpose 

Profiling agent 

 Gathering the student preferences 

 Gathering the relevance feedback 

 Building and updating the active 

student profile 

Need 

determination 

agent 
 Gathering the student’s current needs 

Filtering agent 

 Produce the recommendations 

 Remove the courses that are not 

offered in the current semester from 

the recommendation list 

 Remove the courses that the student 

has studied before from the 

recommendation list 

 Translate the recommendation to the 

GUI 

Retrieval agent 

 Retrieves the courses that are offered 

in the current semester from the 

university courses database. 

 Stores the available courses in the 

recommender system database 

 

This part of the case study provides the implementation 

of some of the agents’ functionalities. Where, it is assumed 

that there is a student already registered in the system and 

that he/she requires course recommendations based on 

his/her preferences. 

A. Some of Implementation Details 

When running the MAS system, the 

courses_RecommenderSystem.mas2j file will be executed 

first to create the environment to execute the MAS. This file 

is a multi-agent system definition file that defines the agents 

in the system, as well as various parameters for the multi-

agent system execution. In this file, four agents are defined, 

which comprise the system: login agent, profilingAgent, 

filteringAgent, and retrievalAgent, in addition to the 

identification of the communication infrastructure. The 

source code of the courses_recommenderSystem.mas2j is 

illustrated in Fig. 10. 

1.  MAS courses_RecommenderSystem { 

2. // The Multi Agent System in  Case Study Courses Recommender 

System 

3.    infrastructure:  

4.       Centralised  

5.    agents:   

6.       login           beliefBaseClass jason.bb.TextPersistentBB; 

7.     filteringAgent  ; 

8.      profilingAgent ; 

9.      retrievalAgent         beliefBaseClass 

jason.bb.JDBCPersistentBB( 

10. // parameters to connection to database 

11.             “org.hsqldb.jdbcDriver”, //driver for HSQLDB  

12.             “jdbc:hsqldb:coursestore”, // URL connection for the DB 

13.              “sa”, // user 

14.              ““,   // password 

15. “[course(7),course_lecturer(2),lecturer(2),department(2),topic(2),

course_topic(2), course_place(2)]”);  // List of the beliefs that 

are mapped into tables of the database 

16. } 

Fig. 10. Source code for courses_recommenderSystem.mas2j 

The Jason used to implement the proposed course 

recommender system is a plug in inside the jEdit platform, 

which is a cross platform programmer's text editor written 

in Java (for more information about jEdit see [1]).  

To simplify the implementation of the proposed MAS, a 

login agent has been proposed. This agent checks the 

registered students database to check whether the student 

using the system is registered in the database or not, and if 

the student profile exists, profiling agent for this student 

will be created. The proposed Login agent uses a 

customized belief base provided by Jason to create a file 

called “login.bb” to store its beliefs. 

Some of the source code of the login.asl is illustrated in Fig. 

11. 

17. // Agent Login in Case Study Courses Recommender System 

18. /* beliefs */ 

19. // initial student data 

20. // student(UserName, Password, Name, Address, City, EMail)

  

21. student(  zinab,  

22.    “zinab”,  

23.    “zinab elbadree”,  

24.    “libya, 00218”, 

25.    “benghazi”,  

26.    “zsaad@yahoo.com”). 

27.     

28. student(  rabeia,  

29.    “elfrjany”,  

30.    “Rabeia N. Elfrjany”,  

31.    “libya, 00218”,  

32.    “benghazi”,  

33.    “rr1_456@yahoo.com”). 

34. student(   guest,  

35.    ““,  

36.    “Guest”,  

37.    ““,  

38.    ““,  

39.    ““).         
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40. /* plans */ 

41. // student managing 

42. +!kqml_received(S, askOne, add_student(UserName, Password, 

Name, Address,  City, EMail), M) 

43.  :not student(UserName, _, _, _, _, _)  

44.  <-+student(UserName, Password, Name, Address, City, EMail); 

45.  .send(S, tell, ok, M); 

46.  .print(“Add student: “, Name).  

47. +!kqml_received(S, askOne, add_student(UserName, _, _, _, _, _), 

M) 

48.  :         student(UserName, _, _, _, _, _) 

49.  <-      .send(S, tell, error(“Invalid username”), M); 

50.  .print(“Invalid username”). 

51. +!kqml_received(S, askOne, student(UserName),M) 

52.  :       student(UserName, Password, Name, Address,City, EMail) 

53.  <-    .send(S, tell, student(Name, Address, City, EMail), M). 

54. +!kqml_received(S, askOne, user_logon(UserName, Password), M) 

55.  : student(UserName, Password, Name, _, _, _) 

56.  <- .print(“logon ok for “,UserName); 

57.         // creates an agent for this user 

58. .create_agent(UserName,”profilingAgent.asl”,    

[beliefBaseClass(“jason.bb.TextPersistentBB”)]); 

59.         .send(S, tell, student(Name), M). 

60. +!kqml_received(S, askOne, user_logon(UserName, Password), M) 

61.  <-       .send(S, tell, error(“Username or password invalid!”), M). 

62. +!kqml_received(S, askOne, user_logout(UserName), M) 

63.     <- .print(ok). 

64.  <- .kill_agent(UserName); 

65.       .print(“Recommendation Request for “,UserName,” was 

Achieved”).  

66. +!kqml_received(S, askAll, student_ids, M) 

67.  <- .findall(Id,student(Id, _, _, _, _, _),ListStudent); 

68.   .send(S, tell, ListStudent, M); 

69. .print(“All students “, ListStudent). 

Fig. 11. Source code of the ogin.asl 

 

VI.  CONCLUSION 

We presented a general architecture that can serve as a 

guide for new developers in the field of recommender 

systems, enabling them to build recommender systems 

according to their requirements. The main architecture goal 

is to enable building specific recommender system that can 

satisfy the following: 

 Recommend items based on user preferences. 

 Gather user preferences with least involvement from 

the user. 

 Recommend items within the appropriate time limit 

for enabling the user to act on them immediately. 

The developers using the architecture designed in this 

study to build their bespoke recommender system will 

benefit from the following: 

 The architecture inherits the advantages of the CF, 

CBF and KB approaches. 

 The architecture helps to avoid new system problem 

via the KB approach. 

 The architecture enables the recommender system to 

recommend new items to the user (solves the new item 

problem) by using the CBF approach. 

 The architecture enables the recommender system to 

produce cross-genre recommendation (i.e. it solves 

over-specialization problem) by applying the CF 

approach. 

 By using the content approach to build a user profile, 

the architecture helps to solve sparisty problem. 

 The architecture gives the recommender system ability 

to recommend useful items to a user with unusual 

preferences (thus solving the gray sheep problem) via 

the CBF approach. 

 Item retrieval from the different sources at offline 

stage reduces the recommendation computation time. 

There are further advantages in using multi-agent 

technology to design the presented architecture, which are 

summarized below: 

 The agent’s reactive ability gives a RS enough 

flexibility to adapt to the user's changing interests. 

 The proactive information gathering ability creates an 

up-to date RS whit new items in the recommendation 

domain. 

 Recommender system will be scalable, in view of the 

fact that they are inherently modular, using MAS 

technology. Thus, new agents can be easily added to 

the system when required. 

 By providing an agent with a high-level goal to 

produce the recommendations, it will act 

autonomously to achieve its goal. 
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