
  
Abstract—When any arbitrary number of sinusoids with 

same frequency but different amplitudes and phases are added 
together, the resultant sinusoid has the same frequency. We 
derive a closed form expression and provide two different 
approaches to prove the theorem. 
 

Index Terms—Harmonic addition theorem, phasor addition 
theorem, phasor addition rule 
 

I. INTRODUCTION 
Addition of sinusoids with the same frequency but 

arbitrary amplitudes and phases is the fundamental but 
important operation in acoustics, music, communication, 
and audio signal processing applications. Let us define 
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where L  denotes the total number of tonal components that 
are to be added, 0ω  is the angular frequency which is 

common to all the tonal components, and iα , iϕ  are 

amplitudes and phases, respectively. Notice that 0ω  is the 
same for all the sinuoids. Let the sinusoid and cosinusoid be 
respectively denoted as ( )sx t  and ( )cx t . Thus (1) can be 
written as 
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where β  is the amplitude and ψ  is the phase. The 
mathematical problem of interest here is that given(1), β  
and ψ  are to be formulated in closed-form formulae, 

parameterized by L , iα , and iϕ  for 1,2, ,i L= … . 
In signal processing literature, (2) is obtained from (1) 

using Phasor Addition Rule or Phasor Addition Theorem [1]. 
This is in fact equivalent to Harmonic Addition Theorem [2] 
in mathematics and here we prove the theorem from two 
different approaches and show this link. From that, we 
observe some interesting patterns in symbolic expansions; 
by using them, we formularize the closed-form expressions 
for β  and ψ . 

 

 

II. HARMONIC ADDITION THEOREM 
The Phasor Addition Theorem or Rule is equivalent to 

Harmonic Addition Theorem, and the formulae in the 
theorem are derived in this paper from different perspectives. 

Theorem: Given the signal function 
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ψ  so that 0( ) sin( )sx t tβ ω ψ= +  or 

0( ) cos( )cx t tβ ω ψ= +  where 
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A.  Sub-Problem 
To prove the theorem and to formulate (3), we define a 

sub-problem to obtain a formula for the addition of complex 
numbers in polar form without being necessary to convert 
them into rectangular form at all. This sub-problem is 
defined as follows. Let ( )ex t  be denoted as a complex 
exponential signal function that is given by 
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where iα  is the amplitude and iϕ  is the phase of the ith 
complex number in polar form or in phasor notation. L  is 
the total number of complex numbers to add, the objective is 
to convert (4) into 

( ) j
ex t e ψβ β ψ= = ∠                 (5) 

where β  is the amplitude and ψ  is the phase. In other 
words, the problem is to formulate β  and ψ  of (5) in 

terms of iα  and iϕ  for 1,2, ,i L= …  of (4). 
To solve this sub-problem, starting from 2L = , for 
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For the computation of ψ , atan2 function [3] can be used 
to exactly locate the angle in any of the four quadrants in the 
complex plane. Notice that the ordinary atan function [3] 
range is, however, 2 2π ψ π− < ≤  in contrast to the atan2 
function range of π ψ π− < ≤ . To formulate the formulae 
of β  and ψ , as stated in the sub-problem statement, we 

expand Lγ  in (6) for 2,3,4,L =  as shown in Table I, and 
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observe the following symbolic expansion pattern  
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TABLE I:  ALGEBRAIC AND TRIGONOMETRIC EXPANSIONS OF 
γ L  FOR 2 , 3 , 4L =  
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From Table I, we define 
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Thus, from (7), (8), and (9), β  and ψ in (5) can now be 
formulated as 
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Indices, { , }i j , of (9) can also be further observed as a 
triangular number expansion pattern as shown in Table 2. 
The total number of components and the total number of 
summations in (9) can be formulated as ( )T n  and ( ) 1T n − , 
respectively where ( )T n  is the triangular number [4] and 

1n L= − , i.e., 
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For the both cases of positive and negative ϕi ’s in (5), 
we define 
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with β  and ψ  as formulated in (6). 
 

TABLE II:  INDICES { , }i j  OF (9) FOR 2 , 3 , 4L = , AND 2m ≥  
L { },i j  2L C
2  {1,2} 1 

3  {1,2},{1,3}  3  
 {2,3}   

4  {1,2},{1,3},{1,4}  6  
 {2,3},{2,4}   

 {3,4}   

#  # #  
m {1,1 1},{1,1 2}, ,{1, 1},{1, }m m+ + −… 2m C
 {2,2 1},{2,2 2}, ,{2, }m+ + …  

 

 {3,3 1}, ,{3, }m+ …  

 #  

 { 2, 1},{ 2, }m m m m− − −  
 

 { 1, }m m−  

B. Proof I 
In this sub-section, the first proof of the harmonic 
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addition theorem is presented. Using (12) and Euler’s formula, 01
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C. Proof II 
In this sub-section, the second proof of the harmonic 

addition theorem is presented. Using (12), and Fourier 

transform denoted by the notation ⇔
F

,  
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In the above proof, (.)δ  is the Dirac delta function. 
Hence, the harmonic addition theorem has been proved.   

 

III. CONCLUSIONS 
In conclusion, the harmonic addition theorem is proved 

from two different approaches, and closed-form formula to 
calculate the exact amplitude, and phase of the resultant tone 
are derived from the first principles. A pattern of symbolic 
expansions is observed, and noted the relation to the 
trigonometric number, which in turn shows the 
computational load by predicting the number of summations 
needed to perform as derived in (11). Based on this work, 
the resultant formulae described in (3) can be easily 
converted into an algorithm to compute the exact amplitudes, 
and phases of the resultant tone (sinusoids) when many 
tones with the same frequency but arbitrary amplitudes, and 
phases are linearly added together. Moreover, the 
mathematical results in [2] do not include the closed-form 
formulation of the harmonic addition theorem. In this paper, 
the exact closed-form formula in (3) (see (27) and (28) in [2]) 
is obtained with two separate proofs. In fact, this closed-

formed formula has been applied to compute the exact 
harmonic output [5] and intermodulation distortion output [6] 
(in terms of amplitude, frequencies and phase) from 
polynomial-approximated static nonlinearities in the area of 
audio engineering.  
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