

Abstract—The article deals with testing database against

original requirements for its creation. Currently there are

several tools for unit database testing, testing stored procedures

and functions in database or performance and load testing of

relational database. But there is no tool for testing logical model

of the relational database against requirements for its creation.

In the paper we propose a tool for testing logical model of the

implemented database against original requirements for its

creation. Proposed tool uses XML document for representation

of the requiremensts and JDBC methods for loading logical

model of the implemented database. Outputs of the proposed

tool are tables with comparison of entities and tables, attributes

and relationships. Finally, the tool generates possible database

optimization proposals based on the tool ś outputs. At the end of

the article proposed tool is shown on testing database of the

university information system and possible optimization

proposals for this database are suggested.

Index Terms—Relational database, testing, optimization,

database testing.

I. INTRODUCTION

Today, in the area of information systems development is

appropriate to monitor, if customer ś requirements are

understood and implemented correctly. This activity should

be provided continously during the implementation to ensure

higher quality of the resulting information system (further in

text referred as IS). With the continous testing of specific

parts of the IS, the possible errors can be detected and fixed

even during the implementation of the IS. The emphasis on

the correct understanding and implementing of the

customer ś requirements is also based on iterative approach

to the design and development of IS [1].

Information systems are mostly connected to the database,

so it is suitable to focus also on testing database due to the

original requirements for its creation which are defined in the

analysis of the IS. For the proper functioning of an IS is

needed to ensure correct implementation of the database, so

it ś appropriate to test whether the database is designed and

implemented correctly.

This paper is a continuation of articles [2], [3], [5]. The

type of database which is used in this article is a relational

database [6].

II. PROBLEM FORMULATION

From the survey called The Current State of Data

Management Survey intiated between developers, IT

management and data professionals it can be concluded that

Manuscript received May 30, 2012; revised June 9, 2012. This work was

supported in part by the University of Ostrava under internal grant

SGS10/PřF/2012, called Fuzzy modeling tools for analysis and design of

information systems.

The authors are with the Department of Informatics and Computers,

University of Ostrava, Ostrava, Czech Republic (email:

bogdan.walek@osu.cz，cyril.klimes@osu.cz).

95.7% of respondents believe that data is a corporate asset,

but only 40.3% had a database test suite to validate the data

and of those without a test suite only 31.6% had even

discussed the concept. 63.7% of respondents indicated that

they implemented mission-critical functionality in the

database, but only 46% had a regression tests in place to

validate the logic of this functionality [4].

Currently, there are tools for database refactoring, testing

data consistency, stored procedures, triggers, data validity [4].

Selected tools are described below [4]:

SQL Refactor – the tool allows finding invalid objects in

database, finding unused parameters and variables, renaming

objects, splitting tables, etc. The result is more readable and

clear database schema, and database optimization.

DTM Data Generator – with this tool we can generate test

database tables and large amount of data for performance

testing, loading tests and usability testing.

DbFit – the tool allows testing SQL queries, stored

procedures and functions.

From this short description of current tools for database

testing we can conclude that current tools are not able for

testing logical structure of the implemented database against

original requirements for its creation.

But inappropriate or poor design of database logical model

can cause these problems [7]:

1) Data redundancy.

2) Problems with data consistency.

3) Meaningful identifiers.

4) Unnecessary database tables or relationships which can

store useless data are linked to the implemented classes

of methods.

Based on these facts we propose a tool for testing logical

model of the database against original requirements for its

creation. The outputs of the tool will be differences between

requirements and implementation of the database and

proposals for optimizing the implemented database.

III. PROBLEM SOLUTION

The main goal of this article is to propose and describe a

tool for testing logical model of the database against original

requirements for its creation. Proposed tool is shown in the

Fig. 1:

Fig. 1. Proposed tool for database testing.

A Tool for Database Testing and Optimization

Bogdan Walek and Cyril Klimeš

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

262

Now we can describe specific parts of the proposed tool.

A. Loading Requirements for Creating a Database into

the XML Document

In the first step we need to load and understand the original

requirements for database creation. Requirements for

creating database can be stored in various ways, such as

vision document, notation from the meeting with customer,

communication with customer. After loading requirements

we need to transform requirements to appropriate format

which can be easily processed by the tool and is

understandable for customer. Suitable format for storing and

processing requirements is an XML document. We propose

the stucture of XML document described on the part of

requirements for database of the university information

system:

<?xml version="1.0" encoding="UTF-8" ?>

<requirements>

<entity name="Department">

<attribute name="name"/>

<attribute name="shortcut"/>

<attribute name="address"/>

<attribute name="email"/>

<attribute name="phone"/>

</entity>

<entity name="Faculty">

<attribute name="name"/>

<attribute name="shortcut"/>

<attribute name="head"/>

<attribute name="staff"/>

<attribute name="email"/>

<attribute name="phone"/>

</entity>

<relationship>

<startentity>Department</startentity>

<relation>is_a_part_of</relation>

<endentity>Faculty</endentity>

</relationship>

</requirements>

In this example of XML document we can see two entities

Department and Faculty, their attributes and relationships

between these entities.

B. Loading Logical Model of the Implemented Database

In this step we need to load a logical model (database

tables, attributes, relationships) of the database which was

created and implemented based on the requirements shown in

previous example. Firstly we have to connect to the

implemented database and their RDBMS (relational database

management system). One of the possible solutions is to

connect to database via JDBC driver (because it is easy and

there are default and important methods included in the

JDBC driver for specific RDBMS. Next, we need to load

database tables, attributes and relationships - logical model of

the implemented database. Loaded logical model should be

also transformed to the proposed XML document structure.

Structure of the XML document is very similar to the XML

document for requirements:

<?xml version="1.0" encoding="UTF-8" ?>

<database>

<entity name="Department">

<attribute name="name"/>

<attribute name="shortcut"/>

<attribute name="address"/>

</entity>

<entity name="Faculty">

<attribute name="name"/>

<attribute name="head"/>

<attribute name="address"/>

<attribute name="email"/>

<attribute name="phone"/>

</entity>

<relationship>

<startentity>Department</startentity>

<relation>department_to_faculty

</relation>

<endentity>Faculty</endentity>

</relationship>

</database>

We can see two database tables Department and Faculty,

their attributes (columns) and relationship between these

database tables in the XML document.

C. Comparing the XML Documents

In this step we propose algorithm for comparing the XML

files for requirements and the implemented database. The

proposed algorithm consists of these parts:

1) Forall entities in XML requirements find specific entity

in the implemented database.

2) Write possible differences.

3) Repeat steps 1. and 2. for attributes and relationships.

4) Show differences between requirements and the

implemented database.

Now we will show three tables with comparing bettween

requirements and the implemented database based on the

database of the university information system:

TABLE I: COMPARING ENTITIES.

Entity in requirements Entity in database Differences

University University

Faculty Faculty

Department Department

Student Student

Subject Subject

Subject_type Missing database

table Subject_type

in database

Conclusion_type Missing database

table

Conclusion_type

in database

Registered subjects Registered subjects

TABLE II: COMPARING ATTRIBUTES.

Attribute in requirements Attribute in database Differences

University.name University.name

University.address University.address

University.phone University.phone

University.email University.email

Faculty.name Faculty.name

Faculty.shortcut Missing attribute

Faculty.shortcut in

database

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

263

Faculty.head Faculty.head

Faculty.address Faculty.address

Faculty.email Faculty.email

Faculty.phone Faculty.phone

Department.name Department.name

Department.shortcut Department.shortcut

Department.address Department.address

Student.name Student.name

Student.surname Student.surname

Student.email Student.email

Student.number Student.number

Student.phone Missing attribute

Student.phone in

database

Subject.name Subject.name

Subject.credits Subject.credits

Subject.description Subject.description

Subject_type.name Missing attribute

Subject_type.nam

e in database

Conclusion_type.name Missing attribute

Conclusion_type.

name in database

 Subject.type Unnecessary

attribute

Subject.type in

database

 Subject.conclusion Unnecessary

attribute

Subject.conclusio

n in database

Registered_subjects.stud

ent

Registered_subjects.

student

Registered_subjects.subj

ect

Registered_subjects.

subject

TABLE III: COMPARING RELATIONSHIPS.

Start entity in

require- ments

End entity

in

requirement

s

Start

entity in

database

End entity

in database

Differenc

es

Faculty University Faculty University

Department Faculty Departme

nt

Faculty

Student Department Student Department

Subject Department Subject Department

Subject_type Subject Missing

relationsh

ip in

database

Conclusion_t

ype

Subject Missing

relationsh

ip in

database

Subject Registered_

subjects

Subject Registered_

subjects

We can conclude that in the implemented database are

missing database tables Subject_type and Conclusion_type,

few attributes are missing and few attributes are unnecessary.

D. Optimization Proposals for the Implemented Database

From the previous step and tables with differences

between requirements and the implemented database we can

conclude optimization proposals which can be applied for the

implemented database:

 Add database tables Subject_type and Conclusion_type.

 Add attributes shortcut to database table Faculty and

phone to database table Student.

 Add attributes name to database table Subject_type and

name to database table Conclusion_type.

 Remove attributes type and conclusion from database

table Subject.

 Add relationships between database tables Subject_type

 and Subject, and Conclusion_type and Subject.

In Fig. 2 and Fig. 3 are shown requirements for database

creation and the implemented database:

Fig. 2. Requirements for database of the university information system.

Fig. 3. Implemented database of the university information system.

Based on optimization proposals the database specialist

should modify logical model of the implemented database.

IV. CONCLUSION

In this paper the current state in the area of database testing

was analyzed. Then we proposed a tool for testing logical

model of the implemented database against original

requirements for its creation. Then, the specific parts of the

proposed tool were described. Finally, we show proposed

tool on testing database of the university information system

and we suggest possible optimization proposals for this

database. Proposed tool can be used by database specialist to

analyze differences between requirements and implemented

database, and then the implemented database should be

optimized.

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

264

ACKNOWLEDGMENT

The presented topic is also a part of the internal grant

SGS10/PřF/2012, called Fuzzy modeling tools for analysis

and design of information systems, at the Department of

Infomatics and Computers, University of Ostrava.

REFERENCES

[1] Rational Unified Process, [Online]. Available:

http://www-01.ibm.com/software/awdtools/rup/, 2012.

[2] B. Walek, “Testování databáze informačního systému”, in Proc. of

Studentská vědecká konference 2011, Ostrava, 2011, pp. 218-221.

[3] B. Walek and C. Klimeš, “Testing logical structure of the information

system database,” International Conference on Business Intelligence

and Financial Engineering, Hong Kong, 2011, to be published.

[4] How to Regression Test a Relational Database, [Online]. Available:

http://www.agiledata.org/essays/databaseTesting.html, 2010.

[5] B. Walek and C. Klimeš, “Testing database of information system

using conceptual modeling,” in Proc. of International Conference on

Fuzzy Systems and Neural Computing, Paris, 2012, pp. 736-742.

[6] J. L. Harrington, Relational database design and implementation.

Burlington: Elsevier Inc., 2009, ch. 1.

[7] J. L. Harrington, Relational Database Design Clearly Explained,

Second Edition, San Francisco: Elsevier Inc., 2002, ch. 1, pp. 4-9.

Bogdan Walek was borned on July 9, 1985 in

Karvina, Czech Republic. In 2004 he began studying

informatics at University of Ostrava, Czech Republic

and in 2007 he earned a bachelor ś degree. In 2009 he

received a master ś degree in information systems at

University of Ostrava. Since 2006 he works in IT

Company, located in Ostrava and called Your System

as IBM Lotus Domino Developer. Since 2010 he

studies at University of Ostrava as PhD. student. He

published several papers focused on fuzzy modeling systems and relational

databases at international conferences, such as International Conference on

Soft Computing MENDEL, International Conference on Fuzzy Information

and Engineering, International Conference on Fuzzy Systems and Neural

Computing, etc. His current research interests are fuzzy modeling tools,

expert systems, relational databases.

International Journal of Computer and Communication Engineering, Vol. 1, No. 3, September 2012

265

