

Abstract—In this paper we present a brief analysis on the

working and design of Google file System with its performance

analysis. A brief Comparison of Google File system with other

Distributed File Systems (DFS) namely HDFS, Global FS,

GPFS and sector is also presented. Although Google shares

many similarities with other DFSs but still it is unique in its

design which is made specifically to serve Google’s heavy

workload. GFS’s Architecture has a single master which is

responsible for performing some major duties as explained in

the Architecture session. Reliability of data is maintained

through triple replication of data. So it also provides fast

recovery and fault tolerance. Comparison and future

consideration enables the reader to understand the current

situation of GFS and its place in the future world. This paper

not only explains GFS and its comparative study but also

explains the complete background of the technology and its

future.

Index Terms—Distributed file system, HDFS, global FS.

I. INTRODUCTION

File system is a data store used in computing for storing,

retrieving as well as updating different set of files. For

defining the files there will be either used the term abstract

data structures, existent software or firmware to implement

this abstraction. The actual contents of the files as well as

the metadata both are accessed by the file system. The

responsibility of the file system is to arrange and manage a

reliable and efficient storage space that tuned with physical

medium of storage. Among various available file systems

for different purposes, distributed file system is one that is

used on network and works in client server environment.

Distributed File System (DFS) is a file system that is used

in the client server architecture where the files of any

organization are organized in multiple distributed servers

called “Server Message Blocks (SMBs)”. These servers are

used to share the files in DFS. The main features of DFS are

redundancy of data and the location transparency in order to

improve the availability of data. This is achieved by

allowing the files to share on the multiple servers located on

different places but they are grouped into one folder called

the DFS root. DFD’s are also known as the Network File

Systems (NFS) since users can access their files to perform

operations thereon like create, retrieve or alter as well as

Manuscript received January 11, 2014; revised April 3, 2014.

Zahid Ullah is with the Department of Computer Science, Institute of
Management Sciences, Peshawar (e-mail: zahid.ullah@imsciences.edu.pk).

Sohail Jabbar and Muhammad Haris bin Tariq Alvi are with the

Department of Computer Science, Bahria University, Islamabad (e-mail:
sjabbar.research@gmail.com, hbtalvi@hotmail.com).

Awais Ahmad is with the Department of Computer Science, CIIT,

Islamabad (e-mail: awais.ahmad@comsats.edu.pk).

users can set the attributes of the files via operating system

commands for those files and directories which are located

on the remote systems.

There is a long list of distributed file systems available in

the market. Some are open source, some are specially

designed by some organization for fulfilling their specific

needs and some are available for the use by the common

users while some are provided to the end users for running

their developed applications. Following are various types of

Distributed File Systems (DFS) with respect to their offered

features and dimensionality of their performance.

A. Distributed Fault-Tolerant File Systems

The replication of data that is distributed between

multiple nodes (clients & servers) to get the fully

availability of data as well as the offline operations. Some of

the examples categorized under this type of file system are

as follows:

 CODA from Carnegie Mellon University [1]

 Distributed File System (Dfs) from Microsoft

 InterMezzo from Cluster File Systems [2]

 Moose File System (MooseFS) from Gemius SA [3]

 Tahoe-LAFS is an open source secure, decentralized,

fault-tolerant files System [4]

B. Distributed Parallel File Systems

This type of file system stripe data over several servers to

gain high performance computing (HPC). Some of the

examples categorized under this type of file system are as

follows:

 Fraunhofer Parallel File System (FhGFS) from the

Fraunhofer Society Competence Center [5]

 Parallel Virtual File System (PVFS, PVFS2,

OrangeFS). This is available for Linux under GPL.

 STARFISH is a POSIX-compatible, N-way redundant

file system created by Digital Bazaar Inc. [6].

C. Distributed Parallel Fault-Tolerant File Systems

Striping and replicating the data over multiple servers

make the DFS parallel and fault-tolerant file system. Due to

their high performance and data integrity, these types of file

systems are used in both HPC and high-availability clusters.

Among the long list of this type of file systems, some are

given below:

 General Parallel File System (GPFS) by IBM [7]

 Google File System (GFS) by Google [8]

 Hadoop Distributed File System by Apache Software

Foundation [9]

 Lustre by Cluster File Systems and currently supported

by Intel [10]

Google is the pioneer in advance web searching and many

advance web applications top of which are Google earth and

Analytical Study on Performance, Challenges and Future

Considerations of Google File System

Zahid Ullah, Sohail Jabbar, Muhammad Haris bin Tariq Alvi, and Awais Ahmad

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

279DOI: 10.7763/IJCCE.2014.V3.336

http://en.wikipedia.org/wiki/Coda_(file_system)
http://en.wikipedia.org/wiki/Carnegie_Mellon_University
http://en.wikipedia.org/wiki/Distributed_File_System_(Microsoft)
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/InterMezzo_(file_system)
http://en.wikipedia.org/wiki/Cluster_File_Systems
http://en.wikipedia.org/wiki/Moose_File_System
http://en.wikipedia.org/w/index.php?title=Gemius_SA&action=edit&redlink=1
http://en.wikipedia.org/wiki/Tahoe-LAFS
http://en.wikipedia.org/wiki/FhGFS
http://en.wikipedia.org/wiki/Fraunhofer_Society
http://en.wikipedia.org/wiki/Parallel_Virtual_File_System
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/w/index.php?title=Starfish_File_System&action=edit&redlink=1
http://en.wikipedia.org/wiki/POSIX

Google Maps. These days Google has not just kept itself

limited to web search and applications only and is also

providing mailing accounts of Gigabytes to users. Recently

a social networking site named as Google+ is started by

Google which is considered to be a strong competitor of

Facebook in the coming days. All these services are heavily

data intensive. Providing these services efficiently is a big

challenge to their systems. So Google planned to design it in

a way that it is not an exception but it is natural that

something will fail every day. These exceptions are handled

by GFS in their distributed file system. Google File System

is a large scaled distributed system of files for large Google

applications. Google organizes and manipulates files with

Google GFS system. The application developers can use

research and development resources with this service.

The GFS is not for sale purpose rather it is specific for

Google itself. Still there are some details of Google GFS is

unknown to outsiders. For example, Google doesn’t disclose

the number of computers used for GFS. Because the Google

officials said that there are thousands of computers used for

GFS system. Google keep many things secret but on the

other side there are many things that Google showed to the

public about the structure as well as the operations of GFS.

In the beginning GFS is used for storing Google’s search

indexes as well as the creeping of data. But now it is used to

store the content that is generated by the user. A new

version of the Google File System is codenamed Colossus.

II. GFS ARCHITECTURE

This section gives a brief overview of the Google File

System architecture. Google established the GFS onto the

bunch of computers. A single unit of cluster is simply a

network of multiple computers. There are three types of

entities in a cluster which are Clients, Chunk servers and the

Master servers.

The Client is an entity which is used to make request in

the GFS. The range of the request is about retrieving as well

as manipulating the files exist in the system in order to

create new files. The client entity is either being a computer

outside the system or might be the application program in

the current system. So in GFS system, a client acts like a

customer.

The next entity is master server which acts like a

coordinator for the relative cluster in GFS system. There are

multiple duties perform by master server like keeping the

operation log that conserves the track of all the actions of

the Master’s cluster. The operation log helps to minimize

the service disruption. Hence, in case of failure of master

server, another server which already supervises the

operation log can take the place of that crashed server.

Another duty of master server is to manage the metadata. It

is the information that explains the chunks or groups of

clusters in the GFS. The metadata is used to check the

compatibility of data files with the groups and indicate that

which file belongs to which chunk. In the startup, the chunk

servers are polled into the cluster. The chunk servers are

responsible to inform the master about their inventories. At

this point, the master keeps the location of all the chunks

within that cluster. The chunks are directly sending the

chunks to the clients instead of the master servers. Multiple

copies of the chunk are stored on multiple chunk servers.

These copies are known as the “replica”. There are three

replicas made by the GFS by default but the user can change

these settings.

A standard is followed in file request either read or write

request. In read request, the client requests to the master

server about the file that exists in the GFS system. In the

reply of that request the server replied with the target of the

replica of individual chunk.

III. RESEARCH RESULTS

Some of the research results are drawn from the

comprehensive analysis of literature available on internet

and various resources are given in the subsequent

paragraphs [11], [12].

A. Fault Tolerance

Google File System is a scalable distributed file system

that is designed for the large scaled distributed applications.

GFS provides fault tolerance as it running on the non-

expensive hardware but always delivers the data to the

clients with highest performance.

B. Faster Recovery

As we know that in GFS, both the master and the chunk

servers have been restarted as well as to restore their states

within a few seconds. Recovery has also been done on the

basis of the priority of the condition. The recovery process is

very fast as the replicas of master is distributed across

multiple server machines on different places, if one side

goes down then it will recovers by any other machine or

place. So it is a better way of time consuming during

recovery of data.

C. Chunk Replication

Google File System has replicas of the chunk servers on

different machines in the system across multiple racks. So

this will helpful in the recovery of the chunks very easily

and precisely if any chunk goes down. There are multiple

levels for the multiple parts of the file namespace. GFS used

the checksum verification to keep complete replication of

each chunk as detection of the corrupted chunks is very easy

to cater. Chunk servers are the source to determine or verify

the checksums before returning, and checksum will be

incrementally updated in order to detect the errors while

reading.

D. Master Mechanism

Master server in the GFS can do many things or

operations in order to restore data without data lose as well

as without the interruption of operations:

 Master saves all the changes which are made on the

metadata

 It keeps the periodic checkpoints of the log file

 It keeps the replicas of all the logs and the checkpoints

on multiple machines

 The state of the master is also replicated on different

machines

 There is availability of the shadow master if the actual

master goes down. The shadow master has only to

access the file to read when the primary master goes

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

280

down. It enhances the availability of data read in GFS.

E. Performance

At a single time, there is only one active master server

within the cluster. This might be a bottle neck that there is

only one machine which is used to coordinate the thousands

of computers within a cluster that may case of data traffic

occurred. To save from this condition there are very small

messages those are sent or received by the master.

Remember that handling of the data files is fully performed

by the master server.

The performance of GFS is almost increases as there uses

the chunk servers which are directly link to the data files and

is capable of direct reading of the files data. In GFS, the

master server does not linked directly to the data files, but

the primary server is attached to the whole chunk servers

which are directly linked to the files. This mechanism helps

to increase the performance of reading operation comparable

to writing operation. From the results of benchmarks

decision, if the number of servers used is relatively small,

then the system of file get the performance as compared to

that of a single disk, but it reduces the write performance.

We summarized our discussion on the performance of

GFDS that most of the workloads are reading 90%. The

performance of GFS on large successive reads is cautionary.

Because I suspect that if a child adds a video to its product

set using GFS, which is cost per-byte is better than YouTube

or even to any other service of video sharing.

IV. COMPARISON OF GFS WITH OTHER DFSS

In this section, we will be discussing the DFS with

Hadoop Distributed File System, General Parallel File

System, Global File System and Sector Distributed File

System. Table I also summarized the results of their

comparative analysis.

TABLE I: COMPARATIVE ANALYSIS OF GOOGLE FILE SYSTEM WITH OTHER WELL-KNOWN DISTRIBUTED FILE SYSTEMS

Design Decision GFS HDFS Sector GPFS GlobalFS

Datasets Divided into

Files or Blocks
Blocks Blocks Files Blocks Both

Protocol for Passing

Message
TCP TCP Group Messaging Protocol

Not

Mentioned
TCP

Protocol for Data

Transferring
TCP TCP UDP

Not

Mentioned

MPI for

NAS

Replication Strategy
Replicas created at the

time of Writing

Replicas created at the

time of Writing

Replicas created periodically

by the system

RAID-

Replicated
No

Security Model Not Mentioned None
User Level and File level

Access control

Not

Mentioned
None

Fig. 1. GFS architecture.

A. Google File System

GFS is an application oriented file system optimized for

Google’s core data storage. A fixed chunk size of 64MB

with a 64bit chunk handle is distributed to the chunk server.

A single master node maintains metadata and mapping from

file to chunk. To overcome the bottleneck of the master, the

master’s memory solely stores metadata. This increases the

speed but the overall system size is limited by the master

node’s memory. A typical architecture of GFS is represented

in Fig. 1.

GFS keeps the data in three replicas. If a server goes

down, the master node redirects data requests to the other

replica data. If master goes down another node can be

selected to generate metadata by scanning over chunk server.

With all these features GFS still have some drawbacks that

are discussed in the later section below (Drawbacks/Loop

Holes of GFS).

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

281

B. Hadoop Distributed File System

Yahoo! made an open source version of Google file

system named as HDFS. Unlike GFS, HDFS don’t provide

the appending function. As both GFS and HDFS depends on

a single master node which at times proves to be a failure

point. So, different variants of HDFS were introduced

namely RFS (Ring File System) and EDFS (Efficient

Distributed File System).

Fig. 2. HDFS architecture [13].

Just like GFS the dataset is divided into blocks with TCP

used as a Protocol for both message passing and data

transferring. As in GFS replicas are created at the time of

creation. HDFS is almost similar to GFS apart from the

appending function as mentioned earlier. Fig. 2 shows the

architectural diagram of HDFS.

C. General Parallel File System

IBM created a shared disk parallel file system for super

and cluster computer. Extreme scalability is achieved by

DFS centralization and shared disk architecture enables

GPFS. A total of 4096 disks with maximum 1TB size is

supported with a scale of 4PB. A default block is of 256KB

which is configurable from 16KB to 1MB. Sub blocks with

a size of 1/32 of ordinary block are used for storing small

files. Hashing is used for searching the large directory that

may contain millions of files. Multi reading and writing is

supported. An architectural diagram is also shown there in

Fig. 3.

Just like the GFS, GPFS also creates a new meta node in

case of failure of earlier meta node but unlike GFS this meta

node never issues a new token till the log is recovered.

GPFS supports POSIX fully but fault tolerance can’t be

compared to HDFS and GFS as data is not replicated by

RAID.

Fig. 3. GPFS architecture.

D. Global File System

Fig. 4. GlobalFS architecture.

GlobalFS is shared disk file system for clusters of Linux

computers. GlobalFS differs from the other DFS in a way

that they allow direct access to the shared block storage.

This can be used as a local file system. Its first native is with

64bit FS cluster on Linux. One of the main advantages is

that applications don’t have to be re coded for using

GlobalFS [14]. It is a journaling FS with standard

UNIX/POSIX file semantics. In case of a node failure

consistency can be maintained by replaying the metadata

operations. The complications of GlobalFS make it enable

with all POSIX functionalities, whereas Google File System

is aimed to make simpler state with lesser functions. An

architectural diagram of GlobalFS is also shown there in Fig.

4.

E. Sector Distributed File System

Sector DFS is created on the basis of Sphere Compute

Cloud that allows user a large downloadable dataset from

almost anywhere. Unlike all other distributed FS those are

mentioned above, it has security server with multiple salves.

Divisions of files are in sector slices. The slave stores slices

in its native file system. So, the sector is interoperate-able as

and when required. A typical architectural diagram of Sector

GFS is shown in Fig. 5.

Fig. 5. Sector DFS architecture.

As mentioned earlier the most strong point of the sector

over other Distributed file systems is its connectivity of

security server with master. Each client request is passed

through a security check to authenticate legality of the client.

To ensure security salves has the capability to only listen to

the master. If authentication is provided the salve opens a

connection to get the data transfer started.

Just like GFS the data is triple replicated so any failure

can be recovered easily. In case of a master failure, the

reconstruction of metadata can be done by scanning salves

with native FS. UDP is used instead of TCP that allows

more speed. Because all these right now sector can be

claimed to be more fast and reliable as compared to GFS.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

282

V. BOTTLENECKS OF GFS

In spite of the maximum beauties of Google File System

in performance, implementation and its multi-facet

functionalities, the fast running needs of time is constantly

limiting it. In the subsequent paragraphs, we are presenting

the bottlenecks in Google File System. The possible

precautionary measures and expected solutions by Google

team for the related issues are also given with it.

Since GFS is an application oriented file system. So, it

might work well for one application but not for the other.

GFS is single master node configuration. This configuration

can result in a bottle neck though it only handles queries not

the data.

Solution: Google Engineers are working on a distributed

master system design the reason presented for single master

system design is that in the original GFS it was done to

make the design simple.

If a small file has only one chunk stored on one chunk

server, it may become hot spot due to multiple accesses to

the same file.

Solution: There are three possible solutions: 1) this can be

reduced by introducing higher replication factor, 2)

application start time is a major factor, staggering it can help

reduce the factor, and 3) Making communication between

client to client can also help.

Chunk size in GFS is 64MB that is much larger than the

system block. A big issue for large block size is internal

fragmentation (write a block which is less the block size to

the disk will cause fragmentation inside block).

Solution: Lazy space allocation can prove to be a good

solution for this which will first reserve the space for the

block and to perform writes afterwards.

Some Other identified issues in GFS are as follows:

 GFS is not able to support links (neither hard nor soft)

 Bytes wise identically replicas are not guaranteed by

GFS, still one copy is granted by it.

 Applications and clients face a risk of receiving staled

chunk.

 If the application’s write is large enough it can be a

fragment added from another client.

 GFS don’t have a standard API like POSIX

VI. FUTURE CONSIDERATIONS AND CHALLENGES

Google has a strong team for research and development

that constantly keep on looking beyond the current arisen

horizon. The interest of packing the maximum facilities at

the same platform is opening the new door of challenges

especially with respect to scalability, effectiveness and

efficiency as well. In the this section of future

considerations and expected challenges, we are presenting

the future plans on which Google is still working or any

expected upcoming needs of time and its impact on the

structure and architecture of Google File System.

A. Cross Language Informational Retrieval

Google Translator is aiming to translate all kind of

languages in this world to all kind of languages. These

translations will increase index size to a great deal; this

application is really expensive in term of computation cost

but once done it can turn out to show many benefits.

Challenges: 1) Maintaining the quality of translation is a

big task, 2) Language models are really complex large scale

systems are required to deal with it

B. ACLS in Information Retrieval System

Modern world has ever going communicating scenarios, a

single user can have all type of data from confidential to

public retrieval patterns can be different for all.

Challenges: 1) Building a system that has to deal with

widely varying in size ACLs.

C. Automatic Construction of Efficient IR System

Although interfaces are common but the implementation

method can vary greatly for efficiency. This can work very

well but the efforts required to extend and maintain are

really immense

Challenges: 1) Constructing a single system working on

some particular parameters to automatic construct efficient

retrieval system

D. Extraction of Information from Semi Structured Data

The total data in this world has a really small amount of

data with semantic labels and the rest there is a large amount

of semi structured data.

Challenges: 1) Making a algorithm for efficient extraction

of structured information from unstructured/semi-structured

data.

VII. CONCLUSION

Google File System is an application oriented distributed

file system which is a result of Google’s Engineering Genius.

The single master node can be a cause of the bottle neck.

Instead of the efforts Sector DFSs is still considered as the

best DFSs but keeping in view the fact that GFS is solely

made to server Google’s workload so its commercial

comparison is not possible. Large scale data processing

quality essentials are demonstrated by GFS. Some of the

design parameters are specifically for Google’s own setting

but tasks of data processing of similar magnitude can be

performed with it. Google has made it a standard that failure

is a rule not an exception, their assumption has made them

stand out of crowd. Overall system is improvement is

achieved by optimization of huge file that are usually the

appended form of files then read operation is performed

both extending and relaxing the standard file system. Fault

tolerance is achieved by constant monitoring and replicating

crucial data which is supported by fast and automatic

recovery. Chunk server failure is tolerated by using chunk

replication. High through output is achieved by minimizing

the involvement of master in client server communication

by separating system control from data transfer. This also

minimizes the chance of master bottle neck and Google

believes that their improvement will lift current limitation to

write which the clients are facing right now. GFS is the

backbone that has allowed Google to meet all its storage

needs and has enabled them to attack problems on the scale

of the entire web and continue its innovation.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

283

REFERENCES

[1] P. J. Braam, "The coda distributed file system," Linux Journal, vol.
1998, pp. 46-50, June 1998.

[2] P. J. Braam, M. Callahan, and P. Schwan. The InterMezzo File

System. [Online]. Available:
http://www.cs.cmu.edu/~coda/docdir/intermezzo99.pdf

[3] S. Bai and K. Wu, "The performance study on several distributed file

systems," in Proc. 2011 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), Oct.

2011, pp. 226-229.
[4] Z. Wilcox-O'Hearn and Brian Warner, "Tahoe: the least-authority

filesystem," in Proc. the 4th ACM international workshop on Storage

security and survivability, 2008, pp. 21-26.

[5] Fraunhofer. (2010). Competence center for high performance
computing. ITWM. [Online]. Available:

http://www.itwm.fraunhofer.de/abteilungen/hpc.html

[6] G. Garzoglio, K. Chadwick, and T. Hesselroth, "Investigation of
storage options for scientific computing on grid and cloud facilities,"

presented at the International Symposium on Grids and Clouds and

the Open Grid Forum Academia Sinica, Taipei, Taiwan, March 19-25,

2011.

[7] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Bilgen Cetin,

and S. Babu, "Starfish: A self-tuning system for big data analytics,"
presented at 5th Biennial Conference on Innovative Data Systems

Research (CIDR ’11), Asilomar, California, USA, January 9-12, 2011.

[8] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for
large computing clusters,” in Proc. the Conference on File and

Storage Technologies (FAST’02), 2002, pp. 231–244.

[9] S. Ghemawat, H. Gobioff, and S. T. Leung, "The Google file system,"
in Proc. the Nineteenth ACM Symposium on Operating Systems

Principles SOSP '03, December 2003, pp. 29-43.

[10] K. Shvachko, K. Hairong, S. Radia, and R. Chansler, "The Hadoop
distributed file system," in Proc. 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies (MSST), May 2010, pp. 1–10.

[11] P. Schwan, "Lustre: Building a file system for 1,000-node clusters,"
presented at the Linux Symposium, Ottawa, Ontario, Canada, July

23th–26th, 2003.

[12] A. Fikes. (2010). Storage architecture and challenges of Google file

system. presented at Google Faculty Summit. [Online]. Available:

http://static.googleusercontent.com/media/research.google.com/en/us/
university/relations/facultysummit2010/storage_architecture_and_cha

llenges.pdf

[13] J. Passing. (April, 2008).The Google File System and its application
in MapReduce. [Online]. Available:

http://int3.de/res/GfsMapReduce/GfsAndMapReduce.pdf

[14] N. UzZaman, "Survey on Google file system," Survey Paper for CSC
456 (Operating Systems), University of Rochester, Fall 2007.

Zahid Ullah is an HEC scholar and currently pursing
PhD and working as a lecturer at IMSciences

Peshawar, Pakistan. He received his BCS (H) degree

in computer science from KPK Agricultural
University, Peshawar, Pakistan in 2005 and MS

degree in computer and telecom from Gandhara

University Peshawar, Pakistan in 2008. He has more
than 8 years of experience in computer networks and

worked on Cisco and Huawei routers. His research

interest includes mobile ad-hoc networks and wireless sensor networks.

Sohail Jabbar is an HEC scholar and is pursuing his

PhD in computer science from Bahria University,

Islamabad. He did MS (telecom and networking)

from the same University with the honor of Magna

Cum Laude and secured his BS (computer science)

degree from Allama Iqbal Open University (AIOU),

Islamabad, Pakistan in 2009 and 2005 respectively.

His research work is emerged with more than 24

international publications in various IEEE, ACM and IAENG (International

Association of Engineers) conferences held in USA, UK, South Korea,

China and Pakistan and journals. He has been a reviewer of international

journal of distributed sensor networks (IJDSN), journal of engineering

applications of artificial intelligence (EAAI), Ad Hoc & Sensor Wireless

Networks Journal and World Applied Science Journal (WASJ). His current

fields of interest are wireless sensor network, cloud computing and

integration of cloud computing and sensor networks.

Haris Bin Tariq Alvi completed his matriculation
with science and intermediate from Federal board of

intermediate and secondary education, Pakistan with

1st division and attended Hamza Army Public School
and College Rawalpindi, Pakistan. He is currently in

the final year of his bachelor of electrical engineering

from Bahria University, Islamabad, Pakistan, and
working with Microsoft as an Intern.

Being an engineering student he has interest to

cover all the possible aspects of it. He has worked from computer science to
mechanical aspect of the things and likes to learn new things.

Awais Ahmad did his BS(CS) and MS from

Department of Computer Science University of

Peshawar, Pakistan in 2008 and Bahria University
Islamabad Pakistan in telecommunication and

networking respectively. He is a member of "Cloud

Computing" research group in University of
BridgePort USA. After completing his master, he

joined Department of Computer Science, CIIT

Islamabad as a Lecturer (on study leave). He also
worked on Underwater Acoustic Sensor Network (mainly: Physical,

Transport and Routing Layer). With parallel to this work, he also worked

on IEEE802.11n MAC for terrestrial wireless sensor network and
underwater acoustic sensor network. His current research work is on

machine-to-machine communication (handover techniques, IEEE 802.11n

MAC). He served as a reviewer for many Journals including Journal of
Super Computing (Springer), Mathematical Problems in Engineering,

Journal of Applied Mathematics, International Journal Distributed Sensor

Network (Hindawi Publishing Corporation) as well as several IEEE &
ACM International Conferences. He also received three prestigious awards:

i) Beast research award 2011 from Honorable Rector of Bahria University,

ii) Best paper nomination award in WCECS 2011 University of California,
San Francisco USA, and iii) Best research paper award, 1st Symposium on

Computer Science and Engineering, Moju Resort, Korea 2013.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

284

