
  

 

Abstract—In the system of a fully homomorphic message 

authenticator, anyone can make any computations based on 

authenticated data. At the same time, a short tag is produced to 

authenticate the result of the computation. Without the 

underlying data, the user can use his private key to verify this 

tag for ensuring that the claimed result is correct. Recent, 

Gennaro and Wichs use a fully homomorphic encryption to 

construct a fully homomorphic message authenticator. In this 

paper, we propose a fully homomorphic message authenticator 

with improve efficiency than Gennaro and Wichs’s construction. 

Our fully homomorphic message authenticator is of less 

verification complexity than Gennaro and Wichs’s construction. 

 

Index Terms—Fully homomorphic message authenticators, 

fully homomorphic encryption, cloud security.  

 

I. INTRODUCTION 

In the cloud computing background, sometimes users hope 

that a remote service provider can do reliable computations 

over the outsourced data. The first fully homomorphic 

encryption [1], [2] scheme developed by C. Gentry make it 

possible to perform arbitrary computation over outsourced 

data at the same time the privacy of the outsourced data is kept. 

After C. Gentry’s construction, many full homomorphic 

encryption schemes have been developed [3]-[10]. 

Being enlighten by the idea of fully homomorphic 

encryption, Gennaro and Wichs instantiateand study the 

question of authenticating arbitrary computations over 

outsourced data: “if the remote server claims that the 

execution of some program P over the user’s outsourced data 

results in an output y, how can the user be sure that this is 

indeed the case?” [11] 

In order to solve this problem, Gennaro and Wichs propose 

a fully homomorphic message authenticator in [11]. A fully 

homomorphic message authenticator can be viewed as a 

symmetric-key version of fully homomorphic signatures that 

are introduced by Boneh and Freeman [12]. However, how to 

construct a fully homomorphic signature is still an important 

open problem.  

Almost all previous research work about homomorphic 

message authentication and signatures are restricted to linear 
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homomorphisms. The first linear homomorphic signature 

scheme is proposed by Johnson et al. in [13]. Since then, 

many linear homomorphic signatures and message 

authentication in the context of network coding are developed 

[14]-[20]. Linear homomophic signature and message 

authentication schemes can be used to construct proofs of 

storage and retrievability [21]-[24]. In [12], Boneh and 

Freeman propose a homomorphic signature for polynomial 

functions. Their security is based on hard problems on ideal 

lattice. Recently, Gennaro and Wichs design the first fully 

homomorphic message authenticator based on the fully 

homomorphic encryption systems [11]. 

The interactive and non-interactive proofs can also be used 

to make someone believe that some computation is correct 

[25]-[26]. But their constructions rely on the random-oracle 

model and don’t support arbitrary composition. 

There are research works about the problem of delegating 

computation [27]-[30], which is similar to a fully 

homomorphic message authenticator. However, the 

delegating computation is different from a fully homomorphic 

message authenticator. In those delegating computation 

schemes, when the function f, the input x and the output y are 

known for a user, but he does not want to perform the 

computation work of f(x), the sever is required to make the 

user believe that f(x) = y is correct. Compared to the fully 

homomorphic authenticators, several disadvantages are 

pointed out by Gennaro and Wichs about delegating 

computations: interaction, single use, bounded size, no 

composition.  

In this paper, we propose a fully homomorphic message 

authenticator with improved efficiency than Gennaro and 

Wichs’s construction: our scheme is of less verification 

complexity. 

Compared with Gennaro and Wichs’s algorithm, the 

novelty of our algorithm is as follows. In our algorithm, the 

tag of one bit contains some encryption of 1 except those 

encryption of 0 and that bit. In our verification algorithm, we 

only need two computaiton, while Gennaro and Wichs’s 

algorithm needs n/2 computation. 

The remainder of the paper is organized as follows. Section 

II reviews some basic definitions. In Section III, we design an 

algorithm for our algorithm for fully homomorphic 

authenticator. Finally, Section IV gives some open problems. 

 

II. DEFINITIONS 

In the following, we repeat some basic definitions of full 

homomorphic authenticators from [11].  

Definition 2.1. A labeled-program P = (f, τ1, …, τk) 
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consists of a circuit f : {0, 1}
k
 →{0, 1} along with a distinct 

input label τi ∈ {0, 1} for every input wire τi ∈ [k] ={1, . . . , 

k} [11].  

Definition 2.2. Given a circuit g : {0, 1}
t
→{0, 1} and some 

labeled programs P1, … ,Pt, the composed program that is 

denoted by P* = g(P1, . . . ,Pt) is defined as the computing g on 

the outputs of P1, … , Pt. Given the canonical identity circuit 

gid and some label τ∈ {0, 1}*, the identity program with label 

τ is defined as Iτ= (gid, τ) [11].  

Definition 2.3. (Fully Homomorphic Authenticator [11]). 

A fully homomorphic authenticator scheme consists of the 

probabilistic polynomial time algorithms (KeyGen, Auth, Ver, 

Eval) with the following syntax: 

1) KeyGen(1
n
) → (evk, sk): Outputs the secret key sk and 

an evaluation key evk. 

2) Authsk(b, τ)→б: Create a tag б that authenticates the bit b 

∈ {0, 1} under the label τ∈{0, 1}*.  

3) Evalevk(f, б) →ψ: The deterministic evaluation procedure 

takes a vector of tags б=(б1, …,бk) and a circuit f : {0; 

1}
k
→{0, 1}. It outputs a tag ψ. If each бi authenticates a 

bit bi as the output of some labeled-program Pi (possibly 

the identity program), then ψ should authenticate b* = f 

(b1, . . . , bk) as the output of the composed program P* = 

f(P1, . . . ,Pk). 

4) Versk (e, P, ψ) → {accept, reject}: The deterministic 

verification procedure uses the tag ψ to check that e ∈ {0, 

1} is the output of the program P on previously 

authenticated labeled data. 

The scheme need satisfy the following several properties: 

authentication correctness, evaluation correctness, 

succinctness. Their detailed description of these properties 

can be found in [11]. 

In the following, we introduce the definition of 

authenticator security. 

Definition 2.4. (Authenticator Security [11]). Consider the 

following game ForgeGame
A
(1

n
) between an attacker A(1

n
) 

and a challenger: 

1) The challenger chooses (evk, sk) ← KeyGen(1
n
) and 

gives evk to A. It initializes T =Φ; 

2) The attacker A can adaptively submit arbitrarily many 

authentication queries of the form (b, τ) to the challenger. 

On each such query, if there is some (τ,…) ∈T (i.e. the 

labelτ is not fresh), then the challenger ignores it. Else it 

updates T = T  {(τ, b)}, associating the label τ with the 

authenticated bit b, and replies with б�Authsk(b, τ). 

3) Finally, the attacker outputs some forgery (e*, P* = (f, 

τ1* , . . . , τt *),  ψ*).  

The output of the game is 1 iff V ersk(e*, P*,ψ*) = accept 

and one of the following two conditions holds: 

Type I Forgery: There is some i ∈ [k] such that the label (τi 

*, ..) does not appear in T. (i.e., No bit was ever authenticated 

under the label τi* involved in the forgery.) 

Type II Forgery: The set T contains tuples (τ1, b1), . . . , (τk, 

bk), for some bits b1, . . . , bk ∈{0, 1} such that f*(b1, . . . , bk) 

≠ e*. (i.e., The labeled program P* does not output e* when 

executed on previously authenticated labeled data b1, . . . , bk). 

We say that a homomorphic authenticator scheme is secure 

(without verification queries) if, for any probabilistic 

polynomial-time A, we have Pr[ForgeGame
A
(1

n
) = 1] 

≤negl(n). 

Definition 2.5. (Fully Homomorphic Encryption [11]). A 

fully homomorphic  encryption (FHE) scheme is a quadruple 

of PPT algorithms HE=(HE .KeyGen, HE.Enc, HE.Dec, 

HE.Eval)defined as follows.  

1) HE.KeyGen(1
n
) → (pk, evk, sk): Outputs a public 

encryption key pk, a public evaluation key evk and a 

secret decryption key sk. 

2) HE.Encpk (b)→c:  The ciphertext of a bit b ∈ {0, 1} is c 

under the public key pk.  

3) HE.Dec sk (c) →b: Decrypts ciphertext c using sk to a 

plaintext bit b. 

4) HE.Evalevk (g, c1,…, ct) →c*:  

The deterministic evaluation algorithm takes the evaluation 

key evk, a boolean circuit g: {0; 1}
t
→{0, 1}, and a set of t 

ciphertexts c1, . . . , ct. It outputs the result ciphertext c*. 

An FHE should also be of the following properties: 

encryption correctness, evaluation correctness, succinctness, 

semantic Security. 

Canonical FHE meaning that the HE.Eval procedure just 

evaluates the circuit recursively, level-by-level and 

gate-by-gate [11]. 

Definition 2.6. Hash Tree of a Circuit [11]. If g : {0, 1}
k
 

→{0, 1} is a circuit and H : {0; 1}*→{0, 1}
m
 is some hash 

function, the hash tree g
H
 : ({0; 1}*)

k
 →{0, 1}

m
 is a function 

which takes as input strings ν∈{0, 1}* for each input wire of 

g. For every wire w in the circuit g, the value of g
H
(ν1, . . . , νk) 

at w is defined inductively as: 

1) val(w) = H(νi) if w is the i-th input wire of g. 

2) val(w) = H(val(w1), . . . , val(wk)) if w is the output wire of 

some gate with input wires w1, . . . ,wt. 

The output of the function g
H
(ν1, . . . , νk) is defined to be its 

value at the output wire of g.   

 

III. ALGORITHMS FOR FULLY HOMOMORPHIC 

AUTHENTICATION 

In this section, we give the construction of our algorithm 

for fully homomorphic authenticator. Our construction is 

based on Gennaro and Wichs’s fully homomorphic 

authentication algorithm in [11]. But our algorithm improve 

the efficiency of Gennaro and Wichs’s construction since 

ourconstruction is of less verification complexity. 

Let {fK : {0, 1}*→ {0, 1}
r(n)

} be a (variable-input-length) 

pseudo-random function PRF family, K∈{0,1}
n
. Let FH be a 

family of (variable-length) collision-resistant hash functions 

(CRHF) H: {0, 1}*→{0, 1}
m(n)

. Let HE = (HE.KeyGen, 

HE.Enc, HE.Dec, HE.Eval) be a canonical fully 

homomorphic encryption scheme, where the encryption 

algorithm uses r = r(n) = ω(log(n)) random bits. Our fully 

homomorphic authentication algorithm (KeyGen, Auth, Eval, 

V er) is as follows: 

KeyGen(1
n
): Choose a PRF key K ←  {0, 1}

n
, a CRHF H 

←FH and an encryption key (pk, evk’, sk’)   HE.KeyGen(1
n
). 

Select a subset S  [n] and |S| = 2n/3, where each index i ∈ 

[n] is added to the set S independently with probability 1/2 . 

Randomly select a subset T∈{0,1}
2n/3 

 such that T is of n/3 0’s 
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and n/3 1’s. Randomly select a position t0 from n/3 0’s 

positions and a position t1 from n/3 1’s positions. Output evk = 

(evk’, H), sk = (pk, evk’, H, sk’, K, S, T, t0, t1). 

Authsk(b, τ): Given b∈ {0, 1} and τ∈ {0, 1}* do the 

following: 

1) Set n random strings randi = fK((τ, i))(1 ≤ i≤  n)  and ν= 

fK(τ). 

2) Produce n ciphertexts c1, . . . , cn as follows. For i∈ [n]\S, 

compute ci = HE.Encpk(b; randi) as encryptions of the bit 

b. For i∈S, compute ci = HE.Encpk (0; randi) as 

encryption of 0 if i is the j-th position of T and the j-th 

position of T is 0. Otherwise, compute ci = HE.Encpk(1; 

randi) as encryption of 1. 

3) Output б= (c1, . . . , cn, ν). 

Evalevk(g, б) : Given б= (б1, . . . , бt), where each бj = 

(c1,j , . . . , cn,j , νj) (1 ≤ j≤  t), do the following: 

1) For each i ∈[n], compute ci* = HE.Evalevk’(g, ci,1, . . . , 

ci,t). 

2) Compute ν*= g
H
(ν1, . . . , νt) as the value of the hash tree 

g
H 

of g at ν1, . . . , νt. 

3) Compute e0 = HE.Evalevk’(g, 0, . . . , 0) and e1 = 

HE.Evalevk’(g, 1, . . . , 1). 

Output   = (c1*, . . . , cn*,ν*, e0, e1). 

Versk(e,P, ψ ): Parse P = (g, τ1, . . . , τt) and ψ  = (c1*, . . . , 

cn*,ν*, e0, e1). 

1) Compute νi = fK(τi) for all 1 ≤ i ≤ t and ν’= g
H
(τ1, . . . , τt). 

If ν’ ≠ν*, output reject. 

2) For i∈ S, when i is the j-th position of T and the j-th 

position of T is 0 and j≠t0, decrypt ei =HE.Decsk’(ci* ) and 

if ei≠ e0 output reject; when j = t0, for each 1≤ h ≤ t, 

compute randi,h = fK((τh, i)) and ci,h =HE.Encpk(0, randi,h). 

Further, we compute ci’ = HE.Evalevk’ (g, ci,1, . . . ci,t), and 

if ci’ ≠ci* output reject; when i is the j-th position of T and 

the j-thposition of T is 1, decrypt ei =HE.Decsk’(ci* ) and 

if ei≠ e1 output reject; when j = t1, for each 1≤ h ≤ t, 

compute randi,h = fK((τh, i)) and ci,h =HE.Encpk(1, randi,h). 

Further, we compute ci’ = HE.Evalevk’ (g, ci,1, . . . ci,t), and 

if ci’ ≠ci* output reject; 

3) For each i ∈ [n]\S, decrypt ei =HE.Decsk’(ci* )  and if e 

≠ei  output reject. 

If the above doesn’t reject, output accept. 

For our algorithm, we show that it is secure without 

verification queries as follows. 

Theorem 3.1. Our homomorphic authenticator scheme is 

secure without verification queries when {fK} is a PRF family, 

H is a CRHF family and HE is a semantically secure canonical 

FHE. 

Proof: Based on the encryption correctness of HE, it is easy 

to know that the authentication correctness of our algorithm 

holds. By the evaluation correctness of HE and HE is 

canonical, it is also easy to know that the evaluation 

correctness of our algorithm holds.  

The security of our algorithm without verification queries 

is showed as follows. Let A be some PPT attacker and let μ(n) 

= Pr[ForgeGame
A
(1

n
) = 1]. In order to prove the security of 

our algorithm without verification queries, it is enough to 

show that μ(n) is negligible. We use a series of hybrid games 

to prove that μ(n) is negligible.  

Game1: In ForgeGame, replace the PRF with a truly 

random function. That is, each call to fK is replaced by a call to 

a completely random function F:{0,1}*→{0,1}
r(n)

. Based on 

the pseudo-randomness {fK}, it is easy to get: Pr[Game
A

1(n) = 

1] ≥μ(n)- negl(n), where negl(n) denotes negligible. 

Game2: Game2 is defined by modifying the winning 

condition in Game1: the game outputs 1 on type II forgery and 

outputs 0 on a type I forgery. Let E denote the event that 

attacker wins with a type I forgery in Game1. In the following, 

we show that Pr[E] = negl(n). 

Since H is a collision-resistant hash function, the 

probability of finding collisions on H is negligible, i.e. Pr[H(x) 

= H(y)] = negl(n) for any x≠y∈ {0, 1}*. By the definition of 

the hash tree g
H
, when x ≠ y, if g

H
(ν1, . . . , x, . . . , νk) = 

g
H
(ν1, . . . , y, . . . , νk), then there are some collisions on H at 

some level of g
H
. So Pr[g

H
(ν1, . . . , x, . . . , νk) = g

H
(ν1, . . . , 

y, . . . , νk)] is less than the probability of finding collisions on 

H. Thus, Pr[g
H
(ν1, . . . , x, . . . , νk) = g

H
(ν1, . . . , y, . . . , νk)] is 

negligible. 

When event E occurs, by the definition of type i forgery, 

the attacker submits a forgery e*, P* = (g, τ1* , . . . ,  τt *),  ψ*= 

(c1* , . . . , ct *,ν*)  such that one of some i ( i∈ [t] ) does not 

appear in authentication queries and V ersk(e*, P*,ψ*) = 1. 

Thus, in the step 1 of verification process, the valueνi = F (τi*) 

∈ {0, 1}
r(n)

 is produced randomly. We re-sample a value νi’ 

from {0, 1}
r(n)

 randomly and independently again. Let B 

denote the event that verification accepts both times. Then 

Pr[E]
2
 ≤ Pr[B]. Let D denote the event that νi≠νi’ and D  

denote the event that νi=νi’. Then Pr[ D ] = 2
-r(n)

. Since Pr[B] 

= Pr[B∩ D] + Pr[B ∩ D ], Pr[B] ≤Pr[B∩D] + Pr[ D ] = Pr[B \ 

D] + 2
-r(n)

. So Pr[E]
2
≤ Pr[B ∩D] + 2

-r(n)
. The event B∩ D 

occurs means that verification accepts both times and νi≠νi’. 

From the step 1 of verification process, we have Pr[g
H
(ν1, . . . , 

νi, . . . , νt) = g
H
(ν1, . . . , νi’, . . . , νt)] = ν*. Thus Pr[B ∩D] 

≤Pr[g
H
(ν1, . . . , νi, . . . , νt) = g

H
(ν1, . . . , νi’, . . . , νt)]. So Pr[B∩ 

D] is negligible. Hence Pr[E]
2
 is negligible. Thus, Pr[E] = 

negl(n). 

So, we get: Pr[Game
A

2(n) = 1]≥ Pr[Game
A

1(n) = 1] - Pr[E] 

≥ μ(n) - negl(n). 

Game3: In Game3, the winning condition is modified. The 

challenger remembers the corresponding tag б when he 

answers authentication queries. For any type II verification 

query e*, P* = (g, τ1*, . . . , τt *),  ψ* = (c1 *, . . . , cn*,ν*), the 

challenger can now recall the correct bits bj and tags бj = 

(c1,j , . . . , cn,j) associated with the input labels τj * for j ∈ [t]. 

For i ∈ [n], let c i = HE.Evalevk(g, ci,1, . . . , ci,t) be the 

“honest ciphertexts”, which an honestly generated tag would 

contain for the program P*. In Game3, we replace step (3) of 

the verification procedure as follows: 

3’. For each i ∈ [n]\S : if c i = ci* then output reject. 

In Game3, step (3’) is different from the original step (3) in 

Game2. Let e = g(b1, . . . , bt) be the honest output of P*. In an 

accepting type II forgery, we must have e* ≠e but the 

decryption of the “honest ciphertexts” is e, i.e. HE.Decsk’( c i) 

= e. So, for any accepting type II forgery in Game2, ci *≠ c i 

holds for all i ∈ [n]\S. 

Therefore, any accepting type II forgery in Game2 is also 
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accepting in Game3. Hence, we get:Pr[Game
A

3(n) = 1] ≥ 

Pr[Game
A

2(n) = 1](n) ≥ μ(n) -negl(n). 

Game4: We define Game4 by modifying answering 

authentication queries in Game3. When the challenger 

answers authentication queries in step (2) of the 

authentication procedure, all of ci (even for i ∈ S) are 

computed as encryptions of the correct bit b. Then, by the 

semantic security of the encryption scheme HE, we get: 

Pr[Game
A

4 (n) = 1] > Pr[Game
A

3(n) = 1] - negl(n) ≥ μ(n) - 

negl(n). 

Hence, μ(n)≤ Pr[Game
A

4(n) = 1]+negl(n). In the following, 

we show that Pr[Game
 A

4 (n) = 1] is negligible. 

In Game4, the set S   [n] is picked by the challenger 

during verification and is ignored when answering 

authentication queries. For any type II forgery e*, P*, ψ* = (c1 

*, . . . , cn*,ν*), let c1’, . . . , cn’ be the “honest ciphertexts”, 

which can honestly generated tag ψ would contain for the 

program P* (see description of Game3). We use S’ to denote 

the set of indices on which the forged and honest ciphertexts 

match, i.e. S’ = {i ∈ [n], ci *= ci’}. Only if steps (3’) of 

verification pass, the attacker wins. Thus, if i∈ [n]\S, then ci’ 

≠ci *. So [n]\S   [n]\S’. Hence, S’   S. Over the random 

choice of S, the probability is 1/2
n-|S’|

 

Since |S| = 2n/3 , |S’| ≤ 2n/3 . So n - |S/| ≥ n/3 . Hence, 

1/2
n-|S’|

≤ 2
-n/3

 . 

Therefore, we get: μ(n) ≤Pr[Game
A

4(n) = 1] + negl(n) ≤ 

2
-n/3

 + negl(n) = negl(n). 

Theorem 3.2. Our algorithm is of less verification 

complexity than Gennaro and Wichs’s fully homomorphic 

authentication algorithm. 

Proof: In the verification process of Gennaro and Wichs’s 

algorithm, it needs n/2 computation of the program P. 

However, our algorithm need two these computation. So, our 

algorithm is of less verification complexity than Gennaro and 

Wichs’s algorithm. 

 

IV. CONCLUSION 

In this paper, we propose a fully homomorphic message 

authenticator. Our algorithm is of less verification complexity 

than Gennaro and Wichs’s construction. Our algorithm save 

much computation in the verification process. 

There are still many open questions left. For example, how 

to reduce the tag size from n ciphertexts to smaller ciphertexts? 

Maybe the most ambitious questions is how to construct fully 

homomorphic signatures. 
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