

Abstract—Software Engineering is a pivot course in the

Computer Science and Computer Engineering curriculums.

This paper briefly presents traditional content which is usually

being taught in many Software Engineering courses, and

highlights some problems encountered during teaching this

content. Then it builds on those problems to suggest a more

appropriate content for the course. The suggested content is

applied in nature to make the course interesting to students,

pushes programming to the very beginning of the course so that

students may have hands-on practice for a longer time, removes

many topics which are usually found in traditional Software

Engineering courses such as the structured approach, cuts on

the number of diagrams that can be replaced by others to reduce

confusion. The paper will consider the trade of between the

material which was cut and the benefits gained from providing

the students with a focused curriculum that may limit the

difficulty and the confusion usually result from teaching a

traditional curriculum, this includes limitations and

implications of our approach and the expected gains.

Index Terms—Software engineering, curriculum design,

object-oriented, structured approach, JAVA.

I. INTRODUCTION

Software Engineering (SE) is usually a core course in the

Computer Science (CS) and Computer Engineering (CE)

curriculums. While teaching the course of software

engineering for many offerings, we have tried various

approaches dealing with contents and teaching strategies, and

which may resemble what many other colleagues would be

using. Mainly using traditional lectures with traditional

content and giving a course project to help students practice

concepts taught in lectures. But we found that this traditional

content has led to some confusion among the students. Based

on the lessons I have learned from teaching each offering we

have made improvements to the contents and our teaching

strategy until we ended up with the model described in this

paper.

This paper is organized as follows: section 2 presents a

brief review of related literature, section 3 describes the

problem and research framework. It lists what we believe to

be some common topics that many instructors would typically

include as part of their software engineering courses, and

which we believe to be non-essential, and highlights and

discusses the negatives of having those (non-essential) topics

if became part of course contents. Section 4 presents and

discusses our innovative model for teaching the software

engineering course and which we have developed and

adopted based on the experience we have gained from

teaching this course for many times. Section 5 is a conclusion.

Manuscript received February 14, 2012; revised April 12, 2012.

Osama Shata is with Qatar University (e-mail: sosama@qu.edu.qa).

We will introduce next some of the work that has already

been done by other researchers.

II. REVIEW OF RELATED LITERATURE

Researchers have investigated methods, approaches,

models … etc. related to teaching SE. Decker and Hirshfield

[1] have argued for the need to use the Object-oriented

paradigm. Brereton et al. [2] has noted benefits of teaching

Software Engineering using collaborative and group projects.

Ludewig and Reißing [3] have investigated and highlighted

the importance of using application-oriented problems in

teaching SE to make it more practical. Culwin [4] has

emphasized the need to use JAVA as the implementation

language since students are more likely to use it in their work

places. Using simulation for teaching SE has also been

considered [5]. Mann and Smith have examined tools that

may be used for SE projects in SE courses, and have also

considered various suggested approaches to teaching SE

courses [6, 7, 8]. The need to make shifting in teaching SE to

cope with the, newly welcomed, Agile software development

model and the industrial practice in SE have been discussed

by Noble et al. [9].

Our work presents our model to teaching a SE course for

CS and CE undergraduate students. We encourage using the

Object-Oriented approach with the Agile and Spiral models.

We will introduce next some problems encountered during

teaching the course, followed by our suggested model.

III. HYPOTHESIS AND RESEARCH FRAMEWORK

A. Hypothesis

The work in this paper is based on the hypothesis that what

students learn in colleges in SE courses is not adequate to

prepare them for software development in industry and that

several problems may be identified in the current content

which we teach to students. Our approach was to revise the

common content of SE courses and come up with a

non-traditional content by identifying problems areas in the

current curriculum, suggesting how to solve these problem

areas, cutting the unneeded topics to give more time for

practicing the concepts taught, and to focus on presenting

various case studies using a limited number of software

development models but which students are more likely to use

in their future work places. We will begin by giving a

definition for the field followed by the problems we have

identified.

Attempts to find a consensus definition for the field have

not proven very successful. The some use it to mean

programming, others use it to mean software development;

but the majority use it to refer to the classical definition given

Teaching Software Engineering: A Critical Path Method

Osama Shata

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

151

by the IEEE Computer Society’s Software Engineering Body

of Knowledge definition [10]: “as the application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software, and the

study of these approaches; that is, the application of

engineering to software”. It is the latter definition that we will

conform to and mean in our discussion in this paper.

We believe that most problems instructors face in teaching

a course in Software Engineering (SE) stem from a main

problem which is not knowing what to teach. The IEEE

definition of SE highlights three main activities: systematic

process, development, operation and maintenance. Hence, it

is expected that each SE course must address these three

activities, and those are the main source of problems in the

course.

A typical Software Engineering course would teach the

following topics :

 Software Engineering Overview / Introduction

 Software Engineering Process

 Requirements Analysis

 Software Design

 Other Topics (e.g. software construction, software

testing, software engineering tools and methods,

project management, usability guidelines, software

quality, …etc.)

While most instructors may agree on the above broad titles,

many of them would find difficulty in deciding on the detailed

contents of them. The first four topics in the list above are the

ones of main concern to this paper. We will introduce and

discuss the problems in each of those topics in the next

section.

B. Problems related to the overview / introduction

This topic usually introduces the software life cycle

(development process) and common models. Resources list

and describe many models (e.g. Waterfall, V-model,

Prototype, Iterative, Incremental, Spiral, Agile, RUP, …etc.)

[15]-[17]. Some of those models have various variants that

may increase the number of the models (e.g. Crystal, Extreme

Programming (XP), and Scrum for the Agile model).

Instructors may find it a dilemma to decide on how many and

which models to use and teach in the course. There is no

consensus among software engineering practitioners about

the best model(s). Everyone promotes their own methods,

claiming huge benefits in productivity, usually not backed up

by any scientific, unbiased evidence.

The question now is “Which model should we choose to

teach to our students?” Examining contents of many software

courses and discussions with colleagues indicated that most of

them teach most of the models listed above with emphasis to

students that they should choose the right model based on the

scope and type of the software project and depending on other

factors such as budget and available resources. In our opinion

this is not the right approach because teaching students many

models would confuse them. We suggest teaching only the

spiral and agile models. Since software engineering is meant

to provide a systematic approach for developing large and

complicated systems and the spiral is intended for large,

expensive and complicated projects. Then it would be

suitable for that purpose. In addition, it combines features of

the waterfall and prototype which are popular but without

their disadvantages. It is also incremental and iterative. This

makes the spiral model like a general or a generic one where

many other models may be considered as special cases of it.

Moreover, the spiral model is much simpler than the RUP.

Simplicity is very important in practice. For example, in the

area of databases, the relational model is popular and is

widely used mainly because of its simplicity, although it is

less efficient if compared to the network model. However, the

latter is more complex. Also, the relational model is simpler

than the newer object-oriented model which is still less

popular than the former one.

We also teach the Agile model in general, and the Extreme

Programming in specific, because of its clear advantages. For

example, it is very close to what programmers and students

tend to do, they put the programming at the very beginning of

the project and delay documentation (i.e. matches people

nature). Students usually come very enthusiastic to begin

working practically and program. In addition to other

advantages such as the continuous involvement of customers,

and realizing that requirements can come up during any time

throughout the project lifecycle.

We will introduce next some of the problems related to

teaching the analysis phase of the software life cycle.

C. Problems related to analysis and design

Teaching the analysis phase of the software life cycle

involves teaching the structured and object-oriented

approaches. We find that teaching both approaches leads to

confusing students. Although the definition of each approach

highlights concrete differences between both approaches, but

the differences between some of the tools which are being

used by each approach may not be appreciated or clearly

realized, the matter which leads to some confusion among

students.

Structured Analysis separate between data and processes

while object-oriented analysis combines both. When it comes

to the modeling tools, we find that the structured analysis

approach uses modeling techniques such as data flow

diagrams, structure diagrams, state models,

entity-relationship diagrams and task diagrams meanwhile the

object-oriented approach depends mainly on the unified

modeling language (UML) with its nine diagrams (use-case,

object, class, sequence, collaboration, state chart, activity,

package and component). Students compare between the tools

of each approach and find similarities between some of them.

For example, consider the entity-relation diagram (E-R) of the

structured approach and the object diagram of the

object-oriented approach (OO). Both of them show how

specific instances of a class are linked to each other, with the

fact that the E-R diagram also shows attributes of entities and

provides a static view while the object diagram provides a

dynamic view. Also, consider the E-R diagram with the class

diagram. The class diagram may be considered as a

generalization or enhancement to the E-R diagram since it

also shows operations and methods. Both provide static view.

Also consider the state models in the structured approach and

the state chart in the OO approach. In the structured analysis

approach, state models show the modes in a system, and in the

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

152

OO approach a state chart is used to describe the states of a

complex object and Addresses the dynamic view of the

system. Similar comparisons may be applied between the

system diagram and the component diagram; or between the

flow charts and dataflow diagrams and the activity diagram;

or between the task diagram and the activity diagram; or

between the task model and the component diagram. When

teaching students all these different diagrams they may not

appreciate the fine differences between them and rather focus

on the considerable similarities. The matter that makes them

question the validity of the differences in the definitions of the

two approaches if considerable similarities may be located

between their modeling tools. It is our opinion that since the

OO approach is now the common modeling approach for

software development then it is better to focus on it and do not

discuss the structured approach. Some students even face

problems in deciding on the right diagram to use among those

of the UML ones. For example, between objects diagrams and

class diagrams; and between collaboration diagrams and

sequence diagrams.

We encourage focusing on the OO approach and the UML

diagrams and do not teach the structured approach or its tools.

Although students are exposed to the E-R diagram in the

database courses and still question its similarities to the object

and class diagrams and why it is not used instead.

It is our opinion that many of the traditional topics that we

used to teach in the software engineering course can be

omitted and left for advanced or postgraduate courses, and

that we have to be closer to industry and its standards. The

design may be considered as an elaboration of the analysis,

and hence, a similar discussion for that of the analysis may be

applied to the problems related to design.

We will introduce next our suggested approach.

IV. A SUGGESTED APPROACH AND DISCUSSION

In this section we present our approach to teaching the

course of software engineering. Teaching software

engineering is not an easy task. An instructor must select

between various life cycle models and between various

approaches for the phases of the life cycle. In addition, the

instructor must find ways to give students practical experience

in engineering the development of the software. This also is

not an easy task when the course does not have a separate or

an embedded lab, so this practical experience must be

acquired through teaching in class room sessions. We

introduce next our approach for teaching the SE course over

42 hours of class room sessions spread over a semester with 3

hours per week for 14 weeks. Table 1 below lists the main

topics which we believe that a course syllabus must contain.

TABLE 1: A SUGGESTED COURSE SYLLABUS

Week Topics / Activities

1 Introduction (which includes a definition for the field proposed by either the Canadian Standards Association or the IEEE [10] or both). The

Alistairs justification of the name and that it was used to provoke the audience in a conference about software crisis [13]. The circumstances

behind its appearance. The software life cycle with its phases. Notes: emphasize that software is essential in all disciplines, hence anyone

involved in software development should take this course; no need to make any comparison between the field and other fields of

engineering,. Highlight that sequential implementation of the phases is not appropriate (e.g. waterfall model) and hence other models are

used (e.g. Spiral and Agile). Avoid giving many definitions which have no consensus among professionals or in industry.

2 The agile model (Extreme Programming). Students are asked to form teams of 4-6 students each for the course projects.

3 Case study 1 (a case study that uses the Agile model). Students start working on project 1 (using the Agile model). The Object-Oriented

modeling concepts. The software life cycle phase 1: requirements elicitation

4 The Spiral model. Introduction to UML. Use-case diagrams. Case study 2 (start a case study that uses the Spiral model).

5 The software life cycle phase 2: OO Analysis. Object diagrams & class diagrams. Case study 2 (continued). Students submit project 1 (using

the Agile model).

6 The software life cycle phase 3: OO design. The sequence, collaboration, and state chart diagrams. Case study 2 (continued). Students start

working on project 2 (using the Spiral model)

7 - The software life cycle phase 4: OO implementation (mapping models to code). The software life cycle phase 5: verification, validation

and testing. The activity, package and component diagrams. Case study 2 (continued).

8 The software life cycle phase 6: maintenance. End of case study 2.

9 Reusing patterns. Project management. Begin case study 3 (a case study that uses the Spiral model).

10 More on project management (work breakdown structure, task model, organization chart). Case study 3 (continued).

11 User interface design. End of case study 3.

12 Software management (people, cost, quality, process improvement, configuration). Case study 4 (a case study that uses the Spiral model).

13 Emerging technologies. End of case study 4.

14 Case study 5 (a case study that uses the Agile model). Students are to submit the course project and make a brief presentation.

We have not given the details of every topic in the list of

contents above. However, there is a time frame for each topic.

For example, the user interface design is in week 11 and it is

expected to be covered in the range of 2 hours (1 week = 3

class hours). Each instructor may decide what to teach in these

two hours. However, it is expected that these two hours will

be only enough for broad ideas. Also, the list of contents

above shows that we focus on case studies because we believe

in learning by doing. The course does not have a lab, so we

had to give students the practical experience they need in class.

In addition, through case studies we can show students how

theoretical concepts presented in the course may be applied

and used. Our approach differs from other researchers work in

its selection of the topics and its focus and use of case studies.

We found the above approach very helpful to students. It

gave them the most needed concepts that they are more likely

to meet in their work places, and hence much attention was

paid to industrial needs and practices. However, we find that

more investigation on the proper size of the course project

need to be done. Some students took the project for a very

detailed level and have developed very detailed diagrams and

this has affected the time they needed for coding and some of

them could not finish proper testing and validation of their

work.

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

153

V. CONCLUSION AND FUTURE WORK

This paper has presented our approach to teaching a

software engineering course based on our experience in

adopting an applied-oriented manner. We have focused on the

most common models that students may encounter in their

future carriers, and on the use of many case-studies as a mean

to make the course more applied. We have eliminated topics

traditional topics and which are taught mainly for comparison

purposes. Our approach has enabled students to appreciate

using iterative and incremental development processes to

develop software systems according to SE principles, to gain

skills necessary for implementing solutions in code satisfying

industrial coding practices, to work in teams and assume

different roles in software development. Students were

satisfied with the course and appreciated enabling them to

practice what they like most (i.e. programming) very early in

the course in addition to gaining experience that simulates as

much as possible what they may encounter in their future

carriers. Our future work intends to focus on the course

project to identify the proper size of it and how to prevent

some students from being drafted by the analysis and design

phases to the point that it affected their coding and subsequent

phases.

VI. ACKNOWLEDGEMENTS

This research work was funded by Qatar National Research

Fund (QNRF) under the National Priori-ties Research

Program (NPRP) Grant No.: 09-1205-2-470.

REFERENCES

[1] R. Decker and S. Hirshfield, “The Top Reasons Why Object-Oriented

Programming Can't Be Taught in CS1,” in SIGCSE '94-, pp. 51-55,

1994.

[2] P. Breton, S. Lees, M. Gumbley, C. Boldyreff, S. Drummond, P.

Layzell, L. Macaulay, and R. Young, “Distributed Group Working in

Software Engineering Education,” Information & Software

Technology vol. 40, no. 4, pp. 221-227, 1998.

[3] J. Ludewig and R. Reißing, “Teaching What They Need Instead of

Teaching What We Like – the New Software Engineering Curriculum

at the University of Stuttgart,” Information and Software Technology

vol. 40, no. 4, pp. 239 – 244, 1998.

[4] F. Culwin, “Object Imperatives!” In SIGCSE '99, pp. 31-36, 1999.

[5] A. Drappa and J. Ludewig, “Simulation in Software Engineering

Training,” in Proceedings of the 22nd International Conference on

Software Engineering. 2000, ACM. p. 199-208, 2000.

[6] S. Mann and L. Smith, “Role of the Development Methodology and

Prototyping Within Capstone Projects,” in Proceedings 17th Annual

NACCQ, MANN, S. & CLEAR, T. (eds). Christchurch. July 6-9th, pp.

119-128, 2004.

[7] S. Mann and L. Smith, “Arriving at an Agile Framework for Teaching

Software Engineering,” 19th Annual Conference of the National

Advisory Committee on Computing Qualifications, Wellington, New

Zealand, NACCQ in cooperation with ACM SIGCSE, pp. 183-190,

2006.

[8] S. Mann and L. Smith, “Technical Complexity of Projects in Software

Engineering,” in Proceedings 18th Annual NACCQ, MANN, S. &

CLEAR, T. (eds), Tauranga. July 10-13th July 2005. p249-254, 2005.

[9] J. Noble, S. Marshall, S. Marshall, and R. Biddle, “Less Extreme

Programming,” in ACE 2004 Proceedings, pp. 217-226, 2004.

[10] SWEBOK executive editors, A. Abran and J. Moore editors, P.

Bourque and R. Dupuis, “Guide to the Software Engineering Body of

Knowledge,” IEEE Computer Society, pp. 1–1, 2004.

[11] I. Sommerville, Software Engineering 8th Edition, Addison-Wesley,

USA, 2007.

[12] H. Van Vliet, Software Engineering: Principles and Practice, 3rd

Edition, Wiley, 2008.

[13] Alistair. The end of software engineering and the start of

economic-cooperative gaming. [Online]. Available:

http://alistair.cockburn.us/The+end+of+software+engineering+and+t

he+start+of+economic-cooperative+gaming.

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

154

http://www.answers.com/topic/software-engineering-body-of-knowledge
http://www.answers.com/topic/ieee-computer-society

