

Abstract—In the system of a fully homomorphic message

authenticator, anyone can make any computations based on

authenticated data. At the same time, a short tag is produced to

authenticate the result of the computation. Without the

underlying data, the user can use his private key to verify this

tag for ensuring that the claimed result is correct. Recent,

Gennaro and Wichs use a fully homomorphic encryption to

construct a fully homomorphic message authenticator. In this

paper, we propose a fully homomorphic message authenticator

with improve efficiency than Gennaro and Wichs’s construction.

Our fully homomorphic message authenticator is of less

verification complexity than Gennaro and Wichs’s construction.

Index Terms—Fully homomorphic message authenticators,

fully homomorphic encryption, cloud security.

I. INTRODUCTION

In the cloud computing background, sometimes users hope

that a remote service provider can do reliable computations

over the outsourced data. The first fully homomorphic

encryption [1], [2] scheme developed by C. Gentry make it

possible to perform arbitrary computation over outsourced

data at the same time the privacy of the outsourced data is kept.

After C. Gentry’s construction, many full homomorphic

encryption schemes have been developed [3]-[10].

Being enlighten by the idea of fully homomorphic

encryption, Gennaro and Wichs instantiateand study the

question of authenticating arbitrary computations over

outsourced data: “if the remote server claims that the

execution of some program P over the user’s outsourced data

results in an output y, how can the user be sure that this is

indeed the case?” [11]

In order to solve this problem, Gennaro and Wichs propose

a fully homomorphic message authenticator in [11]. A fully

homomorphic message authenticator can be viewed as a

symmetric-key version of fully homomorphic signatures that

are introduced by Boneh and Freeman [12]. However, how to

construct a fully homomorphic signature is still an important

open problem.

Almost all previous research work about homomorphic

message authentication and signatures are restricted to linear

Manuscript received December 9, 2013; revised April 2, 2014. This work

was supported in part by the science research funding of Huawei

Technologies Co., Ltd. under Grant No. YBCB2012055, by the National

Natural Science Foundation of China (NSFC) under Grant No.11271097

and the research project of Guangzhou Education Bureau under Grant

No.2012A074.

Wenbin Chen is with the Department of Computer Science, Guangzhou

University, Guangzhou, China (e-mail: cwb2011@gzhu.edu.cn).

Hao Lei is with Shield Lab., Huawei Technologies Co., Ltd., China

(e-mail: leiyok@163.com).

homomorphisms. The first linear homomorphic signature

scheme is proposed by Johnson et al. in [13]. Since then,

many linear homomorphic signatures and message

authentication in the context of network coding are developed

[14]-[20]. Linear homomophic signature and message

authentication schemes can be used to construct proofs of

storage and retrievability [21]-[24]. In [12], Boneh and

Freeman propose a homomorphic signature for polynomial

functions. Their security is based on hard problems on ideal

lattice. Recently, Gennaro and Wichs design the first fully

homomorphic message authenticator based on the fully

homomorphic encryption systems [11].

The interactive and non-interactive proofs can also be used

to make someone believe that some computation is correct

[25]-[26]. But their constructions rely on the random-oracle

model and don’t support arbitrary composition.

There are research works about the problem of delegating

computation [27]-[30], which is similar to a fully

homomorphic message authenticator. However, the

delegating computation is different from a fully homomorphic

message authenticator. In those delegating computation

schemes, when the function f, the input x and the output y are

known for a user, but he does not want to perform the

computation work of f(x), the sever is required to make the

user believe that f(x) = y is correct. Compared to the fully

homomorphic authenticators, several disadvantages are

pointed out by Gennaro and Wichs about delegating

computations: interaction, single use, bounded size, no

composition.

In this paper, we propose a fully homomorphic message

authenticator with improved efficiency than Gennaro and

Wichs’s construction: our scheme is of less verification

complexity.

Compared with Gennaro and Wichs’s algorithm, the

novelty of our algorithm is as follows. In our algorithm, the

tag of one bit contains some encryption of 1 except those

encryption of 0 and that bit. In our verification algorithm, we

only need two computaiton, while Gennaro and Wichs’s

algorithm needs n/2 computation.

The remainder of the paper is organized as follows. Section

II reviews some basic definitions. In Section III, we design an

algorithm for our algorithm for fully homomorphic

authenticator. Finally, Section IV gives some open problems.

II. DEFINITIONS

In the following, we repeat some basic definitions of full

homomorphic authenticators from [11].

Definition 2.1. A labeled-program P = (f, τ1, …, τk)

A Full Homomorphic Message Authenticator with

Improved Efficiency

Wenbin Chen and Hao Lei

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

269DOI: 10.7763/IJCCE.2014.V3.334

consists of a circuit f : {0, 1}
k
 →{0, 1} along with a distinct

input label τi ∈ {0, 1} for every input wire τi ∈ [k] ={1, . . . ,

k} [11].

Definition 2.2. Given a circuit g : {0, 1}
t
→{0, 1} and some

labeled programs P1, … ,Pt, the composed program that is

denoted by P* = g(P1, . . . ,Pt) is defined as the computing g on

the outputs of P1, … , Pt. Given the canonical identity circuit

gid and some label τ∈ {0, 1}*, the identity program with label

τ is defined as Iτ= (gid, τ) [11].

Definition 2.3. (Fully Homomorphic Authenticator [11]).

A fully homomorphic authenticator scheme consists of the

probabilistic polynomial time algorithms (KeyGen, Auth, Ver,

Eval) with the following syntax:

1) KeyGen(1
n
) → (evk, sk): Outputs the secret key sk and

an evaluation key evk.

2) Authsk(b, τ)→б: Create a tag б that authenticates the bit b

∈ {0, 1} under the label τ∈{0, 1}*.

3) Evalevk(f, б) →ψ: The deterministic evaluation procedure

takes a vector of tags б=(б1, …,бk) and a circuit f : {0;

1}
k
→{0, 1}. It outputs a tag ψ. If each бi authenticates a

bit bi as the output of some labeled-program Pi (possibly

the identity program), then ψ should authenticate b* = f

(b1, . . . , bk) as the output of the composed program P* =

f(P1, . . . ,Pk).

4) Versk (e, P, ψ) → {accept, reject}: The deterministic

verification procedure uses the tag ψ to check that e ∈ {0,

1} is the output of the program P on previously

authenticated labeled data.

The scheme need satisfy the following several properties:

authentication correctness, evaluation correctness,

succinctness. Their detailed description of these properties

can be found in [11].

In the following, we introduce the definition of

authenticator security.

Definition 2.4. (Authenticator Security [11]). Consider the

following game ForgeGame
A
(1

n
) between an attacker A(1

n
)

and a challenger:

1) The challenger chooses (evk, sk) ← KeyGen(1
n
) and

gives evk to A. It initializes T =Φ;

2) The attacker A can adaptively submit arbitrarily many

authentication queries of the form (b, τ) to the challenger.

On each such query, if there is some (τ,…) ∈T (i.e. the

labelτ is not fresh), then the challenger ignores it. Else it

updates T = T {(τ, b)}, associating the label τ with the

authenticated bit b, and replies with б�Authsk(b, τ).

3) Finally, the attacker outputs some forgery (e*, P* = (f,

τ1* , . . . , τt *), ψ*).

The output of the game is 1 iff V ersk(e*, P*,ψ*) = accept

and one of the following two conditions holds:

Type I Forgery: There is some i ∈ [k] such that the label (τi

*, ..) does not appear in T. (i.e., No bit was ever authenticated

under the label τi* involved in the forgery.)

Type II Forgery: The set T contains tuples (τ1, b1), . . . , (τk,

bk), for some bits b1, . . . , bk ∈{0, 1} such that f*(b1, . . . , bk)

≠ e*. (i.e., The labeled program P* does not output e* when

executed on previously authenticated labeled data b1, . . . , bk).

We say that a homomorphic authenticator scheme is secure

(without verification queries) if, for any probabilistic

polynomial-time A, we have Pr[ForgeGame
A
(1

n
) = 1]

≤negl(n).

Definition 2.5. (Fully Homomorphic Encryption [11]). A

fully homomorphic encryption (FHE) scheme is a quadruple

of PPT algorithms HE=(HE .KeyGen, HE.Enc, HE.Dec,

HE.Eval)defined as follows.

1) HE.KeyGen(1
n
) → (pk, evk, sk): Outputs a public

encryption key pk, a public evaluation key evk and a

secret decryption key sk.

2) HE.Encpk (b)→c: The ciphertext of a bit b ∈ {0, 1} is c

under the public key pk.

3) HE.Dec sk (c) →b: Decrypts ciphertext c using sk to a

plaintext bit b.

4) HE.Evalevk (g, c1,…, ct) →c*:

The deterministic evaluation algorithm takes the evaluation

key evk, a boolean circuit g: {0; 1}
t
→{0, 1}, and a set of t

ciphertexts c1, . . . , ct. It outputs the result ciphertext c*.

An FHE should also be of the following properties:

encryption correctness, evaluation correctness, succinctness,

semantic Security.

Canonical FHE meaning that the HE.Eval procedure just

evaluates the circuit recursively, level-by-level and

gate-by-gate [11].

Definition 2.6. Hash Tree of a Circuit [11]. If g : {0, 1}
k

→{0, 1} is a circuit and H : {0; 1}*→{0, 1}
m
 is some hash

function, the hash tree g
H
 : ({0; 1}*)

k
 →{0, 1}

m
 is a function

which takes as input strings ν∈{0, 1}* for each input wire of

g. For every wire w in the circuit g, the value of g
H
(ν1, . . . , νk)

at w is defined inductively as:

1) val(w) = H(νi) if w is the i-th input wire of g.

2) val(w) = H(val(w1), . . . , val(wk)) if w is the output wire of

some gate with input wires w1, . . . ,wt.

The output of the function g
H
(ν1, . . . , νk) is defined to be its

value at the output wire of g.

III. ALGORITHMS FOR FULLY HOMOMORPHIC

AUTHENTICATION

In this section, we give the construction of our algorithm

for fully homomorphic authenticator. Our construction is

based on Gennaro and Wichs’s fully homomorphic

authentication algorithm in [11]. But our algorithm improve

the efficiency of Gennaro and Wichs’s construction since

ourconstruction is of less verification complexity.

Let {fK : {0, 1}*→ {0, 1}
r(n)

} be a (variable-input-length)

pseudo-random function PRF family, K∈{0,1}
n
. Let FH be a

family of (variable-length) collision-resistant hash functions

(CRHF) H: {0, 1}*→{0, 1}
m(n)

. Let HE = (HE.KeyGen,

HE.Enc, HE.Dec, HE.Eval) be a canonical fully

homomorphic encryption scheme, where the encryption

algorithm uses r = r(n) = ω(log(n)) random bits. Our fully

homomorphic authentication algorithm (KeyGen, Auth, Eval,

V er) is as follows:

KeyGen(1
n
): Choose a PRF key K ← {0, 1}

n
, a CRHF H

←FH and an encryption key (pk, evk’, sk’) HE.KeyGen(1
n
).

Select a subset S [n] and |S| = 2n/3, where each index i ∈

[n] is added to the set S independently with probability 1/2 .

Randomly select a subset T∈{0,1}
2n/3

 such that T is of n/3 0’s

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

270

and n/3 1’s. Randomly select a position t0 from n/3 0’s

positions and a position t1 from n/3 1’s positions. Output evk =

(evk’, H), sk = (pk, evk’, H, sk’, K, S, T, t0, t1).

Authsk(b, τ): Given b∈ {0, 1} and τ∈ {0, 1}* do the

following:

1) Set n random strings randi = fK((τ, i))(1 ≤ i≤ n) and ν=

fK(τ).

2) Produce n ciphertexts c1, . . . , cn as follows. For i∈ [n]\S,

compute ci = HE.Encpk(b; randi) as encryptions of the bit

b. For i∈S, compute ci = HE.Encpk (0; randi) as

encryption of 0 if i is the j-th position of T and the j-th

position of T is 0. Otherwise, compute ci = HE.Encpk(1;

randi) as encryption of 1.

3) Output б= (c1, . . . , cn, ν).

Evalevk(g, б) : Given б= (б1, . . . , бt), where each бj =

(c1,j , . . . , cn,j , νj) (1 ≤ j≤ t), do the following:

1) For each i ∈[n], compute ci* = HE.Evalevk’(g, ci,1, . . . ,

ci,t).

2) Compute ν*= g
H
(ν1, . . . , νt) as the value of the hash tree

g
H

of g at ν1, . . . , νt.

3) Compute e0 = HE.Evalevk’(g, 0, . . . , 0) and e1 =

HE.Evalevk’(g, 1, . . . , 1).

Output = (c1*, . . . , cn*,ν*, e0, e1).

Versk(e,P, ψ): Parse P = (g, τ1, . . . , τt) and ψ = (c1*, . . . ,

cn*,ν*, e0, e1).

1) Compute νi = fK(τi) for all 1 ≤ i ≤ t and ν’= g
H
(τ1, . . . , τt).

If ν’ ≠ν*, output reject.

2) For i∈ S, when i is the j-th position of T and the j-th

position of T is 0 and j≠t0, decrypt ei =HE.Decsk’(ci*) and

if ei≠ e0 output reject; when j = t0, for each 1≤ h ≤ t,

compute randi,h = fK((τh, i)) and ci,h =HE.Encpk(0, randi,h).

Further, we compute ci’ = HE.Evalevk’ (g, ci,1, . . . ci,t), and

if ci’ ≠ci* output reject; when i is the j-th position of T and

the j-thposition of T is 1, decrypt ei =HE.Decsk’(ci*) and

if ei≠ e1 output reject; when j = t1, for each 1≤ h ≤ t,

compute randi,h = fK((τh, i)) and ci,h =HE.Encpk(1, randi,h).

Further, we compute ci’ = HE.Evalevk’ (g, ci,1, . . . ci,t), and

if ci’ ≠ci* output reject;

3) For each i ∈ [n]\S, decrypt ei =HE.Decsk’(ci*) and if e

≠ei output reject.

If the above doesn’t reject, output accept.

For our algorithm, we show that it is secure without

verification queries as follows.

Theorem 3.1. Our homomorphic authenticator scheme is

secure without verification queries when {fK} is a PRF family,

H is a CRHF family and HE is a semantically secure canonical

FHE.

Proof: Based on the encryption correctness of HE, it is easy

to know that the authentication correctness of our algorithm

holds. By the evaluation correctness of HE and HE is

canonical, it is also easy to know that the evaluation

correctness of our algorithm holds.

The security of our algorithm without verification queries

is showed as follows. Let A be some PPT attacker and let μ(n)

= Pr[ForgeGame
A
(1

n
) = 1]. In order to prove the security of

our algorithm without verification queries, it is enough to

show that μ(n) is negligible. We use a series of hybrid games

to prove that μ(n) is negligible.

Game1: In ForgeGame, replace the PRF with a truly

random function. That is, each call to fK is replaced by a call to

a completely random function F:{0,1}*→{0,1}
r(n)

. Based on

the pseudo-randomness {fK}, it is easy to get: Pr[Game
A

1(n) =

1] ≥μ(n)- negl(n), where negl(n) denotes negligible.

Game2: Game2 is defined by modifying the winning

condition in Game1: the game outputs 1 on type II forgery and

outputs 0 on a type I forgery. Let E denote the event that

attacker wins with a type I forgery in Game1. In the following,

we show that Pr[E] = negl(n).

Since H is a collision-resistant hash function, the

probability of finding collisions on H is negligible, i.e. Pr[H(x)

= H(y)] = negl(n) for any x≠y∈ {0, 1}*. By the definition of

the hash tree g
H
, when x ≠ y, if g

H
(ν1, . . . , x, . . . , νk) =

g
H
(ν1, . . . , y, . . . , νk), then there are some collisions on H at

some level of g
H
. So Pr[g

H
(ν1, . . . , x, . . . , νk) = g

H
(ν1, . . . ,

y, . . . , νk)] is less than the probability of finding collisions on

H. Thus, Pr[g
H
(ν1, . . . , x, . . . , νk) = g

H
(ν1, . . . , y, . . . , νk)] is

negligible.

When event E occurs, by the definition of type i forgery,

the attacker submits a forgery e*, P* = (g, τ1* , . . . , τt *), ψ*=

(c1* , . . . , ct *,ν*) such that one of some i (i∈ [t]) does not

appear in authentication queries and V ersk(e*, P*,ψ*) = 1.

Thus, in the step 1 of verification process, the valueνi = F (τi*)

∈ {0, 1}
r(n)

 is produced randomly. We re-sample a value νi’

from {0, 1}
r(n)

 randomly and independently again. Let B

denote the event that verification accepts both times. Then

Pr[E]
2
 ≤ Pr[B]. Let D denote the event that νi≠νi’ and D

denote the event that νi=νi’. Then Pr[D] = 2
-r(n)

. Since Pr[B]

= Pr[B∩ D] + Pr[B ∩ D], Pr[B] ≤Pr[B∩D] + Pr[D] = Pr[B \

D] + 2
-r(n)

. So Pr[E]
2
≤ Pr[B ∩D] + 2

-r(n)
. The event B∩ D

occurs means that verification accepts both times and νi≠νi’.

From the step 1 of verification process, we have Pr[g
H
(ν1, . . . ,

νi, . . . , νt) = g
H
(ν1, . . . , νi’, . . . , νt)] = ν*. Thus Pr[B ∩D]

≤Pr[g
H
(ν1, . . . , νi, . . . , νt) = g

H
(ν1, . . . , νi’, . . . , νt)]. So Pr[B∩

D] is negligible. Hence Pr[E]
2
 is negligible. Thus, Pr[E] =

negl(n).

So, we get: Pr[Game
A

2(n) = 1]≥ Pr[Game
A

1(n) = 1] - Pr[E]

≥ μ(n) - negl(n).

Game3: In Game3, the winning condition is modified. The

challenger remembers the corresponding tag б when he

answers authentication queries. For any type II verification

query e*, P* = (g, τ1*, . . . , τt *), ψ* = (c1 *, . . . , cn*,ν*), the

challenger can now recall the correct bits bj and tags бj =

(c1,j , . . . , cn,j) associated with the input labels τj * for j ∈ [t].

For i ∈ [n], let c i = HE.Evalevk(g, ci,1, . . . , ci,t) be the

“honest ciphertexts”, which an honestly generated tag would

contain for the program P*. In Game3, we replace step (3) of

the verification procedure as follows:

3’. For each i ∈ [n]\S : if c i = ci* then output reject.

In Game3, step (3’) is different from the original step (3) in

Game2. Let e = g(b1, . . . , bt) be the honest output of P*. In an

accepting type II forgery, we must have e* ≠e but the

decryption of the “honest ciphertexts” is e, i.e. HE.Decsk’(c i)

= e. So, for any accepting type II forgery in Game2, ci *≠ c i

holds for all i ∈ [n]\S.

Therefore, any accepting type II forgery in Game2 is also

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

271

accepting in Game3. Hence, we get:Pr[Game
A

3(n) = 1] ≥

Pr[Game
A

2(n) = 1](n) ≥ μ(n) -negl(n).

Game4: We define Game4 by modifying answering

authentication queries in Game3. When the challenger

answers authentication queries in step (2) of the

authentication procedure, all of ci (even for i ∈ S) are

computed as encryptions of the correct bit b. Then, by the

semantic security of the encryption scheme HE, we get:

Pr[Game
A

4 (n) = 1] > Pr[Game
A

3(n) = 1] - negl(n) ≥ μ(n) -

negl(n).

Hence, μ(n)≤ Pr[Game
A

4(n) = 1]+negl(n). In the following,

we show that Pr[Game
 A

4 (n) = 1] is negligible.

In Game4, the set S [n] is picked by the challenger

during verification and is ignored when answering

authentication queries. For any type II forgery e*, P*, ψ* = (c1

, . . . , cn,ν*), let c1’, . . . , cn’ be the “honest ciphertexts”,

which can honestly generated tag ψ would contain for the

program P* (see description of Game3). We use S’ to denote

the set of indices on which the forged and honest ciphertexts

match, i.e. S’ = {i ∈ [n], ci *= ci’}. Only if steps (3’) of

verification pass, the attacker wins. Thus, if i∈ [n]\S, then ci’

≠ci *. So [n]\S [n]\S’. Hence, S’ S. Over the random

choice of S, the probability is 1/2
n-|S’|

Since |S| = 2n/3 , |S’| ≤ 2n/3 . So n - |S/| ≥ n/3 . Hence,

1/2
n-|S’|

≤ 2
-n/3

 .

Therefore, we get: μ(n) ≤Pr[Game
A

4(n) = 1] + negl(n) ≤

2
-n/3

 + negl(n) = negl(n).

Theorem 3.2. Our algorithm is of less verification

complexity than Gennaro and Wichs’s fully homomorphic

authentication algorithm.

Proof: In the verification process of Gennaro and Wichs’s

algorithm, it needs n/2 computation of the program P.

However, our algorithm need two these computation. So, our

algorithm is of less verification complexity than Gennaro and

Wichs’s algorithm.

IV. CONCLUSION

In this paper, we propose a fully homomorphic message

authenticator. Our algorithm is of less verification complexity

than Gennaro and Wichs’s construction. Our algorithm save

much computation in the verification process.

There are still many open questions left. For example, how

to reduce the tag size from n ciphertexts to smaller ciphertexts?

Maybe the most ambitious questions is how to construct fully

homomorphic signatures.

ACKNOWLEDGMENT

We would like to thank the anonymous referees for their

careful readings of the manuscripts and many useful

suggestions.

REFERENCES

[1] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in

Proc. 41st ACM STOC, 2009, pp. 169-178.

[2] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.

dissertation, Stanford University, 2009.

[3] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully

homomorphic encryption without bootstrapping,” in Proc.

Innovations in Theoretical Computer Science, 2012, pp. 309-325.

[4] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption

from ring-LWE and security for key dependent messages,” in Proc.

2011 CRYPTO, pp. 505-524.

[5] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic

encryption from (Standard) LWE,” in Proc. the 52nd Annual

Symposium on Foundations of Computer Science, 2011, pp. 97-106.

[6] J. S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully

homomorphic encryption over the integers with shorter public keys,”

in Proc. 2011 CRYPTO, 2011, pp. 487-504.

[7] M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully

homomorphic encryption over the integers,” in Proc. 2010

EUROCRYPT, 2010, pp. 24-43.

[8] C. Gentry, “Toward basing fully homomorphic encryption on

worst-case hardness,” in Proc. 2010 CRYPTO, 2010, pp. 116-137.

[9] C. Gentry and S. Halevi, “Fully homomorphic encryption without

squashing using depth-3 arithmetic circuits,” in Proc. 2011 FOCS,

2011, pp. 107-109.

[10] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption

with polylog overhead,” in Proc. EUROCRYPT, 2012, pp. 465-482.

[11] R. Gennaro and D. Wichs, “Fully homomorphic message

authenticators,” in Proc. Advances in Cryptology - ASIACRYPT 2013,

pp. 301-320.

[12] D. Boneh and D. M. Freeman, “Homomorphic signatures for

polynomial functions,” in Proc. EUROCRYPT, 2011, pp. 149-168.

[13] R. Johnson, D. Molnar, D. X. Song, and D. Wagner, “Homomorphic

signature schemes,” in Proc. 2002 CT-RSA, 2002, pp. 244-262.

[14] S. Agrawal and D. Boneh, “Homomorphic MACs: MAC-based

integrity for network coding,” in Proc. ACNS, 2009, pp. 292-305.

[15] N. Attrapadung and B. Libert, “Homomorphic network coding

signatures in the standard model,” in Proc. PKC, 2011, pp. 17-34.

[16] D. Boneh and D. M. Freeman, “Linearly homomorphic signatures over

binary fields and new tools for lattice-based signatures,” in Proc. PKC,

2011, pp. 1-16.

[17] D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear

subspace: Signature schemes for network coding,” in Proc. PKC, 2009,

pp. 68-87.

[18] D. Catalano, D. Fiore, and B. Warinschi, “Efficient network coding

signatures in the standard model,” in Proc. 15th International

Conference on Practice and Theory in Public Key Cryptography,

Darmstadt, Germany, 2012, pp. 680-696.

[19] D. M. Freeman, “Improved security for linearly homomorphic

signatures: A generic framework,” in Proc. 15th International

Conference on Practice and Theory in Public Key Cryptography,

Darmstadt, Germany, 2012, pp. 697-714.

[20] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, “Secure network

coding over the integers,” in Proc. PKC, 2010, pp. 142-160.

[21] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J.

Peterson, and D. Song, “Provable data possession at untrusted stores,”

in Proc. ACM CCS, 2007, pp. 598-609.

[22] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from

homomorphic identification protocols,” in Proc. ASIACRYPT, 2009,

pp. 319-333.

[23] Y. Dodis, S. P. Vadhan, and D. Wichs, “Proofs of retrievability via

hardness amplification,” in Proc. TCC, 2009, pp. 1090-127.

[24] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc.

ASIACRYPT, 2008, pp. 90-107.

[25] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity

of interactive proof systems,” SIAM Journal on Computing, vol. 18, no.

1, pp. 186-208, 1989.

[26] S. Micali, “CS proofs (extended abstracts),” in Proc. FOCS, 1994, pp.

436-453.

[27] B. Applebaum, Y. Ishai, and E. Kushilevitz, “From secrecy to

soundness: Efficient verification via secure computation,” in Proc.

ICALP, 2010, pp. 152-163.

[28] K. M. Chung, Y. Kalai, and S. P. Vadhan, “Improved delegation of

computation using fully homo- morphic encryption,” in Proc.

CRYPTO, 2010, pp. 483-501.

[29] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating

computation: interactive proofs for muggles,” in Proc. 40th ACM

STOC, 2008, pp. 113-122.

[30] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable

computing: Outsourcing computation to untrusted workers,” in Proc.

CRYPTO, 2010, pp. 465-482.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

272

http://link.springer.com/book/10.1007/978-3-642-42045-0

Wenbin Chen received his M.S. degree in

mathematics from Institute of Software, Chinese

Academy of Science in 2003, and the Ph.D. degree in

computer science from North Carolina State

University, U.S.A in 2010. He is currently an associate

professor at the College of Computer Science and

Educational Software, Guangzhou University. His

research interests include algorithm design and

analysis, bioinformatics algorithms, graph algorithms,

graph mining, computational complexity, database, etc.

Hao Lei received his Ph.D. degree in cryptography

from SKLOIS, Chinese Academy of Science in 2006.

He is currently a researcher at Shield Lab., Huawei

Technologies Co., Ltd. China. His research focuses on

the area of public key cryptography, with specific

interests in tackling the dilemma between privacy and

security concern in untrusted and distributed scenarios

such as privacy protection, cryptography access

control, cloud computing security and usability.

International Journal of Computer and Communication Engineering, Vol. 3, No. 4, July 2014

273

