

Abstract—This article presents the concept of script as the

linchpin in managing the software process, the pattern is

proposed as a script within the software process, is presented as

a research result of the comparison of two software projects,

which the radical difference is found in the script.

All of these patterns, including traditional processes

(Waterfall, Spiral, Big-bang, Prototype, etc.) and Agilists

methodologies (XP, Scrum, FDD, ASD, Evo, and others), can be

used as tool scripts using Colossus in which one component is

supplied for this purpose. The aim of the component patterns of

the process is to provide a tool to organize and customize the

scripts, the script component coined the term as equivalent to

the script. Finally it presents a software component that

compiles a set of process patterns that can be used and generated

automatically.

Index Terms—Software process, script, pattern, component,

tools.

I. INTRODUCTION

A script is defined by the Royal Academy of the Spanish

language in the dictionary “El Pequeño Larousse”, such as

"text that contains all the development of a film, radio, or

television with all the details."

The software development processes also have a script

made up of activities and roles that the execution, as in the

conventional script, the software process defines the details

for their implementation, as well as the work of the director of

a film or a play, the software project manager for the project

tends to be managed properly to have a guide that provides a

good degree of security that will form in the process of

software project.

The script provides process management software itself but

the synergy 1 of the roles is that the guarantee or hinder its

implementation. In the software process there is a wide range

of scripts but the same script is never attended the same way,

the process scripts can carry out the project, but can also be a

failed project, as in the movies that are reproduced, they either

have been successful or a terrible failure, this leads to the

premise that "the software developments process script is as

important as one who embodies and who leads it.”

Manuscript received February 14, 2012; revised April 20, 2012.

Víctor Hugo Medina García and Sandro Bolaños Castro are with

Universidad Distrital Francisco José de Caldas, Bogotá , Colombia (e-mail:

vmedina@udistrital.edu.co, sbolanos@udistrital.edu.co).

Rubén González Crespo is with Universidad Pontificia de Salamanca

Madrid, Spain (Tel.: + 57 3114546209; fax: + 5713239300 ext. 1402; e-mail:

rubenagc@gmail.com).

II. THE MANAGEMENT AS THE FOUNDATION OF THE SCRIPT

A script is a dead letter until it is embodied and staged, that

it meets the management role, managing a script means to

carry out the recommendations, follow the flow of work and

control the variables that affect it. Of course if there is no

management there is no script, but equally it can t́ be done if

there is no script or management, they are inseparable from

each other. Management leads to the realization of the script

in hand of roles performed by people who need to engage in

the process.

As in a play or a film, the action of seeking harmony roles

leads to the success of the project 2. Management should be

focused primarily on the resources for the people who execute

roles and the time needed to carry out the activities of the

process, these two factors are critical to avoid delays in the

projects 2. Management process should be in hands of a

leader of the process that will do so as a film director, to keep

the synergy between roles "actors of the process."

Management is the guideline for conducting a controlled

process. In essence if you think for example in two scenarios

in which you have used the same process, but one of them has

failed while the other is successful, the question arises: What

is the difference between the success of one and failure of the

other? Logically, there can be many causes but the one we

want to analyze with the discussion of the script is the way in

which roles are embodied in this booklet, carried out by

management.

A. Advantages and Disadvantages of the Script

The script is a software process that allows you to visualize

the activities to be undertaken, also allowing the two key

resources to plan a project: people in their various roles and

time. What follows are two scenarios, the first point to a

chaotic process "Big Bang" 3, the second scenario proposes

a process with a well-defined script.

Apparently, it could be argued that a process can do

without, but in essence when performing an activity, it is

already a process. In the extreme case of lack of activity is a

empty process by encouraging the principle of non-absence of

the process 4, this extreme case is the least typical, rather it

is usually not clearly identified activities, which it does not

mean the absense of it, this case can be called a chaotic

process, it is curious that garage projects 2 come to fruition

when they are not supposed to use a software development

process formally. In this scenario there is a high introspection,

inner drive is used to solve a problem 5, of course the

exception does not make the rule, these approaches are no

longer quixotic efforts of battles against windmills like giant

processes seen but are not present.

Process Management Software as a Script, and the Script

as a Pattern

Víctor Hugo Medina García, Sandro Bolaños Castro, and Rubén González Crespo

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

147

The second scenario proposes to follow predefined

activities and configured in a wide range of processes and

methodologies fairly widespread. Regardless of the proposal

received, the common factor is that they are endowed with

activities, tasks, phases, practices, etc.., Illuminating the path

to be followed to reach that much desired success. The

processes have been identified as classically conventional

rigorous large volumes of documents, formats, standards are

proposed pachyderms, which have emerged of complex and

have enacted the holy grail of the processes. However, hard

loads are placed on the projects and end up being the sword of

Damocles for the same project.

It is clear that in these circumstances, rather than the script

being beneficial it causes trauma. On the other side of the

scale such as wind-driven steeds agile methodologies are

based heavily on pragmatic practices that lead to obtaining

viable and visible results in relatively short times, the script in

this scenario is the speed set point and breaks rigorous

documentation schemes, use of sophisticated tools, contracts

and fixed plans, to make way for fast delivery, value people,

affective communication and acceptance and change

management, these approaches generally proposed for small

and medium projects.

The intellectual model that you have is that conventional

methodologies address to both large projects such as light

address small projects and medium projects that it is like

comparing a marathon runner vs a hundred meter dash runner.

It is clear that they are hardly converging. If you have a script

you have a play if it does there will be only one intention, one

can t́ ignore these processes or scripts can do without.

III. RESEARCH RESULTS

TABLE 1: COMPARATIVE PROJECT

Artifacts Project A Project B

Requirements

- Text Descripción

- Uses of Cases

- Documentation of

Philosophy

- Glossary

Architecture

Design

- View information

structure

- Roadmap View

- Classes

- Sequence

- Activities

- Systems

- States

- Components

Implementation

- V1.0 Editor

- V2.0 Debugger

- V3.0 Tester

- V4.0 Semantic

Editor

- V5.0 Colossus

Textual

- V1.0 Class Diagram

Below is the development of two software projects, the

script used to differentiate, the projects were adjusted to the

following conditions:

 The development time was one year.

 The development platform was Java in eclipse

environment.

 To ensure conceptual integrity 2 the number of

participants is the same n = 1.

 The projects vary in nature to avoid the effects of the

second system 2.

 None of the projects had an antecedent.

The artifacts produced by the project are listed in Table 1.

For the project A to the end of a year of development was

achieved by an executable with the following characteristics:

 Delays occur in the administration of complex files.

 There is a real-time recognition of inconsistencies in

the files.

 The inclusions are not automatic.

 Only available to java.

This project carried out the following phases: requirements

and implementation see Fig. 1. In the requirements phase,

carried out in three months, was established in textual, the

most used features robust editors like Eclipse and Netbean

established only a few. In the implementation phase,

conducted nine months later, we obtained five versions that

evolved from the publisher through the debugger, tester,

semantic editor to finish in the latest version of integration

Fig. 1. Statistics projects A and B. Source: Authors

For Project B at the end of a year of development was

achieved by a beta version with the following characteristics:

 They got only the class diagram in accordance with

standard UML 2.X

 It is friendly in its use because of its simplicity and

consistency.

 It performs the code generation.

 Response times are good as well as printing and image

export format.

 No interoperability with other editors.

For this project there were four phases: requirements,

designs, architecture and implementation see Fig 1. In the

requirements phase, conducted in the first three months, were

obtained 3 artifacts, use cases, a document of environmental

philosophy and a glossary of the terms. In the design phase,

then completed in the next three months, were obtained

diagrams: class, sequence, activities, systems, and

components states. In the architecture phase, held later in the

next three months, we obtained the views 6: Structure of

information and route map. In the implementation phase later

on in the last three months of the project, we obtained a beta

version of class diagram.

According to the two projects, there are the following

considerations: to recover project A , it has created

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

148

complications in the latest version and has been sought only to

stabilize it.

Project B has continued and after another 7 months of work

are total UMLV.2.0 diagrams 7, 8, there is an established

architecture and modifications have been done without injury

thanks to the existence of this architecture. As a result of

software structure was obtained by developing a graphic

framework that underlies part of the UML framework and

new projects that need graphs.

Among some thoughts on the two projects are:

1) Project B used a script while in A was chaotic and

focused on implementation.

2) Project B identified valuable artifacts to continue it,

while Project A produced only executable versions

difficult to continue to have no supporting documents.

The two projects despite having similar conditions differed

in the development process. For the specific case of project B,

metaprocess 9, 4 were used of software development in its

capacity as management. This development process in these

conditions set the selection as a key element within a wide

range of processes, the most suitable process model according

to the project and its environment. If you do not have a fit,

proposes putting together its next phase of the process

architecture is needed. For Project B, the process adjusted

was RUP 10. For project A, the process was chaotic.

Ultimately, the script gives that gives us a process is

fundamental for the development and evolution of software.

IV. THE SCRIPT AS A PATTERN

Fig. 2. Process Patterns. Colossus Software www.colosoft.com.co. Source:

Bolaños

The script as the chart of the process is a mechanism that is

reused again and again, to the recurring problem of having to

have a guide for conducting a software development project.

In this order of ideas, the script is a pattern, this concept has

been popularized in the software with the work of Gamma

11 in the Gang of Four, the work of Shaw and Garlan 12,

in the case of a pattern, it suggests different ways of

organizing the activities which will manage the project. How

to structure and compile recommendations on the process

defines different patterns. There are two main aspects of the

proposed process patterns in conventional processes and agile

methodologies proposed. Among the most important are

conventional processes 13: cascade model, spiral model,

model coding, repair, big-bang model, prototype model

among others. In agile methodologies are: XP, Scrum, FDD,

ASD, EVO and others, some governmental efforts such as V3

Metrics are added to the spectrum of process patterns. All

these patterns can be used as scripts using the towering tool

which provides a component for that purpose. The objective

component of the process patterns as shown in the graph Fig.

2, is to provide a tool to organize and customize the script -

the script component coined the term as equivalent to script.

The pattern features are defined through the script

component which establishes the source of creation and the

activities offered by the employer. The source of creation can

be mainly: academic "edu" commercial "com" government

"gov" and organizational "org". Patterns can also be

organized methodologies see Fig. 3, they can even be mixed.

Fig. 3. Patterns of Methodology. Colossus Software www.colosoft.com.co.

Source: Bolaños

As these activities are arranged through packages that serve

as the repository of artifacts that are produced in each activity,

although the equivalence between activity and package is not

the best form of traceability as an activity represents an action

as package represents an entity expressed preferably through

a name, this equivalence may be an acceptable approximation

and especially valuable for purposes of organization and

control of a project. The component automatically generates

the script that you want to follow, this organization is a

hierarchy of activities and packages see Fig. 4.

Fig. 4. Representation of patterns through packages. Colossus Software

www.colosoft.com.co.

This representation can also be associated as a pattern from

a processing graph, expressed through the process modeling

language SMPL for its acronym in English "software process

modeling language" proposed by the author Sandro Bolaños.

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

149

The SPML language proposes a set of basic building blocks to

express a software process and connects directly with the

component scripts, enabling more complex concepts

introduced Fig.5.

Fig. 5. Generation of patterns from SPML. Colossus Software

www.colosoft.com.co. Source: Bolaños.

V. CONCLUSIONS

Software processes rely on scripts that become patterns for

its repeated use, however the fundamental difference from

one project to another rests on the roles that embody the script

and of course on who runs it.

The specialty of the script can produce a greater chance at

achieving the ultimate goal, it is much more productive to

follow a script well established than a chaotic script.

Scripts can be treated as containers, through proposed

traceability 14, from the activities to the packages; finally

they organize the artifacts that are produced in the

development process.

It is possible to have a better control of a software process,

if this is managed through concepts like the script. In this

order of ideas it can be seen as a script, the script, a series of

activities to be performed by roles and finally some of the

activities available as a pattern.

REFERENCES

[1] J. O Ćonnor, and I. McDermott ,

Essencial Resources for Creativity and Resolution of Problems,”

Urano Editions. 1998.

[2] F. Brooks, Jr, The Mythical Man-Month, Essays on Software

Engineering, Addison-Wesley, 1995.

[3] R. Patton, Software Testing, Second Edition, Sams Publishing, 2006.

[4] S. Bolaños, V. Medina, and J. Soto, “Metaprocess of Software

Development. V International Symposium on Information Systems and

Software Engineering in the knowledge Society,” District University

Francisco Jose de Caldas. Bogotá Colombia. 30 of september of 2010a.

www.udistrital.edu.co

[5] K. Popper, “Realism and the object of Science,” l Tecnos Edt.. Pag. 45,

1998.

[6] Open Group, “Technical Standar, ArchiMate 1.0 Specification,”

Published by Open Group, february 2009. http://www.opengroup.org/

[7] G. Booch, J. Rumbaugh, and J. Ivar, The Unified Modeling Langauge

Reference Manual, Second edition, Addison-Wesley, May 2005.

[8] G. Booch, J. Rumbaugh, and J. Ivar, The Unified Modeling Langauge

User Guide, Second edition, Addison-Wesley, February 2006.

[9] S. Bolaños and V. Medina, “Software Development Process based on

Kanowledge Management,” Knowledge Management in Organization

International Conference. University of Pannonia. Veszprem Hungri.

18 y 19 de mayo de 2010b.

[10] G. Booch, J. Rumbaugh, and J. Ivar, Unfied Process of Software

Development, Addison-Wesley, February 2000.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns

Elements of Reusable Object-Oriented Software, Addison-Wesley,

1994.

[12] M. Shaw and D. Garlan, Software Achitecture, Perspectives on an

Emerging Discipline, Prentive Hall, 1996

[13] R. Pressman, Ingenieria de Software, Un Enfoque Práctico, Mc Graw

Hill. Sexta Edicion, 2008.

[14] S. Bolaños, V. Medina, and L. Joyanes, “Formalization principles for

software engineering,” Engineering Magazine. District University

Francisco Jose de Caldas, vol 14, no. 1, pp. 31-37, 2009.

International Journal of Computer and Communication Engineering, Vol. 1, No. 2, July 2012

150

“Introduction to Sistemyc Thinking,

