
  

 

Abstract—Pairings on hyperelliptic curves have been applied 

to many cryptographic schemes, and it is important to exploit 

methods that increase the speed of various pairings and their 

curves. Additionally, multiple pairings should be performed 

efficiently in some cryptographic application such as 

attribute-based encryption or functional encryption. We 

propose an efficient extension field construction method that 

defines a curve and its 𝜼𝑻 pairing. We also implemented the 

parallel arithmetic on extension fields and multiple 𝜼𝑻 pairings 

in parallel and reported experimental timing results. We 

achieved timing of 12.7ms and 52.0ms per pairing when 

computed 1248 pairings by using GPU Tesla K20c. We took the 

extension degree of base field 𝒎 = 𝟒𝟖𝟕 which is greater than 

the parameter 𝒎 = 𝟑𝟔𝟕,𝟒𝟑𝟗 that was appropriate for the 𝜼𝑻 

pairing at the 128-bit security level. By normalization of 

experimental result, we achieved a certain level of speeding up 

of the 𝜼𝑻  pairing compared to the state-of-the-art CPU 

implementation. In addition, we achieved scalability with the 

extension degree of base field in our parallel implementation by 

performing Karatsuba multiplications between multiple 

elements of extension field in parallel. 

 

Index Terms—ƞT pairing, multiple pairings, GPU 

implementation, CUDA, karatsuba method, DLP in finite field 

of small characteristic, security level. 

 

I. INTRODUCTION 

Koblitz [1] suggested a hyperelliptic cryptosystem us- ing 

Jacobians of hyperelliptic curves as arithmetic 

generalizations on groups of elliptic curves. Arithmetic on 

Jacobians of hyperelliptic curves is more complex than on 

elliptic curve groups. Alternatively, we can use smaller finite 

fields; i.e., we can employ smaller size keys by using higher 

genus curves to achieve the same level of security. 

Pairings on elliptic curves or higher genus curves have 

attracted significant attention and have been applied to many 

cryptographic schemes, such as ID-based cryptography. 

Generally, calculation methods for pairings are complex and 

the cost of pairings is considerably higher than that of 

arithmetic on curves. In addition, the cost is significantly 

higher when using algebraic curves of higher genus. 

Modern graphics processing unit (GPU) technology for 

general purposes, based on GPU computation has advanced 

significantly, while the use thereof in high level cryptography 

implementations has increased rapidly. There has been much 

research on increasing the speed of multiple-precision 
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arithmetic or arithmetic on finite fields using GPUs, which is 

explored further in Section II. 

In this study, we consider the parallelization of arithmetic 

on extension fields. The pairing algorithm is suitable for our 

parallel algorithm. As there are many parameters for pairings, 

by implementing pairings on a GPU, we can exploit 

parallelization methods to extend the program code flexibly. 

In the case that the field characteristic defining the curve and 

pairing is large, we can compute elements of the field in 

parallel as modular arithmetic on prime fields using a GPU 

[2]–[5]. On the other hand, if the characteristic is small, we 

can implement arithmetic on the field efficiently using a GPU 

and polynomial bases. Y. Katoh, Y. Huang, C. Cheng, and T. 

Takagi [6] implemented arithmetic on the 𝔽3𝑚  and 

𝜂𝑇  pairing defined on 𝔽3𝑚  using a GPU. They succeeded in 

accelerating the process significantly by computing multiple 

𝜂𝑇  pairings in a bit-sliced fashion. As the field characteristic 

is small, the degrees of the polynomials calculated as 

elements of the extension field are large; therefore, we can 

use the power of a GPU effectively within the context of 

parallelization. 

Having focused on a parallel implementation of arithmetic 

on (extension) fields using polynomial bases, we have 

developed a practical and efficient method for parallelizing 

arithmetic on extension fields and a method for their 

construction that is suitable for our parallel algorithm. Indeed, 

we implemented parallel 𝜂𝑇  pairing on a supersingular 

genus-two curve. We then used basis conversion to compute 

the 𝜂𝑇  pairing to change the extension field construction 

making it suitable for parallel arithmetic on fields. We also 

achieved speedup of the 𝜂𝑇  pairing using a different 

extension field construction method based on [7]. 

The remainder of this paper is organized as follows. We 

describe work related to the state-of-the-art software 

implementation of pairings and a GPU implementation for 

parallel modular arithmetic and pairings in Section II. In 

Section III, we recall 𝜂𝑇  pairing on a genus-two curve over a 

binary field and its algorithm. We then describe recent 

research on the discrete logarithm algorithm in a finite field 

of small characteristic and the security level for the 𝜂𝑇  

pairing over binary fields. Section IV presents the detailed 

methodology of our parallel algorithm for arithmetic on 

extension fields and 𝜂𝑇  pairing. We then report experimental 

timing results of the 𝜂𝑇  pairing implementation on a GPU in 

Section V. Finally, we present our conclusions and 

suggestions for future work in Section VI. 

 

II. RELATED WORK 

Here, we summarize state-of-the-art work related to a 

software implementation of pairings. First, we describe some 
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work concerning the efficient implementation of pairings on 

a CPU. We then describe some research on implementing 

multiple-precision arithmetic on finite fields, modular 

arithmetic, and pairings, or other cryptographic applications 

using GPUs. 

J. Beuchat, E. López-Trejo, L. Martínez-Ramos, S. 

Mitsunari, and F. Rodríguez-Henríquez [8] implemented a 

reduced modified Tate pairing (𝜂𝑇pairing) on supersingular 

elliptic curves and designed a fast multi-core library using 

single-instruction multiple-data instructions. They reported a 

calculation time of just 1.87ms on Intel Core i7 architectures 

for Tate pairing at the 128-bit security level. 

In [9], Beuchat et al. described the design of a fast software 

library for the computation of optimal Ate pairing on a 

Barreto–Naehrig elliptic curve. They re- ported that optimal 

Ate pairing at the 126-bit security level took 2.33 million 

clock cycles on a single core of an Intel Core i7 2.8 GHz 

processor. 

D. F. Aranha, J. López, and D. Hankerson [10] 

implemented 𝜂𝑇  pairing over bi- nary supersingular curves at 

the 128-bit security level in parallel (using two types of 

parallelism: vector instructions and multiprocessing). They 

reported parallel timings 66% faster than the result of [8]. S. 

Chatterjee, D. Hankerson, and A. Menezes [11] reported 

preliminary timings for Type 1 (symmetric) pairings on 

supersingular genus-2 curves of characteristic 2 at the 128-bit 

security level. The 𝜂𝑇  pairing over 𝔽2439  took 16.4 million 

clock cycles on an Intel Core 2 processor. 

In [12], D. F. Aranha, K. Karabina, P. Longa, C. H. 

Gebotys, and J. López described efficient formulas for 

computing optimal Ate pairings on ordinary elliptic curves 

over prime fields. Their efficient techniques for computing 

pairings, for the first time allow a pairing to be obtained in 

under 2 million cycles on a 64-bit processor, improving the 

result of [9] by 28%–34%. 

D. F. Aranha, J. Beuchat, J. Detrey, and N. Estibals [13] 

presented a novel optimal Eta pairing algorithm on 

supersingular genus-2 binary hyper-elliptic curves. 

According to their experimental results from a software 

implementation, an optimal Eta pairing on a genus-2 curve 

over 𝔽2367  took 4.44 and 2.75 million clock cycles on an Intel 

Core 2 processor and Core i5 32 nm (Nehalem 

microarchitecture) processor, respectively. 

Recently, Mitsunari [14] reported an efficient 

implementation of an optimal Ate pairing at the 126-bit 

security level (in [9], [12]) on an Intel Haswell processor. A 

mulx instruction supported by the Haswell processor was 

used to achieve the pairing in only 1.17 million clock cycles. 

Efforts to speed up modular arithmetic using the power of 

GPUs are reported in [2], [5]. In [5], the authors implemented 

three modular arithmetic operations on a GPU: addition, 

subtraction, and multiplication. They used Montgomery’s 

method for multiplication to avoid division. They also 

implemented arithmetic on elliptic curves using modular 

multiplication on a GPU. 

Radix representation or a residue number system (RNS) 

can be used for modular multiplication in large finite fields. 

According to [3], [4], using a radix representation is superior 

to a RNS with regard to parallel implementation of modular 

multiplication on GPUs. 

Katoh et al. [6] implemented arithmetic on 𝔽3𝑚  and an 𝜂𝑇  

pairing defined on 𝔽3𝑚  using a GPU. They succeeded in 

achieving significant speedups by computing multiple 𝜂𝑇  

pairings in a bit-sliced fashion. Essentially, they parallelized 

modular arithmetic represented by a polynomial basis by 

performing arithmetic on the basic field 𝔽3 in each thread. 

They implemented modular multiplication on a GPU by 

parallelizing the Comb method on a finite field [6, §3.2, 

Implementation II]. In addition, they implemented and 

evaluated parallel multiplication by computing 32 operations 

in a bit-sliced fashion. They reported that 𝜂𝑇  pairing over 

𝔽3509  took 3.01ms on an NVIDIA GTX 480 and concluded 

that their GPU implementation for larger fields was slower 

than multi-core CPU implementations [8] owing to the 

limited fast on-die memory on the GPU. Y. Zhang, C. 

Jason-Xue, D. S. Wong, N. Mamoulis, and S. M. Yiu [15] 

were the first to present an evaluation of bilinear pairings 

over composite-order groups on graphics card hardware. 

They implemented parallelized base field operations via a 

RNS and performed multiple pairings to occupy the hardware 

resource. According to their experimental results, in 1024-bit 

base fields, the NVIDIA GTX 480 achieved a running time of 

8.7ms per pairing, which is 19.6 times faster than the 

state-of-the-art CPU implementation. 

 

III. 𝜂𝑇  PAIRING AND SECURITY LEVEL 

A. Algorithm of 𝜂𝑇  Pairing 

Here, we describe the 𝜂𝑇  pairing [7] and discuss some of 

its properties. Barreto et al. exploited 𝜂𝑇  pairing in [7] for 

supersingular curves as a generalization of the Duursma-Lee 

technique [16]. 

Suppose that 𝐶/𝔽𝑞  is a supersingular curve with 

embedding degree 𝑘 > 1 and that a distortion map 

𝜓 ∶   𝐶 𝔽𝑞   → 𝐶 𝔽𝑞𝑘    

is present. This allows denominator elimination, i.e., for 

𝑃 ∈ 𝐶 𝔽𝑞𝑘   ,𝜓 𝑃 ∈  𝐶 𝔽𝑞𝑘    has an x-coordinate in 𝔽𝑞𝑘/2  . 

Then, for 𝑇 ∈ ℤ, Eta pairing (𝜂𝑇  pairing) is given by 

𝜂𝑇 ∶  Jac 𝔽𝑞    𝑟 × Jac 𝔽𝑞    𝑟 → 𝜇𝑟 ⊂ 𝔽
𝑞𝑘
×  

 𝐷,𝐸 ↦ 𝑓 𝑇,𝐷 (𝜓 𝐸 )(𝑞𝑘−1)/𝑟  

Barreto et al. generalized the Duursma–Lee techniques, 

including effective calculation of divisors and using a 

Frobenius map, directly in Miller’s algorithm. They 

succeeded in generalizing a loop shortening idea in many 

other cases. They described 𝜂𝑇  pairing on a supersingular 

genus-two curve in detail in [7, §7]. We use this curve and 

consider 𝜂𝑇  pairing under the same conditions. 

We consider the supersingular curve 

𝐶 ∶  𝑦2 + 𝑦 = 𝑥5 + 𝑥3 

over 𝔽2𝑚  an embedding degree of 12; therefore, we have to 

perform arithmetic on the extension field 𝔽212𝑚  . In this study, 

we implemented 𝜂𝑇  pairing using two methods to construct 

an extension field. 

In the first method, we construct 𝔽212𝑚  according to [7, 

§7.1], starting with a sixth degree extension. We then 

construct a quadratic extension as follows: 
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𝔽26𝑚 ≃ 𝔽2𝑚 [𝑥]/(𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 1), 

𝔽212𝑚 ≃ 𝔽26𝑚 [𝑦]/(𝑦2 + 𝑦 + 𝑤5 + 𝑤3), 

𝑤6 + 𝑤5 + 𝑤3 + 𝑤2 + 1 = 0. 

Let 𝑠0  be a root of 𝑦2 + 𝑦 + 𝑤5 + 𝑤3 . We call the 

following polynomial basis 𝑠0𝑤-basis, 

 1,𝑤,𝑤2 ,𝑤3 ,𝑤4,𝑤5 , 𝑠0 , 𝑠0𝑤, 𝑠0𝑤
2 , 𝑠0𝑤

3 , 𝑠0𝑤
4 , 𝑠0𝑤

5 . 

The second method constructs 𝔽212𝑚  by starting with a 

cubic extension of 𝔽2𝑚  for parallel arithmetic on the 

extension field. We define 𝔽23𝑚  using the irreducible 

polynomial 𝑥3 + 𝑥 + 1 over 𝔽2𝑚 . Letting 𝑤  be one of the 

roots of 𝑥3 + 𝑥 + 1, we can represent elements of 𝔽23𝑚  with 

basis {1,𝑤,𝑤2}  over 𝔽2𝑚 . Similarly, we consider the 

irreducible polynomial 𝑦2 + 𝑦 + 𝑤 + 1 over 𝔽2𝑚  and let 𝑠 

be one of the roots of the polynomial. Hence, 𝔽26𝑚  has the 

basis {1,𝑤,𝑤2 , 𝑠, 𝑠𝑤, 𝑠𝑤2} . Finally, for the irreducible 

polynomial 𝑧2 + 𝑧 + 𝑠 + 𝑠𝑤2 over 𝔽26𝑚 , let 𝑡 be one of the 

roots of the polynomial. We can thus represent elements of 

𝔽212𝑚  with the basis 

 1,𝑤,𝑤2 , 𝑠, 𝑠𝑤, 𝑠𝑤2 , 𝑡, 𝑡𝑤, 𝑡𝑤2 , 𝑠𝑡, 𝑠𝑡𝑤, 𝑠𝑡𝑤2 . 

We refer to this polynomial basis as 𝑠𝑡𝑤-basis. In this 

paper, we examine a specific algorithm but do not describe 

the functions and algorithm for the 𝜂𝑇  pairing in detail in 

each case. According to [7, §7], when we use the 𝑠0𝑤-basis, 

we can compute the 𝜂𝑇  pairing as [7, §7.3, Algorithm 4]. We 

also present the 𝜂𝑇  pairing algorithm using the 𝑠𝑡𝑤-basis as 

Algorithm 1 using the same notation as in [7, §7.3, Algorithm 

4]. 

As shown in Algorithm 1, we can calculate pairings in the 

same manner irrespective of which polynomial basis is used. 

However, using 𝑠𝑡𝑤-basis reduces the cost of multiplication 

of 𝛼𝛽 in line 20. Therefore, we can implement 𝛼𝛽 efficiently 

in parallel. We need to perform 13 multiplications on base 

field by using Karatsuba method in order to compute 𝛼𝛽 with 

s0w-basis. We can reduce number of multiplication to 9 by 

constructing the 12-th extension field of with 𝑠𝑡𝑤-basis. 

B. Security Level for 𝜂𝑇  Pairing 

Security parameters for the pairings were chosen assuming 

Coppersmith’s algorithm [17] or a generalization thereof [18] 

with heuristic complexity 

𝐿𝑄  
1

3
,  

32

9
 

1
3
  

where 

𝐿𝑄 𝛼, 𝑐 = exp   𝑐 + 𝑜 1   log𝑄 𝛼 log log𝑄 1−𝛼  

Therefore, the 𝜂𝑇  pairing over 𝐶/𝔽2𝑚  at the 128-bit 

security level was implemented by choosing 𝑚 = 367, 439 

since 𝔽212 ∙367 , 𝔽212 ∙439  were assumed to be 128-bit security 

against Coppersmith attacks. 

Recently, small theoretical and practical advancements of 

the efficient discrete logarithm problem (DLP) algorithm 

have been made [19]–[23]. G. Adj, A. Menezes, T. Oliveira, 

and F. Rodríguez-Henríquez [24] explained how the new 

algorithms by Joux [21] and R. Barbulescu, P. Gaudry, A. 

Joux, and E. Thomé [23] could be combined to solve the DLP 

in 𝔽36∙509  faster than the Joux–Lercier algorithm [25]. They 

estimated the complexity (number of multiplications) to 

solve the DLP in 𝔽36∙509  to be only 273.7  compared with 

2102.69  estimated by N. Shinohara, T. Shimoyama, T. 

Hayashi, and T. Takagi [26] using the Joux–Lercier 

algorithm and Joux’s pin-pointing technique [19]. They also 

noted the case of characteristic 2 [24, Appendix A] and 

estimated that the complexity to solve the DLP in 𝔽212 ∙367  

was 294.6 , which is greater than  291.6  estimated by them 

using the Joux–Lercier method with pinpointing. In addition, 

with access to a massive number of processors (233 

processors), the bottleneck of the new algorithm would be a 

linear algebra computation with complexity 260 . 

 
Algorithm 1: 𝜂𝑇  pairing (𝑚 ≡ 7 (mod 8)) using 𝑠𝑡𝑤-basis 

INPUT: 𝑃 =  𝑥𝑃 ,𝑦𝑃 ,𝑄 =  𝑥𝑄 ,𝑦𝑄 ∈  Jac 𝔽2
𝑚   

OUTPUT: 𝑓 ∈ 𝔽212𝑚  

1:  𝑥1 𝑖 ← 𝑥𝑃
2𝑖 ,𝑦1 𝑖 ← 𝑦𝑃

2𝑖 ,𝑥2 𝑖 ← 𝑥𝑄
2𝑖 ,𝑦2 𝑖 ← 𝑦𝑄

2𝑖  (0 ≤ 𝑖 ≤ 𝑚 − 1) 

2: 𝑓 ← 1 

3: for 𝑖 = 0 to (𝑚− 3)/2  do 

4:  Consider the following 𝑘𝑗  (mod 𝑚) 

5:   𝑘1 ← (3𝑚− 9 − 6𝑖) 2 ,𝑘2 ← 𝑘1 + 1, 𝑘3 ← 𝑘2 + 1  

6:   𝑘4 ← (3𝑚− 3 − 6𝑖) 2 , 𝑘5 ← 𝑘4 + 1, 𝑘6 ← 𝑘5 + 1 

7: 

8:  Compute 𝛼 ← 𝑎 + 𝑏𝑤 + 𝑐𝑤2𝑑𝑠 + 𝑡 

9:   𝑐 ← 𝑥1 𝑘4 + 𝑥1[𝑘5] 

10: 𝑎 ← 𝑦2 𝑘2 +  𝑐 + 1 𝑥2 𝑘3 +  𝑥1 𝑘4 + 1 + 𝑥2 𝑘3  𝑥2 𝑘2 +
                     𝑦1 𝑘4 + 𝑥1 𝑘4 + 𝛾1 𝑖 + 1 

11   𝑏 ← 𝑥2[𝑘3]+ 𝑥1[𝑘5] + 𝛾1 𝑖 + 1 

12: 𝑑 ← 𝑥2 𝑘3 + 𝑥1 𝑘5 + 1 

13: 

14: Compute 𝛽 ← 𝑒 + 𝑓2𝑤 + 𝑔𝑤2𝑑𝑠 + 𝑡 

15: 𝑓2 ← 𝑥2 𝑘2 + 𝑥1[𝑘6] + 𝛾1 𝑖 + 1 

16: 𝑒 ← 𝑦2 𝑘1 +  𝑥1 𝑘6 + 1 + 𝑥1 𝑘5  𝑥2 𝑘1 + 𝑦1 𝑘5 +
𝑑𝑥1 𝑘6 +                      𝑥1 𝑘5 +𝛾1 𝑖  

17: 𝑔 ← 𝑥2[𝑘2]+ 𝑥2[𝑘1] + 𝛾1 

18: 

19: 

20: 𝑓 ← 𝑓(𝛼𝛽) 

21: end for 

22: 

23: 𝑥𝑃 ← 𝑥1 6 𝑚 − 1 2  + 𝛾1  𝑚 − 1 1) 2   

= 𝑥1 𝑚 − 3 + 1   6 𝑚 − 1  2 ≡ 𝑚− 3 (mod 𝑚)) 

24: 𝑦𝑃 ← 𝑦1 6 𝑚 − 1 2  + 𝑥1 6 𝑚 − 1 2 + 1 + 𝛾3( 𝑚 − 1 2   

= 𝑦1 𝑚 − 3 + 𝑥1[𝑚− 2] 

25: 

26: Perform the final doublings / addition 

27: 𝑢 ← 𝑦2 0 + 𝑥2 1  1 + 𝑥2 0 + 𝑥𝑃
8 + 𝑥𝑃

4 + 𝑥𝑃
4𝑥2 0 + 𝑦𝑃

4 + 𝑥𝑃
8 +

                𝑥𝑃
4 + 1 

28:𝑓 ← 𝑓4(𝑢, 𝑥2 1 + 𝑥2 0 + 𝑥𝑃
8 + 𝑥𝑃

4 + 1, 𝑥2 1 + 𝑥2 0 ,𝑥𝑃
8 +

                𝑥2 0 , 1,0,1,0,0,0,0,0) 

29: 

30: Perform the final exponentiation 

31: 𝑓 ← 𝑓(26𝑚−1)(23𝑚−24𝑚 2(𝑚+1) 2 −1)  

32: return 𝑓 

 

In Fig. 1, we compare the heuristic complexity to solve the 

DLP in 𝔽212 ∙𝑛  with Coppersmith algorithm, Joux–Lercier 

algorithm and Joux’s pinpointing method. For 

implementation of the 𝜂𝑇  pairing over 𝐶/𝔽2𝑚  at the 128-bit 

security level, we take two extension degrees 𝑚 = 487, 967. 
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Since Adj et al. estimated the DLP algorithm using 

Joux–Lercier pinpointing method in 𝔽212 ∙367  with 291.6, we 

should take 𝑚  which is greater than at least 𝑚 = 439 . 

Although it needs concrete analysis for the complexity of 

DLP algorithm in 𝔽212 ∙𝑚  as shown in [24, Appendix A], we 

evaluate parallel implementation of the 𝜂𝑇  pairing over 

𝐶/𝔽2487 . In the second case, we take extension degree 

𝑚 = 967  which seems adequate parameter at the 128-bit 

security level and perform an experimental simulation of 

pairing computation using GPU. 

 

 
Fig. 1. Comparison of the complexity to solve the DLP in 𝔽212∙𝑛 . 

 

IV. METHODOLOGY 

In this section, we present the proposed method for 

parallelization of arithmetic on base fields and extension 

fields. Katoh et al. [6] implemented 𝜂𝑇  pairing on a GPU. 

Similarly, we parallelized arithmetic on extension fields 

constructed by irreducible polynomials. We parallelized the 

arithmetic in a straightforward manner to allow flexible 

computation of extension field elements. In addition, we 

propose an approach for combining Karatsuba method 

parallelization and parallel arithmetic on extension fields. 

A. Parallel Computation of Multiplication on Base Fields 

and Extension Fields 

First, we introduce how to implement operations in base 

fields 𝔽2𝑚 . We implemented elements of base fields as 

polynomial represented by uint64_t array. We then adopted 

left-to-right comb window method [27], therefore we took 

the word size of 64-bit and the window size of 4 with 

experimental results. 

Katoh et al. implemented 𝜂𝑇  pairing on a GPU by 

parallelizing the Comb method on finite fields [6, §3.2, 

Implementation III] in a bit-sliced fashion. We implemented 

straightforward parallelization of arithmetic of polynomials 

as arithmetic on base field. Indeed, for elements of base field 

𝑎 𝑥 =  𝑎𝑖
𝑚

𝑖=0
𝑥𝑖 , 𝑏 𝑥 =  𝑏𝑖

𝑚

𝑖=0
𝑥𝑖 ∈ 𝔽2𝑚  

We compute the coefficients of 𝑎 𝑥 + 𝑏(𝑥)  by using 

XOR operation 𝑎1 ⊕𝑏1  in parallel, and compute each 

𝑐𝑖  where 

 𝑐𝑖
2𝑚

𝑖=0
𝑥𝑖 = 𝑐 𝑥 = 𝑎(𝑥)𝑏(𝑥) 

in parallel with comb window method. In comb win-dow 

method, we add polynomials as elements of base field to c(x) 

in m threads and we implement other calculation in serial. 

In this study, we implemented arithmetic on extension 

fields using only the Karatsuba method. The Karatsuba 

method can be generalized for polynomials of arbitrary 

degree [28, §3.2, Algorithm 2]. We consider two polynomials 

of degree d, 

𝐴 𝑥 =  𝑎𝑖
𝑑

𝑖=0
𝑥𝑖 , 𝐵 𝑥 =  𝑏𝑖

𝑑

𝑖=0
𝑥𝑖  

For each 𝑖 = 0,… ,𝑑, we compute 

𝑉𝑖 ≔ 𝑎𝑖𝑏𝑖                                       (1) 

and for 0 ≤ 𝑠 < 𝑡 ≤ 𝑑, 

𝑉𝑠,𝑡 ≔ (𝑎𝑠 + 𝑎𝑡)(𝑏𝑠 + 𝑏𝑡)                        (2) 

We can then compute 𝑎 𝑥 𝑏 𝑥 =  𝑐𝑖𝑥
𝑖2𝑑

𝑖=0  as follows 

𝑐0 = 𝑉0, 𝑐2𝑑 = 𝑉𝑑 , 

𝑐𝑖 =  

 𝑉𝑠,𝑡 −   𝑉𝑆 + 𝑉𝑡 𝑠+𝑡=𝑖   𝑖: odd,𝑠+𝑡=𝑖

 𝑉𝑠,𝑡 −   𝑉𝑆 + 𝑉𝑡 + 𝑉𝑖/2𝑠+𝑡=𝑖   𝑖: even,𝑠+𝑡=𝑖

for 0 ≤ 𝑠 < 𝑡 ≤ 𝑑, 0 < 𝑖 < 2𝑑.

 
    (3) 

Thus, we can use the Karatusba method for multiplication 

in extension field 𝔽𝑞𝑘  and reduce multiplication to 3, 6, 21, or 

78 operations for 𝔽𝑞  if 𝑘 = 2, 3, 6 or 12, respectively. 

In addition to the above parallel method for operations in 

base field, we consider the Karatsuba parallelization method 

for arithmetic on extension fields. We parallelize the 

precomputation phase of the Karatsuba method as follows. 

First, we start to compute 𝑉𝑖  (1) in parallel. At the same time 

we compute  𝑎𝑠 + 𝑎𝑡 , (𝑏𝑠 + 𝑏𝑡) (2) and 𝑉𝑠,𝑡  (2) in parallel. 

After that, we compute 𝑐𝑖  (3) in serial. 

B. Implementation of 𝜂𝑇  Pairing on GPU 

We implemented our parallel algorithm on a GPU, the 

NVIDIA Tesla K20c, and used the Compute Unified Device 

Architecture (CUDA) programming model [29]. The 

experimental environment is presented in Table I. 

 
TABLE I: EXPERIMENTAL ENVIRONMENT. 

OS Fedora 19 

CPU 
Intel Core i7-4770K, 3.50GHz, 

4 Cores 

Memory DDR3-1333, 32GB 

GPU 
Tesla K20c, 2496 CUDA Cores 

Graphics Clock: 706 MHz 

Compiler GCC-4.8.2, NVCC-5.5 

Compute Capability 3.5 

 

The extension degree directly affects the time for parallel 

arithmetic computations on the extension field. We 

implemented and evaluated 𝜂𝑇  pairing for extension degrees 

𝑚 = 487  and 𝑚 = 967  as described in previous section 

about security level. Since elements of base field are 

represented uint64_t array, we need to take the length of 8 

and 16 respectively for the extension degree 𝑚 = 487 and 

𝑚 = 967. Therefore, we implemented that 8 or 16 threads 

handle each operation in base field using CUDA 

programming model. In addition, we computed multiple 
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pairings in order to use GPU resource effectively. We 

implemented arithmetic between multiple elements in base 

fields and extension fields in parallel by using blocks in 

CUDA programming. Each block handles calculation with 

independent elements of fields in parallel using multiple 

threads, therefore we could compute multiple 𝜂𝑇  pairings 

independently. 

Basically, we implemented operations in fields by starting 

to copy data to global memory which is an off-chip memory 

device that can be accessed by any thread and the device’s 

access time is higher than that of other memory operations. 

We then stored intermediate variable to shared memory and 

after that finished to calculate on GPU, we copied the results 

to main memory. Indeed, we used shared memory to store 

precomputation table in window method, and the limit of the 

window size when 𝑚 = 967 was 8 since the size of shared 

memory on Tesla K20c was 48KB. We implemented parallel 

Karatsuba method of the degree 𝑑 = 2, 5  respectively for 

extension degree of 3, 6 and combined the Karatsuba method 

in order to do multiplication on 12-th extension field for each 

construction using 𝑠0𝑤 -basis, 𝑠𝑡𝑤 -basis. We computed 

additions on fields except per- formed in Karatsuba method 

on CPU since it is enough fast to perform additions between 

multiple elements of fields. 

 

V. EVALUATION 

In this section, we showed the experimental result of the 

implementation of 𝜂𝑇  pairing on GPU. First, we reported 

comparison of the total time to compute multiple 𝜂𝑇  pairings 

on CPU and GPU. In Fig. 2 and Fig. 3, we describe total time 

of CPU and GPU implementation of the multiple 𝜂𝑇  pairings 

over 𝔽2487 ,𝔽2967 respectively, with 𝑠0𝑤 -basis, 𝑠𝑡𝑤 -basis. 

CPU implementation means that we compute multiple 

pairings in serial with same parallel algorithm for GPU 

implementation. 

 

 
Fig. 2. Total time of multiple 𝜂𝑇  pairings over 𝔽2487 . 

 

As shown in Fig. 2 and Fig. 3, timings of GPU 

implementation are slower than CPU implementation with 

small number of pairings since GPU resource is not used 

sufficiently. We can see that the total time in the case of 𝔽2967  

is seemed to have more effect on parallelization compared to 

the case of 𝔽2487 . The construction for 12-th extension field 

using 𝑠𝑡𝑤 -basis have an impact on timing of CPU 

implementation over 𝔽2967  since the cost of multiplication is 

bigger than the case of 𝑚 = 487. 

 
Fig. 3. Total time of multiple 𝜂𝑇  pairings over 𝔽2967 . 

 

We then report the timing results for computing per pairing 

on GPU in Fig. 4 

 

 
Fig. 4. Comparison of the computation time of per 𝜂𝑇  pairing. 

 

In this experimental result, we achieved fast timings of 

12.7ms and 52.0ms per pairing when computed 1248 parings. 

We can consider that the timing per pairing goes down as 

increasing number of pairings. In addition, although the order 

of growth in algorithm for the 𝜂𝑇  pairing is roughly 𝑂(𝑚3) 

where m is extension degree, timing per 𝜂𝑇  pairing over 

𝔽2967  is less than the estimation which is showed by the 

uppermost line in Fig. 4. 

We achieved timing per pairing of 12.7ms per pairing 

using GPU Tesla K20c which the core clock is 706 MHz. In 

regard to security level for new DLP algorithm, we took the 

extension degree of base field 𝑚 = 487 that is greater than 

𝑚 = 367, 439 . As future works, we tackle effective 

management and use of memories in particular registers on 

GPU. We believe that can achieve significant speed up 

compared to state-of-the-art result of CPU or GPU 

implementation by optimizing our approach. 

 

VI. CONCLUSIONS 

In this study, we implemented the parallel arithmetic on 

extension fields and multiple 𝜂𝑇  pairings in parallel. In 

addition, we used effective construction of extension field so 

that we could reduce the cost of the 𝜂𝑇  pairing. We achieved 

timing of 12.7ms and 52.0ms per pairing when computed 

1248 pairings by using GPU Tesla K20c. We took the 

extension degree of base field 𝑚 = 487 which is greater than 
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the parameter 𝑚 = 367, 439 that was appropriate for the 𝜂𝑇  

pairing at the 128-bit security level. By normalization of 

experimental result, we achieved a certain level of speeding 

up of the 𝜂𝑇  pairing compared to the state-of-the-art CPU 

implementation. 

As shown in the Section III and Section II, it is adequately 

considered that the extension degree 𝑚 = 487  is not 

appropriate for the 𝜂𝑇  pairing at the 128-bit security in the 

fields of characteristic 2. However, the parallelize method of 

Karatsuba multiplication on extension field we proposed can 

be basically apply to performing modular multiplication in 

the case of large characteristic. In addition, we achieved 

scalability with the extension degree of base field in our 

parallel implementation and that also held in the case of large 

characteristic. 
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