

Abstract—With the rapid development of information and

Industrial Technology, as the common data accessing interface

for data provider, OPC technology is more and more widely

deployed in the acquiring and sharing of production data. Yet,

traditional OPC technology usually runs in the closed

environment, always ignoring security defense, will cause

serious consequence under malicious attack. For the

complexity structure of OPC, with the feature of underlying

layers like DCOM and RPC, which provide basic network

service for upper layer, act as the critical causes for the faults

of OPC protocol, unfortunately cannot be tested for

vulnerability directly with traditional Fuzzer. In this paper, a

vulnerability detecting tool for OPC protocol based on Fuzzing

technology named OPC-MFuzzer is proposed and

implemented; three different test case generating mechanisms

for the testing of OPC, DCOM and RPC are developed

separately. Finally three commercial OPC servers are selected

for the experiment of vulnerability testing. The result shows

that some vulnerability can be tested with the tool proposed,

which prove the effective of such tool.

Index Terms—Vulnerability detecting, security testing,

fuzzing technology, OPC protocol.

I. INTRODUCTION

OLE for Process Control [1] (OPC) is a popular

communication protocol for sharing industrial production

data among numerous data sources in process control

system. With OPC, industrial devices from different

manufactures can exchange data without difficulty. For the

great convenience, OPC technology is widely used in

industrial field including Electric power, chemical industry,

water treatment, building intelligence and defense. However,

with the deep integration of information technology and

industrialization, more and more traditional isolated

industrial control system is interconnected with Ethernet or

directly connected to internet, which greatly improve the

efficiency of industrial producing process, yet inevitably

introduced some network security threats like virus and

Trojan [2] at the same time. Although Classical Industrial

network protocols like OPC becomes more and more

popular in industrial control networks, security is not

Manuscript received January 5, 2014; revised April 3, 2014. The

research is supported in part by the National Science and Technology

Major Project of China under Grant No. 2012ZX03002002, National

Natural Science Foundation of China under Grant No. 90818021 and the
Research Project of China Information Technology Security Evaluation

Center under Grant No. CNITSEC-ZY-2013-016.
The authors are with the China Information Technology Security

Evaluation Center, Beijing 100085, China (e-mail: xiongq@itsec.gov.cn,

pengy@itsec.gov.cn, daizh@itsec.gov.cn, yisw@itsec.gov.cn,
wangt@itsec.gov.cn).

considered properly, which makes it vulnerable to cyber

attack.

Compared with traditional data transmission oriented IT

protocols, industrial network protocol is more powerful in

the remote control [3] of physical devices, yet more feasible

under malicious threat, if attacked, will behave abnormal

and is most likely causing serious consequence like

casualties, environmental pollution even endangering the

society and countries.

With the importance of OPC, the existence of security

vulnerability will lead to serious consequences. Therefore, it

is extremely urgent to develop vulnerability detecting

method for OPC specifically. Fuzzing is a technology that

attempts to discover security vulnerabilities by sending

random input to an application/device. As such, it is widely

used to test for security bugs in input validation as well as in

the application logic. Due to the specific features of OPC

protocol including structure complexity and variable

communicating port, traditional Fuzzing technology cannot

be directly applied, and some necessary improvement is

seriously needed. To solve this problem, this paper

presented a novel vulnerability detecting tool for OPC

protocol based on Fuzzing technology named OPC-MFuzzer,

and a multi-layer test case generating mechanism is

developed, which can generate different test case according

to the structure of different protocol layers to improve the

efficiency of vulnerability detecting.

The rest of this paper is organized as follows. In Section

two, the related works on the vulnerability analysis for OPC

protocol is discussed. Structure analysis for the OPC

protocol is introduced in Section three. The multi-layer

vulnerability detecting tool based on Fuzzing technology is

presented in Section four. In Section five, the structure and

the workflow of the tool proposed in part four is described

in detail and some experimental results like the

vulnerabilities detected with the tool are given to show the

validity of the work mentioned. Finally, the paper is

concluded in Section six where some future works are also

discussed.

II. RELATED WORKS

The research area on the vulnerability analysis of OPC

protocol attracted researcher’s attention since the

appearance of Stuxnet virus within Iran in the last few years.

Lots of researchers from both academic and industrial

circles have made some achievements in this field. Some of

them with representatives can be classified into following

two categories.

OPC-MFuzzer: A Novel Multi-Layers Vulnerability

Detection Tool for OPC Protocol Based on Fuzzing

Technology

Xiong Qi, Peng Yong, Zhonghua Dai, Shengwei Yi, and Ting Wang

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

300DOI: 10.7763/IJCCE.2014.V3.339

In the field of vulnerability testing of OPC server, Maria

B. Line performed penetration testing on OPC [4], which is

a central component in process control systems on oil

installations, shown how a malicious user with different

privileges can fairly easily compromise the integrity,

availability and confidentiality of the system. In additional,

a commercial Fuzzing test suite Achilles [5] is presented by

Wuldtech Corporation, which integrated the function of

OPC monitor as a novel anomaly detecting mechanism

along with the monitoring mechanism based on ICMP and

TCP abnormal flags, and providing the Fuzzing test function

for OPC specifically through the updating of plug-in.

On the security defending of OPC, Tofino Corporation

presented Tofino OPC Enforcer LSM [6], which inspects,

tracks and secures every connection that is created by an

OPC application and dynamically opens only the TCP ports

that are required for each connection, permitting only

between the specific OPC client and server that created the

connection. In addition, Huang Renjie discussed the OPC

UA security issues from the two views [7] of network

environment security and communication security in OPC

UA applications. The network security deployment solution

based on distributed firewall was proposed to ensure the

host of OPC UA server and client against the different

attacks. Sequentially the improved OPC UA security model

based on the existing model was presented.

These achievements described partially solve the problem

of OPC vulnerability analysis. Yet most of the works

proposed mainly focus on analyzing the vulnerability from

aspect of taking advantage of legal function to launch attack

like ARP spoofing, Man-in-the-Middle and Packet

Replaying, vulnerability detecting and exploiting is

neglected, or only considered the security testing of OPC

protocol itself without correlating it with underlying

protocols like DCOM and RPC, which limited the further

application of these achievements. The works on the

security defending only cover the attack exploiting known

vulnerabilities; the 0-day vulnerability related attack cannot

be defended well. In a word, the defects mentioned above

hindered the further application of these works and a

vulnerability detecting mechanism which can satisfy the

multi-layer testing requirements of OPC is seriously needed.

III. ANALYSIS OF OPC PROTOCOL

A. Summary of OPC Deployment

Standard OPC architecture can be deployed like Fig. 1 in

Client/Server mode [8]. The OPC server acquires data from

PLCs periodically through Ethernet interface over industrial

network protocols like MODBUS TCP, DNP3, etc and

provides data access to OPC client with OPC/DCOM.

OPC ServerOPC Client

PLC
（Sensor）

SCADA

HMI

Modbus, DNP3
CAN……

OPC DA

OPC A&E

OPC HDA

PLC
（Actutor）

……
OPC DA (Data Access)

OPC HDA (Historical Data Access)

OPC A&E (Alarms and Events)

Fig. 1. Classical OPC architecture.

OPC can work in three modes, including OPC Data

Access (OPC DA), OPC History Data Access (OPC HDA)

and OPC Alarm and Event (OPC A&E). The OPC Data

Access is mainly used to transfer real-time data acquired

from PLC devices to control interface such as HMI. The

OPC HDA mainly focused on history data access. The OPC

A&E defines an interface for alarm monitoring and

acknowledgment. Unlike DA, A&E does not provide a

continuous stream of data between client and server, but

instead supplies a value only when a specific event occurs.

B. Hieratical Structure of OPC Diagram

The structure of OPC Packet Diagram from top to bottom

can be divided into six layers, like Fig. 2, including OPC,

DCOM, RPC, Transport, Internet and Network, the upper

layer works using the service provided by the lower layer.

The former three layers can be considered to work together

as the payload of TCP diagram, and OPC packet diagram is

encapsulated in RPC packet for transfer.

OPC service works in “challenge-response” mode,

waiting for TCP connection request on port 135 and UDP

connection request on port 137. The process of OPC

connection establishing can be divided into two steps.

Firstly, OPC client query the TCP port number randomly

generated by OPC server that can be used for data

communication in the following steps, then the OPC client

make connection with the port number obtained at the first

step. Once the connection is established, the OPC client can

get data transferring service from OPC Server.

Transport

Internet

Network

RPC

DCOM

OPC

Ethernet Data

IP Data

TCP/UDP Data

RPC/DCOM/OPC Data

Ethernet
Header

IP
 Header

TCP/UDP
Header

RPC
Header

Fig. 2. Hieratical structure of OPC diagram.

C. Data Structure of OPC

The data access object of OPC can be divided into three

layers, like Fig. 3, including Server, Group and Item, which

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

301

are organized like tree from top to bottom. OPC server

maintains the information of server and acts as the container

of the OPC group object. OPC group maintains the

information related to itself and accommodates item objects,

managing items. OPC items lay on the leaf of the tree, is a

logical component, representing the single data including

the I/O point of PLC or the instant value of the meter, like

temperature, pressure, etc.

Standard OPC server provides seven server object calling

interfaces, while standard OPC group provides eight group

object calling interfaces. With these calling interfaces, OPC

data accessing process can be divided into four steps. Firstly,

OPC client creates an instance of server object, then use

IOPCServer Interface to add a group into server, and

IOPCItemMgt interface is used to add an item to the group,

finally, use IOPCSyncIO interface to read an item.

OPC Server

OPC Group 1

OPC Group 2

……

OPC Group X

Item11

Item1n

Item12

……

Item21

Item2n

Item22

……

IOPCServer

IOPCCommon

IOPCItemProperty

……

[IPersistFile]

IOPCGroupStateMgt

IDataObject

……

OPC Client
Call server

object

OPCServer

Create Group
Object and Return

the Pointer

8 Group Object

Calling Interface

7 Server Object

Calling Interface

Itemx1

Itemxn

Itemx2

……

PLC Device
Fig. 3. Data structure of OPC and related object calling interface.

IV. VULNERABILITY DETECTING FOR OPC PROTOCOL WITH

FUZZING TECHNOLOGY

A. The Formation Nature of the Vulnerability in OPC

The vulnerabilities in OPC can be classified into two

categories according to the formation nature. One class is

caused by calling the API in the unsecure manner. This kind

of vulnerability is caused by the defects on the design,

assigning high privilege to some of the interface function

without necessary security defense. If exploited, the

vulnerability of this kind will bring high privilege like

remote code executing to the attacker. The other is for the

defects of input validating mechanism, which cause the error

input of invalid parameters, change the workflow of the

system process and result in the malicious code injection.

B. Summary of Fuzzing-Test

Construct semi-valid data

Send to the target under
test

Target crash?

Save the context for the
further Analysis

Y

N

Fig. 4. General testing process of fuzzing.

Fuzz-Testing [9] is a kind of security testing technology

in which the bad inputs are carefully constructed in attempt

to make the target crash. As such, it is widely used to test for

security vulnerabilities in the input validation mechanism or

the application logic of network protocol, ActiveX or

software. Compared with other vulnerability detecting

technology, Fuzzing technology directly tests executable

programs instead of source code, has become one of the

most effective technologies in the field of security

vulnerability detecting for its high degree of automation and

wide adaptability. The general testing process can be

described like Fig. 4.

There are two key points on employing Fuzzing-test to

detect vulnerabilities in OPC protocol. First, the multi-layer

feature of OPC should be considered, for OPC is based on

DCOM and RPC from the aspect of hierarchy, and the

vulnerabilities of OPC may be truly caused by the protocols

below the OPC. To satisfy this requirement, the expected

test case should be provided accordingly, which need to

consider the interface of OPC and the lower protocols, and

three different test case generating mechanisms should be

developed separately. Secondly, the generating of semi-

validate test case is critical, which seems valid from cursory

look according to the principle of input, yet partially invalid

in the detail. The test case should appear valid for the

program with vulnerability may employ input validating

mechanism with defects. The test data with obvious error

cannot pass the validating process and will not be able to

execute the kernel code. However, some key parts of the test

case should be invalid in order to trigger the deep level

vulnerabilities. The ability of balancing the generating of

valid and invalid test case is a critical metric for assessing

the performance of Fuzzing-test tool.

C. Design and Implementation of OPC-MFuzzer

1) High level design of OPC-MFuzzer

The design of OPC-MFuzzer is based on Fuzzing

technology, can be used to detect vulnerabilities in the OPC

server. The structure of OPC-Mfuzzer is made up of four

components including OPC structure analyzing module,

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

302

Test case generating module, Testing module and anomaly

detecting module, which is described like Fig. 5.

OPC structure analyzing module is responsible for

acquiring the basic information from OPC, DCOM and RPC,

including the list of interfaces and the functions contained in

the interface. Test case generating module is used to

generate semi-valid test case for three protocol layers

separately according to the principles. Testing module is

responsible for sending test case and supervising for the

anomaly information of process and network connection

captured by anomaly monitoring module. If anomaly is

detected during the testing process, the related context

information will be recorded and the following test case will

be executed according to the sequence.

Test Case Generating
Module

Construct Test Case for
OPC

Construct Test Case for
DCOM

Construct Test Case for
RPC

Testing Module

Target Crash?

OPC Structure Analyzing
Module

Record
interface/methods/prop
erty and the Test Case

Y

Invoke the selected
Function with Test Case
and Detecting Anomaly

Enumerate
Interfaces/methods/prop

erties in the Target

N

Anomaly Detecting Module

Monitor Local
OPC process status

for Anomaly

Monitor OPC
Network Connection
status for Anomaly

Testing Rsults

Choose Testing
Target Operator

Monitor Log
Records for
Anomaly

Fig. 5. Structure of OPC-Mfuzzer.

2) OPC structure analyzing module

OPC use IDL (Interface Description Language) to

describe the interface provided. The type library compiled

from interfaces definitions will be published together with

OPC server, which contains the complete description of the

interfaces. At the beginning, OPC structure analyzing

module usually call the EnumClassesOfCategories and

GetClassDetails function of IOPCServerList interface to

enumerate the OPC services on the target.

In addition, OPC structure analyzing module also

executes actions including diagram border identification,

dangerous values analysis and the checksums. Border

identification is to use the model placed inside to identify a

given packet, is responsible for acquiring the basic

information from OPC, DCOM and RPC, including

interface list, function list contained in the interface, the type

of the parameters for the interface function. This

information is stored in the form of XML, which will be

called by the other modules.

3) Test case generating module

Test Case Generating is the step of great importance in

the Fuzzing test process, which determines the success rate

of vulnerability detecting. OPC-MFuzzer mainly focuses on

detecting vulnerabilities in OPC, DCOM and RPC. So the

test case generating strategy should be developed according

to the formation nature of these vulnerabilities.

Construct test case for OPC. To generate test case for

OPC, the OPC .net library provided by OPC foundation is

employed with c# API to generate legal request, currently

supporting OPC DA, OPC HDA and OPC A&E, which will

be mutated with the mutating module from Peach [13] to

produce test case and allocate a Mutator for each interface

type. Although the OPC .net library will filter some illegal

test data according to the inherent rule, which limited the

quality of test case, this method is still popular in OPC

testing for its ease of use and the snapshot of the testing

process can be described like Fig. 6.

Fig. 6. Testing process for OPC.

Construct test case for DCOM. For testing DCOM, we

use C++ API to access the official interfaces provided by

Microsoft DCOM library. After the legal DCOM requests is

produced, then the mutate mechanism is employed for the

test case generating, and each parameter is allocated a

Mutator separately. Although some semi-valid test case will

be considered illegal and filtered by the lower DCOM

library, this method is still widely used in the testing of

DCOM and part of the test cases generated for DCOM can

be described like Fig. 7.

Fig. 7. Test cases generated for DCOM.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

303

Construct test case for RPC. This method is different with

the former two, which rebuilds the total function of DCOM

with python, and construct RPC request without employing

any third part library. This method holds the best

performance, yet relatively complex in engineering and the

quality of the test case will not be limited for libraries. The

snapshot of the test process can be described like Fig. 8.

Fig. 8. Testing process for RPC.

4) Testing module

Testing Module is the center of OPC-MFuzzer, which

forward the test case generated from test case generating

module to target and schedule the exception monitoring and

log recording task. Testing module is composed of four sub

functions, including sends and receives data, processing

request and identifying local network interfaces.

5) Anomaly detecting module

Anomaly Detecting Module is responsible for monitoring

the exception caused by specific test case. There are three

different ways for exception catching, including heartbeat,

process state monitoring and log recording. Heartbeat takes

advantage of the send and reply mode to judge whether the

target process is living. Process state monitoring captures

the exception with windows system driver and memory

usage monitor. Log recording mechanism gets meta-data

from network traffic and process monitor and record the

exception to the log, which can be used for further research

on the reason of the vulnerability.

V. EXPERIMENT TESTING FOR THE TOOL

A. Achievements on the vulnerability detecting with OPC-

MFuzzer

The ability of detecting vulnerabilities is the most critical

metric for measuring the validity of Fuzzing-test tool. After

applying the tool for vulnerability detecting on OPC server,

we successfully verified the existence of some published

vulnerabilities and detected some 0-day ones, which prove

the correctness of the fuzzing strategy employed and

embody the application value of the tool developed. Some

of the most representative vulnerabilities verified with OPC-

MFuzzer can be listed as follows.

1) OPC Server Takebishi Electric DeviceXPlorer Remote

Code Executing Vulnerability (CVE-2007-1319). This

vulnerability is caused by the defects of server handles

validating mechanism, which allows an attacker with

access to the Takebishi Electric DeviceXPlorer OPC

Server be able to arbitrarily access server process

memory, potentially allowing that attacker to execute

arbitrary code or cause a denial-of-service.

2) OPC Systems.NET RPC Packet Remote Denial of

Service Vulnerability (CVE-2011-4871). This

vulnerability allows an attacker to exploit this issue to

crash the affected application via a malformed .NET

RPC packet on TCP port 58723, denying service to

legitimate users.

3) Matrikon-OPC DNP3 OPC Server Denial of Service

Vulnerability (CVE-2013-2791). This vulnerability is

caused due to an unspecified error within the DNP3

Master station when handling certain communication

packets, which can be exploited to crash the application

by sending a specially crafted DNP3 packet.

In addition, some 0-day vulnerabilities are detected in the

OPC server of some Mainstream brand Control Devices like

Rockwell, Schneider etc, which have been submitted to

CNNVD vulnerability database and related venders have

been notified for patch developing. However, for the

security consideration, the detail information can not be

given here.

B. Comparison with Other OPC Security Tool

The OpcSecurityAnalyzer [9] application is a OPC tester

proposed by Advosol corporation, which is designed to help

with security permission settings related to OPC server

access in order to find why the access to an OPC DA server

is denied and check if the the server access is denied for all

but the valid users. Yet the function of OpcSecurityAnalyzer

is limited to check the correctness of access control

mechanism and make simple log audit or configuration

check. The vulnerability detecting mechanism is not

included in this tool. In addition, the Achilles [8] fuzzing

test device provides similar performance with OPC-Mfuzzer

on testing OPC classic, yet the other OPC like A&E etc and

the lower protocols like DCOM etc cannot be supported.

We use OPC-Mfuzzer to test Matrikon.OPC.Modbus [9],

the OPC server and the OPC-Mfuzzer are deplyed on DELL

R710 Server with Xen5450 3.0GHzx4, 16GB DDR3

memory, 320GB SATA2.0 HDD, and 100Mb LAN is

employed for network connection. The topology of

experiment can be described like Fig. 9.

PLC

OPC Server(Target)

MODBUS

OPC-MFuzzer

OPC/DCOM/RPC

Input/Output Anomaly Detecting

Fig. 9. Topology of experiment.

To record the anomaly detected, the log item is described

as a ten Tuples, like (CaseId, time, SubType, uid, Response

Time, Description, Exception_info, Hresult, Result, Data) to

record the id of test case, test time etc. During the

experiment process, 57694 test cases and 57694 log items

are produced. 40 interfaces and 178 interface functions are

tested by the OPC fuzzer, partially described as follows and

there different OPC including DA, HAD, AE and the lower

protocols like RPC are supported totally. The result of the

experiment proves that the OPC-Mfuzzer tool mentioned

can satisfy the requirement of the OPC server testing.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

304

VI. CONCLUSION AND FUTURE WORKS

With the rapid development of industrial automation, the

industrial network protocols employed in the SCADA for

production data and control instruction transmission are

facing more and more security threats. As one of the most

critical protocols for data sharing, OPC is based on DCOM,

which uses the service provided by RPC. In order to map

vulnerabilities related to OPC, we have to consider

vulnerabilities related to DCOM and RPC for the structure

complexity of OPC. However, traditional Fuzzing

technology cannot be directly applied, some improvement is

seriously needed to satisfy the requirement of vulnerability

detecting for OPC, DCOM and RPC together.

In this paper, a vulnerability detecting tool for OPC

protocol based on Fuzzing technology named OPC-MFuzzer

is proposed and implemented; three different test case

generating mechanisms for the testing of OPC, DCOM and

RPC are developed separately. Finally three commercial

OPC servers are selected for the experiment of vulnerability

testing. The result shows that some vulnerability can be

tested with the tool proposed, which prove the effective of

such tool.

In the future, we plan to combine the Fuzzing test and

OPC program analysis together, take advantage of the

information output from OPC binary program analyzing

process to improve the efficiency of black-box testing,

acting as so called gray-box testing.

REFERENCES

[1] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:
Automatically generating inputs of death,” ACM Transactions on

Information and System Security, vol. 12, no. 2, pp. 1-38, Dec. 2008.
[2] R. Langner, “Stuxnet: Dissecting a cyber-warfare weapon,” IEEE

Security and Privacy, vol. 9, no. 3, pp. 49-51, May/June 2011.

[3] V. M. Igure and R. D. Williams, “Security and SCADA protocols,”
presented at International Conference of Nuclear Infrastructure

Security: American Nuclear Society. Albuquerque, NM, United States,
May 2006.

[4] F. Sandnes et al., “Penetration testing of OPC as part of process

control systems,” presented at International Conference of Ubiquitous
Intelligence and Computing, Springer Berlin Heidelberg, Sweden,

April 2008.

[5] R. Huang, F. Liu, and D. Pan, “Research on OPC UA security,”

presented at The 5th International Conference on Industrial

Electronics and Applications (ICIEA), IEEE, United States, March

2010.

[6] V. V. Tan, D. S. Yoo, and M. J. Yi, “Security in automation and
control systems based on OPC techniques,” presented at Strategic

International Forum on Technology. IFOST, Korea, February 2007.

[7] G. Devarajan, “Unraveling SCADA protocols: Using sulley fuzzer,”
presented at the Defcon 15 Hacking Conference, United States, July

2007.
[8] A. Gervais, “Security analysis of industrial control systems,” Ms.

Thesis, KTH Stockholm and Aalto University, Sweden, 2012.

[9] X. Lu et al., “An OPC technology based scada system design for wind
power plants,” Dianli Xitong Zidonghua/Automation of Electric

Power Systems, vol. 32, no. 23, pp. 90-94, 2008.

Qi Xiong was born in Hubei Province, China, 1983. He received bachelor,

master and Ph.D. degree from Computer School of Wuhan University at

2004, 2006 and 2010 separately. He is now an associate researcher at

Technology Security Evaluation Lab of China Information Technology
Evaluation Center (CNITSEC) since 2010. His research interests include

the security of critical infrastructure, vulnerability detecting and fuzzing

test.

Yong Peng was born in Shanghai, China, 1974. He received Ph.D degree

from Beijing University of Posts and Telecommunication in 2013. He is

now an associate researcher and acting as the director of Technology
Security Evaluation Lab at China Information Technology Evaluation

Center (CNITSEC). His research interests include information security,
vulnerability detecting and fuzzing test.

Zhonghua Dai was born in Jiangsu Province, China, 1978. He received

Ph.D degree from Wuhan University in 2013. He is now an assistant
researcher and acting as the chief engineer of Technology Security

Evaluation Lab at China Information Technology Evaluation Center

(CNITSEC). His research interests include information security, security
risk assessment, critical infrastructure protecting and security analysis of

embedded system.

Shengwei Yi was born in Henan Province, China, 1977. He received Ph.D

degree from Computer School of Beihang University at 2012. He is now an
assistant researcher at the Technology Security Evaluation Library of China

Information Technology Evaluation Center (CNITSEC) since 2012. His
research interests include security of industry control system, data mining.

Ting Wang was born in Hubei Province, China, 1986. She received MS

degree from Computer School at Hua-zhong University of Science and
Technology (HUST) in 2012. She is now an assistant engineer in China

Information Technology Evaluation Center (CNITSEC) since 2013. Her
research interests include information security, vulnerability detecting and

fuzzing test.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

305

