
  

 

Abstract—An error image of Lossy Wavelet Transform 

differentiates a typical cover image from its wavelet 

transformed cover image which is resulted from applying a 

desired image compression factor (ICF) to the respective cover 

image. The proposed method uses such error images for finding 

where and to what extent a target pixel in a cover image must 

hold secret bits. The method is also able to embed maximal 

embedding rates on gray-scale cover images, up to four bits per 

pixel (bpp), preserving a human vision-imperceptible PSNR 

value and less detectability. The detectability level is shown by 

Ensemble classifiers using second order SPAM as their input 

features. Additionally, the method embeds minimal rates, up to 

one bpp, while being roughly as undetectable as state-of-the-art 

schemes such as HUGO (highly undetectable stego) and EA 

(edge adaptive).  

 

Index Terms—Error image, JPEG image compression rates, 

ensemble classifier, information hiding, steganography.  

 

I. INTRODUCTION 

Steganography conceals the very existence of secret 

information in terms of bits. It usually embeds secret data into 

some type of digital cover media, such as image, video, audio, 

or the like. The manipulated image or video looks innocent, 

and the message cannot be detected with the human eye. On 

the other hand, exposing the existence of any hidden 

information in a cover image is what steganalysis does. Such 

steganalytic algorithms are able to estimate the probable 

existence of secret bits in different ways. If steganalysis 

detects hidden information with a minimum probability of 

error, the steganographic scheme is broken.  

There are two factors that have to be considered in 

designing a modern steganographic scheme, namely 

embedding rate and undetectability, with a trade-off between 

them. The higher the embedding rate, the greater is the 

detectability. Some approaches are more concerned about 

embedding capacity, with higher imperceptibility levels 

provided by greater peak signal-to-noise ratio (PSNR) values, 

but there are many that aim to be more undetectable rather 

than having higher PSNR values. Least significant bit (LSB) 

replacement [1] embeds information in the LSB of a pixel, 

independently of its value. The LSB is directly replaced by 

the secret bit. This adds some unwanted statistical artifacts, 

by which the existence of secret bits can be exposed. Such 

artifacts are paired with values in a histogram of the stego 

image created by the LSB replacement method. This makes 

detection easier for a Chi-square attack [2]. LSB matching 
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(LSBM) [3] applies minor changes after LSB replacement, 

because it randomly increments or decrements the LSB of a 

pixel according to a pseudo random number generator 

(PRNG), if the secret bit does not match the pixel’s LSB. 

Unlike LSB replacement and LSBM, which deal with the 

pixel values independently, LSB matching revisited 

(LSBMR) [4] modifies the LSBM algorithm in such a way 

that the choice of incrementing or decrementing the pixel 

value is no longer random. It performs the operation by using 

a pair of pixels as a unit. The first pixel value changes in such 

a way that one secret bit is saved in its LSB, and the second 

secret bit equals a function of the two modified pixel values. 

Both LSBM and LSBMR are undetectable with a Chi-square 

attack because, statistically, the probability of change is the 

same as that of the increment/decrement performed, either 

randomly or by using a function. Although the asymmetry 

artifacts of LSB replacement are almost completely avoided, 

they can still be detectable using stronger steganalytic attacks. 

These LSB-based approaches do not consider the difference 

between the pixel and its neighbors. Edge adaptive (EA) 

image steganography [5] embeds secret bits based on the 

LSBMR method. It begins embedding from the edge regions 

as much as possible, while keeping other smooth areas as 

they are. The maximum embedding capacity of this approach 

is limited to one bpp while the visual quality and security of 

stego images prove to be better than LSB-based and 

edge-based methods. Another approach is using 

high-dimensional image models to perform HUGO [6]. This 

method calculates distortions corresponding to modification 

of each pixel by ±1 and sets the stego image pixel value as the 

minimum of these numbers. The best embedding order starts 

from pixels with the highest to lowest cost of embedding, 

which is ascertained by an additive distortion measure. 

Security is evaluated by training SVM (support vector 

machine)-based steganalyzers using second-order subtractive 

pixel adjacency model (SPAM) features [7]. A filter 

suppresses the stego image content and exposes the added 

noise in the stego image. Dependencies between neighboring 

pixels are modeled as a higher-order Markov chain. The 

resulting sample transition probability matrix is a vector 

feature that is a SPAM of covers. The second-order Markov 

chain results in a second SPAM including 686 features for a 

typical stego image. Finally, the undetectability level of the 

mentioned methods is benchmarked utilizing the second 

SPAM as input features to ensemble classifiers [8]. They 

prove to have better performance compared to SVM-based 

steganalyzers in terms of both time and accuracy. The 

classifier has to be trained with a database of pictures to 

detect information more accurately, so BOSS (break our 

steganographic system) version 1.01 was used to create 

sufficiently many stego images. The BOSS database consists 
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of 10,000 8-bit grayscale images of size 512 × 512 pixels.  

On the other hand, in classical steganography, multiple 

base notational system (MBNS) [9] segments the secret bits 

into several partitions of the same size (32 bits) and applies a 

modular function to alter the cover image. Thien and Lin [10] 

also proposed an LSB-based scheme to hide four bpp in a 512 

× 512 host image based on a modulus operation. Such 

classical steganographic schemes can embed up to four bpp, 

while HUGO and EA cannot. The classical methods are fully 

detectable by ensemble classifiers; however, they can be less 

detectable to a Chi-squared attack, a completely outdated 

steganalysis method. 

The current work embeds in the spatial domain owing to 

the simplicity of the algorithmic nature and ease of 

mathematical analysis. In addition, spatial-domain 

techniques can carry the largest messages (embedding rate) 

compared to transform domains [11], because transformation 

domain techniques can embed only in nonzero coefficients, 

whereas all pixels can be utilized in the spatial domain. 

Modern steganographic schemes are intended to be 

undetectable, rather than stressing the PSNR value, so the 

current scheme is also shown to be more undetectable while it 

can even embed more than one bpp. With classical 

steganography, the proposed method embeds up to the 

maximum reported embedding capacity of four bpp [10]. The 

algorithm has some similarities to the MBNS method, 

although the bases are calculated in a different way.  

This paper is organized as follows. Section II describes the 

proposed method. The experimental results are compared and 

evaluated with respect to modern and classical 

steganographic schemes in Section III. Finally, Section IV 

highlights and discusses the conclusions, based on the results. 

 

II. PROPOSED METHOD 

The proposed method pre-processes the cover image sized 

M × N pixels in order to create an error image. The required 

error image is computed by applying a suitable image 

compression factor (ICF), such as the one suggested in Joint 

Photographic Experts Group (JPEG 2000) compression. 

1) Apply a wavelet transform to the cover image. The cover 

image can be transformed using a JPEG ICF, a real value 

greater than one specifying the target compression ratio, 

defined as the ratio of input image size to output 

compressed size. For example, a value of 2.0 implies that 

the output image size will be half of the input image size 

or less. A higher value implies a smaller file size and 

reduced image quality. 

2) After the wavelet transform is applied, the matrix of 

coefficients is scalar-quantized to reduce the number of 

bits representing them, at the expense of quality. The 

reduction level factor (RLF) has minimum and 

maximum values of one and eight, respectively.  

3) The compressed image resembles the original image 

with some imperceptible added noise. The amount of 

noise has a direct relation to compression level and 

embedding rate. The larger the embedding rate, the more 

noise. 

4) The noise becomes greater if a greater ICF is used. In 

this regard, for every pixel𝑖 ,𝑗  from CoverImg𝑀×𝑁  where 

i  M and j  N: 

i, j , ,
Im Im Im

i j i j
Error g Cover g Compressed g    (1) 

According to the pixel values from the error image, 

multiple bases are calculated for every corresponding pixel. 

𝐵𝑎𝑠𝑒𝑀×𝑁  represents the matrix of multiple bases: 

,( Im 1)

, 2log i jError g

i jBase OEF
  

  
              (2) 

For embedding rates up to one bpp, the optimal extension 

fields (OEF) factor is equal to zero. It does not increment 

unless the embedding rate is between two and four bpp. The 

entire procedure is illustrated in Fig. 1 and described in two 

phases as below: 
 

121 124 120 121 

− 

117 120 125 123 

= 

4 4 -5 -2 

 

2 2 2 1 

123 123 126 121 119 124 128 124 4 -1 -2 -3 2 1 1 2 

119 136 156 138 127 135 141 139 -8 1 15 -1 3 1 4 1 

126 130 130 132 129 135 138 135 -3 -3 -8 -3 2 2 3 2 

Cover Image Compressed Image using ICF     Error Image  Calculated Base Matrix 

Fig. 1. Process of calculating Base matrix for 4×4 pixels of a typical cover image (OEF = 0). 

Phase 1: The secret bits are partitioned into 

non-overlapping 32-bit blocks. The decimal value 𝐷 of every 

block is represented using a corresponding pseudorandom 

number RND. Vector 𝐷′  saves the conversion of D into the 

base of RND and includes a list of integer values. RND is 

computed using a PRNG and the desired embedding rate, 

which is measured in bpp; RND increases for higher 

embedding rates: 

32( PRNG 1) 10 2 2
8 8

EmbRate EmbRate
RND

   
         
   

    (3) 

Phase 2: The algorithm reads the corresponding Base from 

𝐵𝑎𝑠𝑒𝑀×𝑁  according to the embedding order, which is 

line-by-line from top-to-bottom of the cover image. Pixels 

with a Base value less than two are skipped and left the way 

they are. Thus, only pixels with a base greater than or equal to 

two may be embedded. Using the decimal values of every 

element of vector 𝐷′ , one can convert every decimal value 

into the multiple-base notational system [9]. Thus, vector 𝐷′′  

keeps conversion(s) of every decimal value from vector 𝐷′  

into n multiple bases. The embedding is applied in two ways: 

Case 1: For every element of vector 𝐷′′ , say 𝐷𝑙≤𝑛
′′ , greater 

than or equal to two, directly change the pixel value using the 

following reversible formulation: 

"

, "

, ,

,

Im
Im

i j l

i j i j l

i j

Cover g D
Stego g Base D

Base

 
   
  

 (4) 

𝐷𝑙
′′  can easily be extracted by dividing the stego image 

pixel value into the corresponding Base value of the same 

pixel.  
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Case 2: For every 𝐷𝑙
′′  whose value is either zero or one, 

LSBMR [4] is applied to minimize the embedding effect for 

two pixel units. Note that, in contrast to the LSB matching 

concept, there might be some pixels between two such pixels 

to which LSB matching is not applied. 

 

 
Fig. 2. Structure of the proposed embedding method. 

The structure of the proposed scheme is modeled in Fig. 2. 

Phases 1 and 2 are repeated for every pixel from the cover 

image. If some of the secret bits have not been embedded yet, 

ICF must be increased towards 10,000. If the secret bits are 

still partially embedded, the OEF must be incremented until 

the secret bits are embedded completely. The following 

algorithm extracts the secret bits from the stego-image:  
 

Get Base matrix, Payload, PRNG seed number, ICF and 

OEF 

Set NextBlock to True 

Initialize SumRndBases and SumBases to 0 

Initialize RndBases and MulBases to 1 

Repeat the following for every pixel of the stego image  

If the Corresponding Base value of the current pixel is ≥ 2 

then 

If NextBlock is true then  
Calculate RND according to the given payload size 

and PRNG 

Set NextBlock to False 

Set Bases and RndBases to 1 

Set SumBases and SumRndBases to 0 

Let M save the remainder of the division of the stego 

pixel value into its corresponding Base value 

If M is either 0 or 1 then 

Make two pixel units 

Set M1 to the LSB of the 1
st
 pixel 

Set M2 to the function of 1
st
 and 2

nd
 pixels as 

proposed in the LSBMR approach 

Let M be M1 and M2 in order 

 Increment SumBases with M × MulBases 

 Add MulBases× Base to MulBases 

If SumBases plus MulBases is greater than RND then    

 Increment SumRndBases with SumBases× 

Rn𝑑𝐵𝑎𝑠𝑒𝑠 

Add RndBases× 𝑅𝑁𝐷 to RndBases  

If SumRndBases plus RndBases is greater than the 

maximum decimal value of a block of 32 bits 

then 

 Set NextBlock to True 

Show binary form of SumRndBases as part of 

the secret bits extracted 

Initialize SumRndBases to 0 

Initialize RndBases to 1 

Else 

Initialize SumBases to 0 

Initialize MulBases to 1    

Until payload is extracted completely 

TABLE I: A NUMERIC ILLUSTRATION OF EMBEDDING AND EXTRACTING. 

Initialization 
1st 32-bit block 0...00000001101001 

1st block Corresponding RND Number: 100 
Decimal Value 105 = (15)100 = 5 + 1 ×100 

Phase 1 𝐷′ = {5 ,1}          5 =(12)4,3 = 2+ 1 ×3 1 = (1)2 =1 

Phase 2 𝐷𝑙
′′ = {2, 1, 1}  2  1 1  

Pre-Processing 

Phase 

Cover Image 80 87 101 157 165  

Base numbers 0 3 1 4 2  

Embed 

If 𝐵𝑎𝑠𝑒 ≥ 2 

Stego 

Image  

if Case 1:   𝐷𝑙
′′

≥ 2 

No 

Embedding 
86 

No 

Embedding 
- -  

if Case 2:   𝐷𝑙
′′

< 2 

No 

Embedding 
- 

No 

Embedding 
157 165  

Extraction 

If Case 1:Modular function No Extracting Mod(86,3)=2 No Extracting - -  

If Case 2:LSBMR[4]  No Extracting - No Extracting LSB(157)=1 LSB( 
157

2
 +165)=1  
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The embedding procedure is illustrated in Table I. The 

decimal value of the first 32-bit block is calculated as 105 and 

converted into the base of RND 100, which is (15)100  equal 

to 5 + 1 × 100. Numbers 5 and 1 are again converted using 

those pixels with their corresponding Base greater than or 

equal to 2. Thus, 5 is represented as (12)4,3. Numbers 1 and 2 

have to be embedded in two different ways, as stated in Phase 

2. The extraction is also performed in two different ways. 

Finally, the extracted values are shown in boldface. Two 

pixels with grayscale values 80 and 101 are excluded, 

because their corresponding Base values are zero and one, 

respectively. Pixels with values of 157 and 165 have formed a 

pair of pixel units to be given to LSBMR [4] for embedding 

(one in both of them). In this case, two pixels are spared from 

being changed, yet the message bits are still extractable. 

According to the LSBMR algorithm, in the worst case, only 

one of the two pixels is incremented or decremented. 

 

III. EXPERIMENT AND RESULTS 

One of the most important aspects of any performance 

evaluation is to use a standard data set with a variety of image 

textures. The proposed scheme employs the image database 

of BOSS version 1.01, which consists of 10,000 grayscale 

images sized 512 × 512 pixels. This database is used also in 

modern steganographic schemes with embedding rates less 

than or equal to one bpp. 

TABLE II: DETECTABILITY COMPARISON BETWEEN THE PROPOSED METHOD (DPMS-E) AND HUGO AND EA APPROACHES. 

BOSS 1.01 database Average testing error over 10 splits (𝑝𝑒 ) using 2nd SPAM features 

Payload (bpp) Capacity (bits) EA [5] HUGO [6] DPMS-EW (PSNR, ICF, OEF) 

0.05 13,101 0.4717 0.5000 0.4417 ( 66.56 dB, 4.1 , 0) 

0.1 26,214 0.4309 0.4844 0.4162 (63.54 dB, 4.6, 0) 

0.2 52,428 0.3381 0.4469 0.3654 (60.49 dB, 5.6, 0) 

0.3 78,643 0.2549 0.4010 0.3137 (58.83 dB, 6.8, 0) 

0.4 104,857 0.1920 0.3600 0.2358 (57.58 dB, 8.5, 0) 

 

Modern steganography is more concerned with 

undetectability levels than imperceptibility, so the PSNR 

value is always supposed to be high. In this regard, HUGO 

and EA are modern steganography methods in which the LSB 

matching concept is applied to manipulate the LSB of the 

pixels. The undetectability level is shown using an error 

probability provided by ensemble classifiers using 

second-order SPAM features. A decreasing error probability 

indicates a greater chance of detection. HUGO has been 

proven to have the greatest error probability compared to the 

EA and LSB-matching methods [6]. As depicted in Table II, 

our proposed method, Double Phase Modular Steganography 

with the help of the Wavelet transform Error images 

(DPMS-WE), contributes more than EA in terms of lesser 

detectability (higher average testing error) and is almost as 

undetectable as HUGO. On the other hand, DPMS-WE is 

able to embed up to four bpp, whereas HUGO and EA can 

embed only up to one bpp. Furthermore, the complexity of 

DPMS-WE code is similar to that of classical schemes and 

can be implemented more easily. 

TABLE III: A COMPARISON TO THE CLASSICAL STEGANOGRAPHIC SCHEMES IN TERMS OF ACHIEVED PSNR VALUE. 

Payload (bpp) Capacity (bits) Cover Image Embedding Method PSNR (dB) 

2.82 740,000 Man 
MBNS [9] 38.10 

DPMS-EW (ICF=10000, OEF=13) 34.76 

4.0 1,048,576 Lake 
Thien and Lin [10] 34.80 

DPMS-EW (ICF=10000, OEF=13) 34.30 

 

 
Fig. 3. Left, Chi-squared attack applied to Thien and Lin [10] and, right, the attack applied to DPMS-EW. 

As shown in Table III, our proposed method was applied to 

the same images and embedded with the same number of bits 

as for classical steganography. It is shown that the proposed 

method performs better compared to other classical 

steganographic schemes also in terms of detectability level. 

The current scheme was completely undetectable by 
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Chi-squared attack. On the other hand, while Thien and Lin 

have a greater PSNR value, their method was detectable with 

a Chi - square attack which is completely outdated. When we 

embedded up to four bpp using the Thien method, the 

resulted stego-image PSNR value decreased to 34.80 dB. In 

addition, as shown in Fig. 3, we can see the fluctuated line 

implying that roughly 80% of the pixels are detected as 

changed with a probability of one, while this value equals 

zero (right diagram- a horizontal line at the zero level) for 100% 

of the pixels and an embedding rate of 4 bpp. Using our 

scheme, the PSNR level is smaller than Thien and MBNS, 

34.76 dB and 34.30 dB, showing that the PSNR value does 

not necessarily prove lower detectability. 

Finally, Fig. 4 shows the last grayscale image out of 

10,000 images provided by the BOSS version 1.01 image 

database. In a simple experiment, we attempted to prove that 

higher ICF values would result in more undetectability of the 

stego image. Theoretically, PSNR values will be smaller if 

we employ a higher ICF. Note that the proposed method 

introduces two error images. One is computed in Phase 1 of 

the algorithm. As with either of Fig. 5 or Fig. 6, another error 

image is calculated between the stego image and the original 

image to show where, and to what extent, the impact of 

embedding has occurred. In Fig. 5, the experiment of 

embedding a payload of 0.4 bpp using an ICF of 7.3 is 

conducted. As can be seen, the secret bits are scattered 

throughout the cover image (PSNR 57.51 dB), and we can 

hardly see the detailed texture of the image (Fig. 4). On the 

other hand, Fig. 6 represents the detail of the image texture 

when the secret bits are not well scattered but lumped in the 

upper area of the error image (PSNR 57.18 dB, ICF 44).  

As in Fig. 5 and Fig. 6, the imperceptibility level is shown 

by the PSNR values, and the second experiment shows a 

smaller PSNR. Therefore, it is considered more visible, such 

that the detected error probability is also less than the one 

with ICF 7.3, because ICF 44 has bigger computed Base 

values, so the secret bits can be embedded using fewer pixels, 

while the change is much bigger. ICF 7.3 has smaller Base 

values, and the secret bits are depicted using more pixels, 

while the change is well distributed among more pixels and 

also much smaller. Feature extraction methods are more 

sensitive to the busy areas, and the stego image will be 

broken as soon as it embeds more in busy regions. ICF 7.3 

tries to embed in smooth areas, whereas ICF 44 is more 

concentrated on busy areas, because smooth areas cannot 

tolerate more pixel value alteration, so edge areas have to 

hold more secret bits. Owing to this fact, the pattern of the 

10,000
th

 image matrix of calculated Bases has become clearer 

in Fig. 6 compared to the one in Fig. 5. This is revealed in the 

error image, because the texture is clearer when using ICF 44. 

 

 
Fig. 4. The last cover image from BOSS 1.01 called “10000.pgm”. 

 

   
Fig. 5. Left, the error image, and right, the base matrix (ICF 7.3, payload 0.4 

bpp, 57. 51 dB). 

 

   
Fig. 6. Left, the error image, and right, the base matrix (ICF 44, Payload 0.4 

bpp, 57. 18 dB). 

 

Table IV benchmarks the experiment using 10,000 images 

from the BOSS database. It is clear that the experiment “2” is 

less detectable due to the greater error values and a complete 

scattering of the secret bits. Greater ICF values increase the 

probability of being detected by ensemble classifiers with 

less average testing error (Pe). 

TABLE IV: DPMS-E EXPERIMENT RESULTS WITH DIFFERENT ICFS FOR THE SAME PAYLOAD. 

BOSS 1.01 database  Experiment 1 Input Parameters Experiment 2 Input Parameters 

Payload (bpp) Capacity (bits)  𝑃𝑒  PSNR (dB) ICF OEF 𝑃𝑒  PSNR (dB) ICF OEF 

0.05  13,101 0.4066 66.59 9.0 0 0.4417 66.56 4.1 0 

0.1 26,214 0.3639 63.54 10.0 0 0.4162 63.54 4.6 0 

0.2 52,428 0.3044 60.56 11.0 0 0.3654 60.49 5.6 0 

0.3 78,643 0.2479 58.79 12.0 0 0.3137 58.83 6.8 0 

0.4 104,857 0.1884 57.52 13.0 0 0.2358 57.58 8.5 0 
 

 

IV. CONCLUSION 

The proposed method showed how steganalysis would be 

affected by the JPEG2000 image compression factor and 

JPEG2000 decompression artifacts. They provide more 

confusion to steganalysis schemes. It was also proven that a 

smaller ICF number guarantees less detectability compared 

to the EA method and a detectability level close to HUGO’s, 

because the algorithm distributes the secret bits through the 

cover image more evenly and selects the right pixels to hold 
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secret bits using a calculated Base matrix as a guide.  

On the contrary, LSB matching-based methods, EA and 

HUGO embed at one bpp, whereas this scheme can embed at 

four bpp. However, the proposed scheme requires a Base 

matrix to extract the secret information successfully. Hence, 

there should be a solution to get the same Base matrix 

calculated from the stego image so that the existence of a 

cover image is not necessary. This can be investigated in 

future work. 

It is worth mentioning that the current scheme can be 

slightly modified and applied easily in parallel processing 

languages, in particular, CUDA NVIDIA programming, 

because each block can be embedded independently from the 

other blocks. Further, the number of secret bits can be 

predicted according to the error image, which is computed 

using a wavelet transformed version of the cover image. This 

can also be investigated in future work. 
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