
  

 

Abstract—Presented study investigates nonlinear feature 

extraction method for Electroencephalography (EEG) signal 

using fractal measures. The classical fractal measures of 

Higuchi dimension and Box-counting dimension were used and 

compared. This paper also introduces a new measure of 

approximate fractal entropy (AFE). It is applied as feature 

extraction in solving the problem of SSVEP idle-state detection. 

Comparison study was conducted between AFE and fractal 

dimension methods. Experimental results show the advantage 

of AFE-based feature extraction. 

 
Index Terms—Electroencephalography (EEG), steady-state 

visual evoked potentials (SSVEPs), feature extraction, 

brain-computer interface (BCI). 

 

I. INTRODUCTION 

Brain-Computer Interface (BCI) technology is a 

communication system which does not rely on the brain 

peripheral nerve pathways and muscle of the communication 

system [1]. BCI converts the information sent by brain into 

commands to drive external equipments, realizing 

information exchange between human body and the outside 

world, as well as external environment control. BCI 

technique has important application value in multiple fields 

of military, aerospace, transportation, entertainment and 

rehabilitation robots, etc [2][3]. Brain computer interface 

technology founded on the basis of brain nerve scientific 

theory, involving cognitive science, signal processing, 

pattern recognition, motion control, and other technology 

area, establishing itself an intelligent control system based on 

EEG data processing. 

Because of its convenient signal acquisition and high time 

resolution, scalp EEG is widely adopted in brain computer 

interface study. Four kinds of brain wave signal types are 

commonly employed in current scalp EEG based BCI 

systems researches, including Steady-state visual evoked 

potentials (SSVEPs), P300, Event-related desynchronization/ 

synchronization (ERD/ERS), Slow-scalp potentials, (SCPs), 

etc[4]. Among them SSVEP attracted widely attention, due to 

its advantages of convenient experiment preparation, high 

information transfer rate, low training process requirement, 

and less affected by the individual difference [5][6][7]. 

SSVEPs are biological feedbacks of visual cortex to 

flashing stimulation in the visual center. Studies have proved 

that the flashing stimulation in the visual center can enhance 
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particular neural activity mode of neurons assembly, 

regulating specific frequency component amplitude of 

recoded EEG signal. The response frequency of the SSVEP is 

the similar to that of visual stimulation. It is generally 

believed that, when visual stimulation frequency is higher 

than 6 Hz, SSVEPs could be induced [7][8]. 

There are two patterns in brain-machine interface research, 

saying synchronous control and asynchronous control [9]. 

Users of synchronous brain computer interface system need 

to cooperate with system, providing control commands in the 

period of time specified by system. For this control mode, the 

users are prompted by system at intervals of time, and only in 

this period the system can be controlled. The so-called 

asynchronous refers to such kind of control mode, the 

changes of symbols, command, signal level occur when the 

user has control intent (Intentional control, IC), the system 

output keep middle state when the user have no control 

purpose (no control, NC), while system is still in control at 

this time. 

Asynchronous control mode helps to improve the user 

independence and practical degree of BCI. How to realize 

asynchronous BCI effectively is one of the key problems for 

developing BCI from lab to actual application [10]. Study has 

been conducted on how asynchronous control could be 

applied in BCI. The research presented in literature [11] and 

[12] applied respectively subspace decomposition (CSSD) 

method and energy accumulation method on asynchronous 

control of movement imagine based BCI. Literature [13] 

presented a SSVEP-based asynchronous BCI system 

employing C0 complexity metrics as feature extraction 

method. 

The presented study investigated the SSEVEP idle-state 

detection problem on the basis of fractal theory. Non-linear 

character of fractal dimension was employed for feature 

extraction and its physiological implication was discussed. A 

new EEG feature extraction method using approximate 

fractal entropy as mental state metric was further proposed in 

this paper, and its relationship with fractal dimension was 

discussed as well. Both methods were then applied in SSVEP 

idle-state detection. Experimental results show that 

approximate fractal entropy method has superiority in 

SSVEP idle-state detection over fractal dimension. 

 

II. FRACTAL-MEASURE BASED IDLE-STATE DETECTION 

A. Fractal-Dimension Based Idle-State Detection 

Fractal (Fractal) is a mathematics set with high 

geometrical complexity. Fractal theory was firstly founded 

by Mandelbrot in 1975, which has been widely employed to 

depict natural phenomenon nowadays [14]. Fractals has fine 

structure at any scale, while keep self-similarity between 
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different scales. A prominent feature of fractal is the negative 

power law characteristics, which can be commonly observed 

in measurement results of different scales, or in energy 

spectrum of fractal time series. Fractal dimension (FD) is 

thus established based on fractal theory as a measure of 

describing the invariance character of negative power law 

behavior [15]. 

There are different methods for estimating the fractal 

dimension of 1-d signal, for example, Higuchi method [16], 

and the Box-counting method [17], etc. To make 

performance comparison of different methods in estimating 

time series fractal dimension, we conducted simulation study 

employing a standard fractal signal generated by Weierstrass 

cosine functions. Weierstrass cosine function is a special 

function with property of everywhere continuous everywhere 

non-differentiable. It was put forward by the German 

mathematician Karl Weierstrass in 1872 [18]. Weierstrass 

curve has proved to be a typical fractal signal when fractal 

theory was developed. The generation formula of Weierstrass 

fractal signal is.  

𝑊𝐻 𝑡 =  𝛾−𝑘𝐻 𝑐𝑜𝑠 2𝜋𝛾𝑘𝑡 , 0 < 𝐻 < 1, 𝛾 > 1∞
𝑘=0        (1) 

The fractal dimension of this fractal signal can be 

determined by the parameters of the formula, ie.𝐷 = 2 − 𝐻. 

In the present study, we set 𝛾 = 5 and 𝑡 ∈ [0,1] for fractal 

signal generation. Sampling 𝑁 + 1 points at equal interval, 

with 𝑁 = 4096. Set parameter H from 0.9 to 0.1 at interval of 

0.1 respectively, we got nine generated fractal signals, with 

fractal dimension of 1.1~1.9. These nine signals with 

different fractal dimension were then analyzed with Higuchi 

algorithm and Box-counting method to estimate the fractal 

dimension. The change correlation of estimated fractal 

dimension with Weierstrass fractal dimension is shown in Fig. 

1. 

 

Fig. 1. Higuchi fractal dimension and box-counting fractal dimension of 

Weierstrass curve. 

We can see from the figure, Higuchi method outperformed 

Box-counting method in Weierstrass fractal dimension 

estimation. There were also researchers compared different 

methods for fractal dimension estimation of EEG signals. 

they pointed out that for EEG signals fractal dimension 

estimation which has less signal length, Higuchi method 

could achieve more stable performance than several other 

methods [19][20]. Therefore, Higuchi method was employed 

in this study as the fractal dimension estimation method. 

We have conducted a previous study on the neural 

physiological basis of the fractal dimension of EEG signal, 

the experimental results showed that the time domain fractal 

complexity of EEG signals correlated with the component 

diversity of signal spectrum. EEG fractal properties can 

reflect in certain sense the oscillation pattern diversity of the 

neurons assembly [21]. In this article, we further discuss the 

application of fractal dimension extraction of EEG signals in 

SSVEP idle-state detection. 

According to the basic principle of SSVEP, most of the 

visual cortex area is used to dealing with the information in 

the central region our vision. so when stimulation target with 

certain frequency moves around the vision central, SSVEP of 

corresponding frequency will be enhanced remarkably [8]. 

By looking at stimulation targets coded by different 

frequency, different SSVEP potential can be induced at 

visual cortex. 

To explain the SSVEP generating mechanism, researchers 

put forward a kind of oscillator explain theory [22]. This 

theory believes there are neural networks with different 

resonance frequency in the brain, known as oscillator. These 

oscillators are not synchronized with each other when no 

stable external stimuli received. The EEG of this status 

behaves disorderly. When receiving external stimuli 

repeatedly with certain frequency, oscillators of the 

stimulating frequency or harmonic frequency will produce 

resonance. These resonance results in significant 

enhancement of the corresponding spectrum component of 

EEG signals and harmonic signal, thus SSVEPs are observed 

[23]. 

The appearance of dominant component in EEG spectrum 

introduced by SSVEP remarkably reduce the component 

diversity, thus the temporal complexity are reduced 

correspondingly. This reduction in temporal complexity can 

then be detected by calculating the fractal dimension of EEG 

signal. That is to say, lower EEG fractal dimension indicates 

the appearance of SSVEP potential, while higher EEG fractal 

dimension corresponds to high diversity of neuron activity 

pattern, namely idle state. Thus the detection of SSVEP state 

was transformed into estimating the fractal dimension of 

EEG signal. 

B. Approximate Fractal Entropy Based Idle-State 

Detection 

Entropy is a quantitative measure for describing the 

randomness and disorderliness of system based on the second 

law of thermodynamics [24]. Shannon entropy was jointly 

established by Shannon and Wiener, an information theory 

concept defined on the basis of probability model. It provides 

a new measure of uncertainty or information quantity [25], 

[26]. 

Let X to be the provided discrete random variable, with 

value range of  𝑥1,⋯,𝑥𝑛 . Then an uncertain system is built of 

X and its values. Let 𝑝 to be the probability density function 

(PDF) of 𝑋, we have the definition of Shannon entropy, 

𝐻 𝑥 = − 𝑝 𝑥𝑖 𝑙𝑜𝑔 𝑝(𝑥𝑖)

𝑛

𝑖=1

 

In information theory, information is related to the 

reduction of entropy or uncertainty. The concept of 

information entropy has also been introduced into ecological 
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system study, forming Shannon-Wiener index, an important 

indicator for measuring the diversity of species [27]. The 

so-called diversity is to indicate the unevenness between the 

components of a system. As discussed above, the fractal 

dimension measure of EEG signal is closely correlated with 

the spectrum diversity of EEG. Information entropy is thus 

introduced in this section to further discuss its application in 

complexity measure and feature extraction of EEG and also 

in SSVEP idle-state detection as well. For this purpose, we 

give the definition of Approximate Fractal Entropy (AFE) as, 

For given time series 𝑋 𝑖 , 𝑖 = 1,2, ⋯ , 𝑁, we calculate the 

power spectrum density according to N-point Fourier 

transformation, 

𝐹𝑁 𝑗 =
1

𝑁
 𝑋(𝑘)𝑒−2𝜋(𝑘𝑗 𝑁 )

𝑁

𝑘=1

 

let                         𝑆𝐹 =  𝐹𝑁 𝑖 
𝑁
𝑖=1  

then the Approximate Fractal Entropy of the given time series 

can be defined as 

𝐷0 =  − 𝐹𝑁 𝑠 𝑆𝐹 𝑙𝑜𝑔2 𝐹𝑁 𝑠 𝑆𝐹  𝑁
𝑠=1  1/2      (2) 

Simulation experiment was also conducted for the 

Approximate Fractal Entropy measure employing the 

Weierstrass fractal signal, as conducted in previous section. 

Fig. 2 gives the simulation result of Higuchi fractal 

dimension and Approximate Fractal Entropy, when changing 

with the fractal dimension of Weierstrass fractal signal. Table 

I gives the correlation performance. 

 

Fig. 2. Fractal dimension and approximate fractal entropy of Weierstrass 

fractal curve. 

TABLE I:  CORRELATION BETWEEN DIFFERENT MEASURES 

 FD Higuchi FD AFE 

FD 1 0.99919 0.99471 

Higuchi FD 0.99919 1 0.99194 

AFE 0.99471 0.99194 1 

We can see from the results that both Higuchi fractal 

dimension and Approximate Fractal Entropy can effectively 

reflect the fractal property of Weierstrass fractal signal. 

Approximate Fractal Entropy provides an alternative 

measure for temporal fractal property of time series, and thus 

provides a new non-linear feature extraction method for 

SSVEP idle-state detection. 

III. EXPERIMENT RESULTS AND PERFORMANCE 

EVALUATION 

To testify and compare performance of different fractal 

feature extraction methods in SSVEP idle-state detection, 

real world SSVEP experiment was conducted and the results 

are presented in this section. 

The stimulation stimuli in experiment were generated by 

SSVEP inducing program. White squares with side length of 

200 pixels flicker at different position of a screen with 

resolution of 1024 x1280 pixels. In SSVEP period, 

experiment volunteers were required to focus on one of the 

flickering targets, and in NC time, participants can see any 

other places, or even conversation. The focusing goals were 

randomly determined by the system, and each period lasts 2 

seconds. 

Two volunteers took part in the experiment, no visual 

disease, normal vision after correction. The scalp EEG 

acquisition in the experiment was conducted by physiological 

signal acquisition instrument produced by Biosemi 

corporation, with sampling frequency of 256 Hz. The 

electrode A30 in the Biosemi 128 ABC positioning system 

was selected for the idle-state detection experiment. Three 

SSVEP states, including 10 Hz, 12 Hz, 15 Hz, and NC idle 

state were employed. Participant1 conducted 125 SSVEP 

experiments and 85 idle-state experiments, while participant2 

126 SSVEP and 122 idle-state. 

Feature extraction was then performed using both fractal 

dimension method and approximate entropy method, to 

compare the performance of the different methods in SSVEP 

idle-state detection. The experiment results are shown in Fig. 

3. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 3. Distribution of the feature values(a)FD feature value of participant 

1(b)AFE feature values of participant 1(c) FD feature value of 

participant2(d)AFE feature values of participant2 

We can see from the feature extraction results of these two 

methods, there is no remarkable difference can be observed 

within three SSVEP states for both fractal dimension method 

and AFE method. The feature values of different SSVEP 

states mixed together. For SSVEP state and NC state, 

effective separating capacity was manifested, which showed 

the effectiveness of these two methods. Compared with 

fractal dimension method, AFE method got higher 

discriminating performance with less overlap between 

SSVEP and NC state. To see more clearly, we drew 2-d 

distribution of the extracted feature values as Fig. 4. 

 
(a) 

 
(b)                          

Fig. 4. Scatter plot of FD feature values and AFE feature values 

(a)Participant 1(b)Participant 2. 

From the experiment results shown in figure 3 and figure 4, 

feature separating degree of AFE is obviously higher than 

fractal dimension method. We then conducted quantitative 

performance evaluation for the SSVEP idle-state detection 

experiment. Sensitivity and specificity are two main 

performance indicators for binary classification problem [28], 

ie., 

100
TP

Sensitivity
TP FN




                            (3) 

100
TN

Specificity
TN FP




                            (4) 

In the formula above, TP means true positive, FN false 

negative, TN true negative, FP false positive. Sensitivity 

represents the ratio of correctly identified SSVEP cases to all 

SSVEP cases, and Specificity refers to the ratio of correctly 

identified NC cases to all NC states. 

Receiver operating characteristic curve (ROC), also called 

sensitivity curve, is a effective performance evaluation 

method to visualize both sensitivity and specificity results. 

The more the ROC approaches to the left-up corner, the better 

the synthesis performance of both sensitivity and specificity. 

In figure 5, we give the ROC curves of fractal dimension, 

AFE, and C0 complexity [13].  

 
(a) 
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(b) 

Fig. 5. ROC curves of different feature extraction methods (a)Participant 

1(b)Participant 2. 

It can be observed in figure 5(a), the ROC of AFE method 

got the best performance among the three feature extraction 

methods. For AFE method, if we control specificity at 90%, 

we can get a high sensitivity performance of above 90%. In 

figure 5(b), the performance evaluation result of participant 2, 

the ROC of AFE method also outperformed the other two 

methods. The experiment results demonstrated the 

superiority of AFE feature extraction method in the EEG 

SSVEP idle-state detection application. 

 

IV. CONCLUSION 

Brain-computer interface is an EEG-based intelligent 

control system, the efficiency of feature extraction method 

plays key role. This study investigated EEG non-linear 

feature extraction method employing fractal analysis theory. 

The correlation between EEG fractal dimension and SSVEP 

potential was described utilizing the sensitivity characteristic 

of temporal fractal dimension to the frequency components 

diversity. This study further gave the definition of 

approximate fractal entropy, and put forward a new fractal 

feature extraction method for SSVEP idle-state detection. 

The performance of both the fractal dimension and 

approximate fractal entropy methods was evaluated and 

compared through simulation and real world EEG 

experiments. The experiment results show that, for feature 

extraction of SSVEP idle-state detection, fractal measures are 

effective, and AFE method significantly outperformed fractal 

dimension. Thus the presented fractal-feature-based method 

provides an alternative solution for feature extraction of 

SSVEP-based asynchronous BCI research. 

REFERENCES 

[1] J. R. Wolpaw, N. Birbauner, D. J. MacFarland, G. Pfurtscheller, and T. 

M. Vaugha, “Brain-computer interfaces for communication and 

control,” Clin Neurophyiol, 2002, vol. 113, no. 6, pp. 767-791. 

[2] J. J. Vidal, “Towards direct brain-computer communication,” Annu 

Rev. Biophys Bioeng, 1973, vol. 2, no. 1, pp. 157-180. 

[3] G. Pfurtscheller, G. R. Mueller-Putz, et al., “15 years of BCI research 

at graz university of technology: current projects,” IEEE Trans Neural 

Sys. Rehab Eng, 2006, vol. 14, no. 2, pp. 205-210. 

[4] T. W. Berger, J. K. Chapin, G. A. Gerhardt, et al., “International 

assessment of research and development in brain-computer interfaces: 

report of the world technology evaluation center,” Berlin: Springer, 

2007. 

[5] L. J. Trejo, R. Rosipal, and B. Matthews, “Brain-computer interfaces 

for 1-D and 2-D cursor control: designs using volitional control of the 

EEG spectrum or SSVEP,” IEEE Trans Neural Syst Rehabil Eng, 2006, 

vol. 14, no. 2, pp. 225-229. 

[6] P. Martinez, H. Bakardjian, and A. Cichocki, “Fully-online, 

multi-command brain computer interface with visual neurofeedback 

using SSVEP paradigm,” Computational Intelligence and 

Neuroscience, 2007, online article ID: 94561. 

[7] M. Cheng, X. R. Gao, S. K. Gao, and D. Xu, “Design and 

implementation of a brain-computer interface with high transfer rates,” 

IEEE Trans Biomed Eng, 2002, vol. 49, no. 10, pp. 1181-1186. 

[8] D. Regan, “Human brain electrophysiology: Evoked potentials and 

evoked magnetic fields in science and medicine,” New York: Elsevier 

Press, 1989. 

[9] J. F. Borisoff, S. G. Mason, and G. E. Birch, “Brain interface research 

for asynchronous control applications,” IEEE Transactions on Neural 

Systems and Rehabilitative Engineering, 2006, vol. 14, no. 2, pp. 

160-164. 

[10] M. A. Lebedev and M. A. Nicolelis, “Brain–machine interfaces: past, 

present and future,” Trends in Neurosciences, 2006, vol. 29, no. 9, pp. 

536-546. 

[11] D. Zhang, Y. J. Wang, X. R. Gao, B. Hong, and S. K. Gao, “An 

algorithm for idle-state detection in motor-imagery-based 

brain-computer interface,” Computational Intelligence and 

Neuroscience, 2007, Article ID: 39714. 

[12] R. Leeb, D. Friedman, G. R. Mueller-Putz, D. Scherer, M. Slater, and G. 

Pfurtscheller, “Self-paced (asynchronous) BCI control of a wheelchair 

in virtual environments: a case study with a tetraplegic,” 

Computational Intelligence and Neuroscience, 2007, Article ID: 

79642. 

[13] R. Ren, G. Y. Bin, and X. R. Gao, “Idle state detection in SSVEP-based 

brain-computer interfaces,” 2nd International Conference on 

Bioinformatics and Biomedical Engineering, ICBBE08, 2008, pp. 

2012-2015. 

[14] B. B. Mandelbrot, “Stochastic models for the Earth's relief, the shape 

and the fractal dimension of the coastlines, and the number-area rule 

for islands,” Proc Nat Acad Sci, 1975, vol. 72, no. 10, pp. 3825-3828. 

[15] D. L. Gilden, T. Thornton, and M. W. Mallon. 1/f Noise in Human 

Cognition. Science, 1995, vol. 267, no. 5205, pp. 1837-1839. 

[16] T. Higuchi, “Approach to an irregular time series on the basis of fractal 

theory,” Physica D, 1988, vol. 31, no. 2, pp. 277-283. 

[17] L. S. Liebovitch and T. Toth, “A fast algorithm to determine fractal 

dimensions by box counting,” Physics Letters A, 1989, vol. 141, no. 

8-9, pp. 386-390. 

[18] K. Weierstrass, “On continuous functions of a real argument that do not 

have a well-defined differential quotient,” in: Edgar G A. Classics on 

Fractals, New York: Addison-Wesley Publishing Company, 1993. 

[19] G. Wang, H. Huang, H. B. Xie, Z. Z. Wang, and X. Hu, “Multifractal 

analysis of ventricular fibrillation and ventricular tachycardia,” 

Medical Engineering and Physics, 2007, vol. 29, no. 3, pp. 375-379. 

[20] C. H. Scholz and B. B. Mandelbrot, “Pure and applied 

geophysics-introduction,” Pure and Applied Geophysics, 1989, vol. 

131, no. 1/2, pp. 1-4. 

[21] X. Q. Li, Z. D. Deng, and J. W. Zhang, “Function of EEG temporal 

complexity analysis in neural activities measurement,” ISNN 2009, 

Part 1, LNCS 5551, 2009, pp: 209-218. 

[22] R. B. Silberstein, “Steady-state visually evoked potentials, brain 

resonances, and cognitive processes,” in Nunez P L (Ed.) Neocortical 

Dynamics and Human EEG Rhythms. Oxford: Oxford University Press, 

1995, pp. 272~303. 

[23] Z. H. Wu and D. Z. Yao, “Study on the selection mechanism of 

attention by steady-state visually evoked potential,” ACTA Biophysica 

Sinica, 2006, vol. 22, no. 6, pp. 455-460. 

[24] K. G. Denbigh, “Note on entropy, disorder and disorganization,” The 

British Journal for the Philosophy of Science. 1989, vol. 40, no. 3, pp. 

323-332. 

[25] C. E. Shannon, “A mathematical theory of communication,” Bell 

System Technical Journal, 1948, vol. 27, pp. 379-423 and 623-656. 

[26] N. Wiener, “Cybernetics; or control and communication in the animal 

and the machine,” New York: John Wiley and Sons, 1948. 

[27] E. C. Piolou, “An introduction to mathematical ecology,” Translated 

by LU Ze-yu. Beijing: Science Press, 1978. 

[28] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen, 

“Assessing the accuracy of prediction algorithms for classification: an 

overview,” Bioinformatics, 2000, vol. 16, no. 5, pp. 412-424. 

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

335



  

Li Xiuquan was born in 1976. He received the Ph.D. 

degree in the field of intelligent data processing, from 

the Department of Computer Science and Technology, 

Tsinghua University, Beijing, in 2010. Before that, he 

received the MA degree in the field of artificial 

intelligence from the Department of Computer Science 

and Technology, East China University of Science and 

Technology in 2006. He is now a research associate in 

Chinese Academy of Science and Technology for Development, Beijing, 

China. His current research interests include pattern recognition, 

macro-economy data mining, science and technology indicators prediction, 

time series analysis.  

 

 

Deng Zhidong was born in 1966. He received the Ph.D. 

degree from Harbin Institute of Technology, 

Astronautics School, Harbin, China, in 1991. He spent 

two years, from 1992 to 1994, at Department of 

Computer Science and Technology, Tsinghua University, 

Beijing, as a postdoctoral researcher. He had served as a 

Research Associate at the Hong Kong Polytechnic 

University, Kowloon, Hong Kong during 1996-1997. 

Currently, Dr. Deng is a professor at the Department of 

Computer Science and Technology, Tsinghua University. Prof. Deng’s 

current research interests include virtual reality, IBMR, reverse engineering, 

fuzzy neural networks, learning control, reinforcement learning algorithms, 

nonlinear dynamical systems in Internet, and robot control. Prof.Deng is a 

member of the IEEE and the American Society of Mechanical 

Engineers(AMSE). 

 

International Journal of Computer and Communication Engineering, Vol. 1, No. 4, November 2012

336


