



Abstract—Pairings on hyperelliptic curves have been applied

to many cryptographic schemes, and it is important to exploit

methods that increase the speed of various pairings and their

curves. Additionally, multiple pairings should be performed

efficiently in some cryptographic application such as

attribute-based encryption or functional encryption. We

propose an efficient extension field construction method that

defines a curve and its 𝜼𝑻 pairing. We also implemented the

parallel arithmetic on extension fields and multiple 𝜼𝑻 pairings

in parallel and reported experimental timing results. We

achieved timing of 12.7ms and 52.0ms per pairing when

computed 1248 pairings by using GPU Tesla K20c. We took the

extension degree of base field 𝒎 = 𝟒𝟖𝟕 which is greater than

the parameter 𝒎 = 𝟑𝟔𝟕, 𝟒𝟑𝟗 that was appropriate for the 𝜼𝑻

pairing at the 128-bit security level. By normalization of

experimental result, we achieved a certain level of speeding up

of the 𝜼𝑻 pairing compared to the state-of-the-art CPU

implementation. In addition, we achieved scalability with the

extension degree of base field in our parallel implementation by

performing Karatsuba multiplications between multiple

elements of extension field in parallel.

Index Terms—ƞT pairing, multiple pairings, GPU

implementation, CUDA, karatsuba method, DLP in finite field

of small characteristic, security level.

I. INTRODUCTION

Koblitz [1] suggested a hyperelliptic cryptosystem us- ing

Jacobians of hyperelliptic curves as arithmetic

generalizations on groups of elliptic curves. Arithmetic on

Jacobians of hyperelliptic curves is more complex than on

elliptic curve groups. Alternatively, we can use smaller finite

fields; i.e., we can employ smaller size keys by using higher

genus curves to achieve the same level of security.

Pairings on elliptic curves or higher genus curves have

attracted significant attention and have been applied to many

cryptographic schemes, such as ID-based cryptography.

Generally, calculation methods for pairings are complex and

the cost of pairings is considerably higher than that of

arithmetic on curves. In addition, the cost is significantly

higher when using algebraic curves of higher genus.

Modern graphics processing unit (GPU) technology for

general purposes, based on GPU computation has advanced

significantly, while the use thereof in high level cryptography

implementations has increased rapidly. There has been much

research on increasing the speed of multiple-precision

Manuscript received December 30, 2013; revised February 27, 2014.

M. Ishii is with Nara Institute of Science and Technology, Nara, Japan
(e-mail: masahiro-i@is.naist.jp).

A. Inomata is with Initiative Center, Nara Institute of Science and

Technology, Nara, Japan (e-mail: atsuo@itc.naist.jp).
K. Fujikawa is with Information Initiative Center, Nara Institute of

Science and Technology, Nara, Japan (e-mail: fujikawa@itc.naist.jp).

arithmetic or arithmetic on finite fields using GPUs, which is

explored further in Section II.

In this study, we consider the parallelization of arithmetic

on extension fields. The pairing algorithm is suitable for our

parallel algorithm. As there are many parameters for pairings,

by implementing pairings on a GPU, we can exploit

parallelization methods to extend the program code flexibly.

In the case that the field characteristic defining the curve and

pairing is large, we can compute elements of the field in

parallel as modular arithmetic on prime fields using a GPU

[2]–[5]. On the other hand, if the characteristic is small, we

can implement arithmetic on the field efficiently using a GPU

and polynomial bases. Y. Katoh, Y. Huang, C. Cheng, and T.

Takagi [6] implemented arithmetic on the 𝔽3𝑚 and

𝜂𝑇 pairing defined on 𝔽3𝑚 using a GPU. They succeeded in

accelerating the process significantly by computing multiple

𝜂𝑇 pairings in a bit-sliced fashion. As the field characteristic

is small, the degrees of the polynomials calculated as

elements of the extension field are large; therefore, we can

use the power of a GPU effectively within the context of

parallelization.

Having focused on a parallel implementation of arithmetic

on (extension) fields using polynomial bases, we have

developed a practical and efficient method for parallelizing

arithmetic on extension fields and a method for their

construction that is suitable for our parallel algorithm. Indeed,

we implemented parallel 𝜂𝑇 pairing on a supersingular

genus-two curve. We then used basis conversion to compute

the 𝜂𝑇 pairing to change the extension field construction

making it suitable for parallel arithmetic on fields. We also

achieved speedup of the 𝜂𝑇 pairing using a different

extension field construction method based on [7].

The remainder of this paper is organized as follows. We

describe work related to the state-of-the-art software

implementation of pairings and a GPU implementation for

parallel modular arithmetic and pairings in Section II. In

Section III, we recall 𝜂𝑇 pairing on a genus-two curve over a

binary field and its algorithm. We then describe recent

research on the discrete logarithm algorithm in a finite field

of small characteristic and the security level for the 𝜂𝑇

pairing over binary fields. Section IV presents the detailed

methodology of our parallel algorithm for arithmetic on

extension fields and 𝜂𝑇 pairing. We then report experimental

timing results of the 𝜂𝑇 pairing implementation on a GPU in

Section V. Finally, we present our conclusions and

suggestions for future work in Section VI.

II. RELATED WORK

Here, we summarize state-of-the-art work related to a

software implementation of pairings. First, we describe some

Parallel GPU Implementation of 𝜂𝑇 Pairing over Fields of

Characteristic Two

M. Ishii, A. Inomata, and K. Fujikawa

International Journal of Computer and Communication Engineering, Vol. 3, No. 3, May 2014

193DOI: 10.7763/IJCCE.2014.V3.318

work concerning the efficient implementation of pairings on

a CPU. We then describe some research on implementing

multiple-precision arithmetic on finite fields, modular

arithmetic, and pairings, or other cryptographic applications

using GPUs.

J. Beuchat, E. López-Trejo, L. Martínez-Ramos, S.

Mitsunari, and F. Rodríguez-Henríquez [8] implemented a

reduced modified Tate pairing (𝜂𝑇pairing) on supersingular

elliptic curves and designed a fast multi-core library using

single-instruction multiple-data instructions. They reported a

calculation time of just 1.87ms on Intel Core i7 architectures

for Tate pairing at the 128-bit security level.

In [9], Beuchat et al. described the design of a fast software

library for the computation of optimal Ate pairing on a

Barreto–Naehrig elliptic curve. They re- ported that optimal

Ate pairing at the 126-bit security level took 2.33 million

clock cycles on a single core of an Intel Core i7 2.8 GHz

processor.

D. F. Aranha, J. López, and D. Hankerson [10]

implemented 𝜂𝑇 pairing over bi- nary supersingular curves at

the 128-bit security level in parallel (using two types of

parallelism: vector instructions and multiprocessing). They

reported parallel timings 66% faster than the result of [8]. S.

Chatterjee, D. Hankerson, and A. Menezes [11] reported

preliminary timings for Type 1 (symmetric) pairings on

supersingular genus-2 curves of characteristic 2 at the 128-bit

security level. The 𝜂𝑇 pairing over 𝔽2439 took 16.4 million

clock cycles on an Intel Core 2 processor.

In [12], D. F. Aranha, K. Karabina, P. Longa, C. H.

Gebotys, and J. López described efficient formulas for

computing optimal Ate pairings on ordinary elliptic curves

over prime fields. Their efficient techniques for computing

pairings, for the first time allow a pairing to be obtained in

under 2 million cycles on a 64-bit processor, improving the

result of [9] by 28%–34%.

D. F. Aranha, J. Beuchat, J. Detrey, and N. Estibals [13]

presented a novel optimal Eta pairing algorithm on

supersingular genus-2 binary hyper-elliptic curves.

According to their experimental results from a software

implementation, an optimal Eta pairing on a genus-2 curve

over 𝔽2367 took 4.44 and 2.75 million clock cycles on an Intel

Core 2 processor and Core i5 32 nm (Nehalem

microarchitecture) processor, respectively.

Recently, Mitsunari [14] reported an efficient

implementation of an optimal Ate pairing at the 126-bit

security level (in [9], [12]) on an Intel Haswell processor. A

mulx instruction supported by the Haswell processor was

used to achieve the pairing in only 1.17 million clock cycles.

Efforts to speed up modular arithmetic using the power of

GPUs are reported in [2], [5]. In [5], the authors implemented

three modular arithmetic operations on a GPU: addition,

subtraction, and multiplication. They used Montgomery’s

method for multiplication to avoid division. They also

implemented arithmetic on elliptic curves using modular

multiplication on a GPU.

Radix representation or a residue number system (RNS)

can be used for modular multiplication in large finite fields.

According to [3], [4], using a radix representation is superior

to a RNS with regard to parallel implementation of modular

multiplication on GPUs.

Katoh et al. [6] implemented arithmetic on 𝔽3𝑚 and an 𝜂𝑇

pairing defined on 𝔽3𝑚 using a GPU. They succeeded in

achieving significant speedups by computing multiple 𝜂𝑇

pairings in a bit-sliced fashion. Essentially, they parallelized

modular arithmetic represented by a polynomial basis by

performing arithmetic on the basic field 𝔽3 in each thread.

They implemented modular multiplication on a GPU by

parallelizing the Comb method on a finite field [6, §3.2,

Implementation II]. In addition, they implemented and

evaluated parallel multiplication by computing 32 operations

in a bit-sliced fashion. They reported that 𝜂𝑇 pairing over

𝔽3509 took 3.01ms on an NVIDIA GTX 480 and concluded

that their GPU implementation for larger fields was slower

than multi-core CPU implementations [8] owing to the

limited fast on-die memory on the GPU. Y. Zhang, C.

Jason-Xue, D. S. Wong, N. Mamoulis, and S. M. Yiu [15]

were the first to present an evaluation of bilinear pairings

over composite-order groups on graphics card hardware.

They implemented parallelized base field operations via a

RNS and performed multiple pairings to occupy the hardware

resource. According to their experimental results, in 1024-bit

base fields, the NVIDIA GTX 480 achieved a running time of

8.7ms per pairing, which is 19.6 times faster than the

state-of-the-art CPU implementation.

III. 𝜂𝑇 PAIRING AND SECURITY LEVEL

A. Algorithm of 𝜂𝑇 Pairing

Here, we describe the 𝜂𝑇 pairing [7] and discuss some of

its properties. Barreto et al. exploited 𝜂𝑇 pairing in [7] for

supersingular curves as a generalization of the Duursma-Lee

technique [16].

Suppose that 𝐶/𝔽𝑞 is a supersingular curve with

embedding degree 𝑘 > 1 and that a distortion map

𝜓 ∶ 𝐶 𝔽𝑞 → 𝐶 𝔽𝑞𝑘

is present. This allows denominator elimination, i.e., for

𝑃 ∈ 𝐶 𝔽𝑞𝑘 , 𝜓 𝑃 ∈ 𝐶 𝔽𝑞𝑘 has an x-coordinate in 𝔽𝑞𝑘/2 .

Then, for 𝑇 ∈ ℤ, Eta pairing (𝜂𝑇 pairing) is given by

𝜂𝑇 ∶ Jac 𝔽𝑞 𝑟 × Jac 𝔽𝑞 𝑟 → 𝜇𝑟 ⊂ 𝔽
𝑞𝑘
×

 𝐷, 𝐸 ↦ 𝑓 𝑇,𝐷 (𝜓 𝐸)(𝑞𝑘−1)/𝑟

Barreto et al. generalized the Duursma–Lee techniques,

including effective calculation of divisors and using a

Frobenius map, directly in Miller’s algorithm. They

succeeded in generalizing a loop shortening idea in many

other cases. They described 𝜂𝑇 pairing on a supersingular

genus-two curve in detail in [7, §7]. We use this curve and

consider 𝜂𝑇 pairing under the same conditions.

We consider the supersingular curve

𝐶 ∶ 𝑦2 + 𝑦 = 𝑥5 + 𝑥3

over 𝔽2𝑚  an embedding degree of 12; therefore, we have to

perform arithmetic on the extension field 𝔽212𝑚 . In this study,

we implemented 𝜂𝑇 pairing using two methods to construct

an extension field.

In the first method, we construct 𝔽212𝑚 according to [7,

§7.1], starting with a sixth degree extension. We then

construct a quadratic extension as follows:

International Journal of Computer and Communication Engineering, Vol. 3, No. 3, May 2014

194

𝔽26𝑚 ≃ 𝔽2𝑚 [𝑥]/(𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 1),

𝔽212𝑚 ≃ 𝔽26𝑚 [𝑦]/(𝑦2 + 𝑦 + 𝑤5 + 𝑤3),

𝑤6 + 𝑤5 + 𝑤3 + 𝑤2 + 1 = 0.

Let 𝑠0 be a root of 𝑦2 + 𝑦 + 𝑤5 + 𝑤3 . We call the

following polynomial basis 𝑠0𝑤-basis,

 1, 𝑤, 𝑤2 , 𝑤3 , 𝑤4, 𝑤5 , 𝑠0 , 𝑠0𝑤, 𝑠0𝑤
2 , 𝑠0𝑤

3 , 𝑠0𝑤
4 , 𝑠0𝑤

5 .

The second method constructs 𝔽212𝑚 by starting with a

cubic extension of 𝔽2𝑚 for parallel arithmetic on the

extension field. We define 𝔽23𝑚 using the irreducible

polynomial 𝑥3 + 𝑥 + 1 over 𝔽2𝑚 . Letting 𝑤 be one of the

roots of 𝑥3 + 𝑥 + 1, we can represent elements of 𝔽23𝑚 with

basis {1, 𝑤, 𝑤2} over 𝔽2𝑚 . Similarly, we consider the

irreducible polynomial 𝑦2 + 𝑦 + 𝑤 + 1 over 𝔽2𝑚 and let 𝑠

be one of the roots of the polynomial. Hence, 𝔽26𝑚 has the

basis {1, 𝑤, 𝑤2 , 𝑠, 𝑠𝑤, 𝑠𝑤2} . Finally, for the irreducible

polynomial 𝑧2 + 𝑧 + 𝑠 + 𝑠𝑤2 over 𝔽26𝑚 , let 𝑡 be one of the

roots of the polynomial. We can thus represent elements of

𝔽212𝑚 with the basis

 1, 𝑤, 𝑤2 , 𝑠, 𝑠𝑤, 𝑠𝑤2 , 𝑡, 𝑡𝑤, 𝑡𝑤2 , 𝑠𝑡, 𝑠𝑡𝑤, 𝑠𝑡𝑤2 .

We refer to this polynomial basis as 𝑠𝑡𝑤-basis. In this

paper, we examine a specific algorithm but do not describe

the functions and algorithm for the 𝜂𝑇 pairing in detail in

each case. According to [7, §7], when we use the 𝑠0𝑤-basis,

we can compute the 𝜂𝑇 pairing as [7, §7.3, Algorithm 4]. We

also present the 𝜂𝑇 pairing algorithm using the 𝑠𝑡𝑤-basis as

Algorithm 1 using the same notation as in [7, §7.3, Algorithm

4].

As shown in Algorithm 1, we can calculate pairings in the

same manner irrespective of which polynomial basis is used.

However, using 𝑠𝑡𝑤-basis reduces the cost of multiplication

of 𝛼𝛽 in line 20. Therefore, we can implement 𝛼𝛽 efficiently

in parallel. We need to perform 13 multiplications on base

field by using Karatsuba method in order to compute 𝛼𝛽 with

s0w-basis. We can reduce number of multiplication to 9 by

constructing the 12-th extension field of with 𝑠𝑡𝑤-basis.

B. Security Level for 𝜂𝑇 Pairing

Security parameters for the pairings were chosen assuming

Coppersmith’s algorithm [17] or a generalization thereof [18]

with heuristic complexity

𝐿𝑄
1

3
,

32

9

1
3

where

𝐿𝑄 𝛼, 𝑐 = exp 𝑐 + 𝑜 1 log 𝑄 𝛼 log log𝑄 1−𝛼

Therefore, the 𝜂𝑇 pairing over 𝐶/𝔽2𝑚 at the 128-bit

security level was implemented by choosing 𝑚 = 367, 439

since 𝔽212∙367 , 𝔽212∙439 were assumed to be 128-bit security

against Coppersmith attacks.

Recently, small theoretical and practical advancements of

the efficient discrete logarithm problem (DLP) algorithm

have been made [19]–[23]. G. Adj, A. Menezes, T. Oliveira,

and F. Rodríguez-Henríquez [24] explained how the new

algorithms by Joux [21] and R. Barbulescu, P. Gaudry, A.

Joux, and E. Thomé [23] could be combined to solve the DLP

in 𝔽36∙509 faster than the Joux–Lercier algorithm [25]. They

estimated the complexity (number of multiplications) to

solve the DLP in 𝔽36∙509 to be only 273.7 compared with

2102.69 estimated by N. Shinohara, T. Shimoyama, T.

Hayashi, and T. Takagi [26] using the Joux–Lercier

algorithm and Joux’s pin-pointing technique [19]. They also

noted the case of characteristic 2 [24, Appendix A] and

estimated that the complexity to solve the DLP in 𝔽212∙367

was 294.6 , which is greater than 291.6 estimated by them

using the Joux–Lercier method with pinpointing. In addition,

with access to a massive number of processors (233

processors), the bottleneck of the new algorithm would be a

linear algebra computation with complexity 260 .

Algorithm 1: 𝜂𝑇 pairing (𝑚 ≡ 7 (mod 8)) using 𝑠𝑡𝑤-basis

INPUT: 𝑃 = 𝑥𝑃 , 𝑦𝑃 , 𝑄 = 𝑥𝑄 , 𝑦𝑄 ∈ Jac 𝔽2
𝑚

OUTPUT: 𝑓 ∈ 𝔽212𝑚

1: 𝑥1 𝑖 ← 𝑥𝑃
2𝑖 , 𝑦1 𝑖 ← 𝑦𝑃

2𝑖 , 𝑥2 𝑖 ← 𝑥𝑄
2𝑖 , 𝑦2 𝑖 ← 𝑦𝑄

2𝑖 (0 ≤ 𝑖 ≤ 𝑚 − 1)

2: 𝑓 ← 1

3: for 𝑖 = 0 to (𝑚 − 3)/2 do

4: Consider the following 𝑘𝑗 (mod 𝑚)

5: 𝑘1 ← (3𝑚 − 9 − 6𝑖) 2 , 𝑘2 ← 𝑘1 + 1, 𝑘3 ← 𝑘2 + 1

6: 𝑘4 ← (3𝑚 − 3 − 6𝑖) 2 , 𝑘5 ← 𝑘4 + 1, 𝑘6 ← 𝑘5 + 1

7:

8: Compute 𝛼 ← 𝑎 + 𝑏𝑤 + 𝑐𝑤2𝑑𝑠 + 𝑡

9: 𝑐 ← 𝑥1 𝑘4 + 𝑥1[𝑘5]

10: 𝑎 ← 𝑦2 𝑘2 + 𝑐 + 1 𝑥2 𝑘3 + 𝑥1 𝑘4 + 1 + 𝑥2 𝑘3 𝑥2 𝑘2 +
 𝑦1 𝑘4 + 𝑥1 𝑘4 + 𝛾1 𝑖 + 1

11 𝑏 ← 𝑥2[𝑘3]+ 𝑥1[𝑘5] + 𝛾1 𝑖 + 1

12: 𝑑 ← 𝑥2 𝑘3 + 𝑥1 𝑘5 + 1

13:

14: Compute 𝛽 ← 𝑒 + 𝑓2𝑤 + 𝑔𝑤2𝑑𝑠 + 𝑡

15: 𝑓2 ← 𝑥2 𝑘2 + 𝑥1[𝑘6] + 𝛾1 𝑖 + 1

16: 𝑒 ← 𝑦2 𝑘1 + 𝑥1 𝑘6 + 1 + 𝑥1 𝑘5 𝑥2 𝑘1 + 𝑦1 𝑘5 +
𝑑𝑥1 𝑘6 + 𝑥1 𝑘5 +𝛾1 𝑖

17: 𝑔 ← 𝑥2[𝑘2]+ 𝑥2[𝑘1] + 𝛾1

18:

19:

20: 𝑓 ← 𝑓(𝛼𝛽)

21: end for

22:

23: 𝑥𝑃 ← 𝑥1 6 𝑚− 1 2 + 𝛾1 𝑚 − 1 1) 2

= 𝑥1 𝑚 − 3 + 1 6 𝑚 − 1 2 ≡ 𝑚 − 3 (mod 𝑚))

24: 𝑦𝑃 ← 𝑦1 6 𝑚− 1 2 + 𝑥1 6 𝑚 − 1 2 + 1 + 𝛾3(𝑚 − 1 2

= 𝑦1 𝑚 − 3 + 𝑥1[𝑚 − 2]

25:

26: Perform the final doublings / addition

27: 𝑢 ← 𝑦2 0 + 𝑥2 1 1 + 𝑥2 0 + 𝑥𝑃
8 + 𝑥𝑃

4 + 𝑥𝑃
4𝑥2 0 + 𝑦𝑃

4 + 𝑥𝑃
8 +

 𝑥𝑃
4 + 1

28:𝑓 ← 𝑓4(𝑢, 𝑥2 1 + 𝑥2 0 + 𝑥𝑃
8 + 𝑥𝑃

4 + 1, 𝑥2 1 + 𝑥2 0 , 𝑥𝑃
8 +

 𝑥2 0 , 1,0,1,0,0,0,0,0)

29:

30: Perform the final exponentiation

31: 𝑓 ← 𝑓(26𝑚−1)(23𝑚−24𝑚 2(𝑚+1) 2 −1)

32: return 𝑓

In Fig. 1, we compare the heuristic complexity to solve the

DLP in 𝔽212∙𝑛 with Coppersmith algorithm, Joux–Lercier

algorithm and Joux’s pinpointing method. For

implementation of the 𝜂𝑇 pairing over 𝐶/𝔽2𝑚 at the 128-bit

security level, we take two extension degrees 𝑚 = 487, 967.

International Journal of Computer and Communication Engineering, Vol. 3, No. 3, May 2014

195

Since Adj et al. estimated the DLP algorithm using

Joux–Lercier pinpointing method in 𝔽212∙367 with 291.6, we

should take 𝑚 which is greater than at least 𝑚 = 439 .

Although it needs concrete analysis for the complexity of

DLP algorithm in 𝔽212∙𝑚 as shown in [24, Appendix A], we

evaluate parallel implementation of the 𝜂𝑇 pairing over

𝐶/𝔽2487 . In the second case, we take extension degree

𝑚 = 967 which seems adequate parameter at the 128-bit

security level and perform an experimental simulation of

pairing computation using GPU.

Fig. 1. Comparison of the complexity to solve the DLP in 𝔽212∙𝑛 .

IV. METHODOLOGY

In this section, we present the proposed method for

parallelization of arithmetic on base fields and extension

fields. Katoh et al. [6] implemented 𝜂𝑇 pairing on a GPU.

Similarly, we parallelized arithmetic on extension fields

constructed by irreducible polynomials. We parallelized the

arithmetic in a straightforward manner to allow flexible

computation of extension field elements. In addition, we

propose an approach for combining Karatsuba method

parallelization and parallel arithmetic on extension fields.

A. Parallel Computation of Multiplication on Base Fields

and Extension Fields

First, we introduce how to implement operations in base

fields 𝔽2𝑚 . We implemented elements of base fields as

polynomial represented by uint64_t array. We then adopted

left-to-right comb window method [27], therefore we took

the word size of 64-bit and the window size of 4 with

experimental results.

Katoh et al. implemented 𝜂𝑇 pairing on a GPU by

parallelizing the Comb method on finite fields [6, §3.2,

Implementation III] in a bit-sliced fashion. We implemented

straightforward parallelization of arithmetic of polynomials

as arithmetic on base field. Indeed, for elements of base field

𝑎 𝑥 = 𝑎𝑖
𝑚

𝑖=0
𝑥𝑖 , 𝑏 𝑥 = 𝑏𝑖

𝑚

𝑖=0
𝑥𝑖 ∈ 𝔽2𝑚

We compute the coefficients of 𝑎 𝑥 + 𝑏(𝑥) by using

XOR operation 𝑎1 ⊕𝑏1 in parallel, and compute each

𝑐𝑖 where

 𝑐𝑖
2𝑚

𝑖=0
𝑥𝑖 = 𝑐 𝑥 = 𝑎(𝑥)𝑏(𝑥)

in parallel with comb window method. In comb win-dow

method, we add polynomials as elements of base field to c(x)

in m threads and we implement other calculation in serial.

In this study, we implemented arithmetic on extension

fields using only the Karatsuba method. The Karatsuba

method can be generalized for polynomials of arbitrary

degree [28, §3.2, Algorithm 2]. We consider two polynomials

of degree d,

𝐴 𝑥 = 𝑎𝑖
𝑑

𝑖=0
𝑥𝑖 , 𝐵 𝑥 = 𝑏𝑖

𝑑

𝑖=0
𝑥𝑖

For each 𝑖 = 0,… , 𝑑, we compute

𝑉𝑖 ≔ 𝑎𝑖𝑏𝑖 (1)

and for 0 ≤ 𝑠 < 𝑡 ≤ 𝑑,

𝑉𝑠,𝑡 ≔ (𝑎𝑠 + 𝑎𝑡)(𝑏𝑠 + 𝑏𝑡) (2)

We can then compute 𝑎 𝑥 𝑏 𝑥 = 𝑐𝑖𝑥
𝑖2𝑑

𝑖=0 as follows

𝑐0 = 𝑉0, 𝑐2𝑑 = 𝑉𝑑,

𝑐𝑖 =

 𝑉𝑠,𝑡 − 𝑉𝑆 + 𝑉𝑡 𝑠+𝑡=𝑖 𝑖: odd,𝑠+𝑡=𝑖

 𝑉𝑠,𝑡 − 𝑉𝑆 + 𝑉𝑡 + 𝑉𝑖/2𝑠+𝑡=𝑖 𝑖: even,𝑠+𝑡=𝑖

for 0 ≤ 𝑠 < 𝑡 ≤ 𝑑, 0 < 𝑖 < 2𝑑.

 (3)

Thus, we can use the Karatusba method for multiplication

in extension field 𝔽𝑞𝑘 and reduce multiplication to 3, 6, 21, or

78 operations for 𝔽𝑞 if 𝑘 = 2, 3, 6 or 12, respectively.

In addition to the above parallel method for operations in

base field, we consider the Karatsuba parallelization method

for arithmetic on extension fields. We parallelize the

precomputation phase of the Karatsuba method as follows.

First, we start to compute 𝑉𝑖 (1) in parallel. At the same time

we compute 𝑎𝑠 + 𝑎𝑡 , (𝑏𝑠 + 𝑏𝑡) (2) and 𝑉𝑠,𝑡 (2) in parallel.

After that, we compute 𝑐𝑖 (3) in serial.

B. Implementation of 𝜂𝑇 Pairing on GPU

We implemented our parallel algorithm on a GPU, the

NVIDIA Tesla K20c, and used the Compute Unified Device

Architecture (CUDA) programming model [29]. The

experimental environment is presented in Table I.

TABLE I: EXPERIMENTAL ENVIRONMENT.

OS Fedora 19

CPU
Intel Core i7-4770K, 3.50GHz,

4 Cores

Memory DDR3-1333, 32GB

GPU
Tesla K20c, 2496 CUDA Cores

Graphics Clock: 706 MHz

Compiler GCC-4.8.2, NVCC-5.5

Compute Capability 3.5

The extension degree directly affects the time for parallel

arithmetic computations on the extension field. We

implemented and evaluated 𝜂𝑇 pairing for extension degrees

𝑚 = 487 and 𝑚 = 967 as described in previous section

about security level. Since elements of base field are

represented uint64_t array, we need to take the length of 8

and 16 respectively for the extension degree 𝑚 = 487 and

𝑚 = 967. Therefore, we implemented that 8 or 16 threads

handle each operation in base field using CUDA

programming model. In addition, we computed multiple

 40

 60

 80

 100

 120

 140

 160

 180

 200

367 439487 967 1024

c
o

m
p

le
x
it
y
 (

b
it
)

extension degree n

128 bit

Coppersmith: L2
12n(1/3, (32/9)

1/3
)

Joux-Lercier: L2
12n(1/3, 3

1/3
)

Joux’s pinpointing method: L 2
12n(1/3, 2/(3

2/3
))

International Journal of Computer and Communication Engineering, Vol. 3, No. 3, May 2014

196

pairings in order to use GPU resource effectively. We

implemented arithmetic between multiple elements in base

fields and extension fields in parallel by using blocks in

CUDA programming. Each block handles calculation with

independent elements of fields in parallel using multiple

threads, therefore we could compute multiple 𝜂𝑇 pairings

independently.

Basically, we implemented operations in fields by starting

to copy data to global memory which is an off-chip memory

device that can be accessed by any thread and the device’s

access time is higher than that of other memory operations.

We then stored intermediate variable to shared memory and

after that finished to calculate on GPU, we copied the results

to main memory. Indeed, we used shared memory to store

precomputation table in window method, and the limit of the

window size when 𝑚 = 967 was 8 since the size of shared

memory on Tesla K20c was 48KB. We implemented parallel

Karatsuba method of the degree 𝑑 = 2, 5 respectively for

extension degree of 3, 6 and combined the Karatsuba method

in order to do multiplication on 12-th extension field for each

construction using 𝑠0𝑤 -basis, 𝑠𝑡𝑤 -basis. We computed

additions on fields except per- formed in Karatsuba method

on CPU since it is enough fast to perform additions between

multiple elements of fields.

V. EVALUATION

In this section, we showed the experimental result of the

implementation of 𝜂𝑇 pairing on GPU. First, we reported

comparison of the total time to compute multiple 𝜂𝑇 pairings

on CPU and GPU. In Fig. 2 and Fig. 3, we describe total time

of CPU and GPU implementation of the multiple 𝜂𝑇 pairings

over 𝔽2487 , 𝔽2967 respectively, with 𝑠0𝑤 -basis, 𝑠𝑡𝑤 -basis.

CPU implementation means that we compute multiple

pairings in serial with same parallel algorithm for GPU

implementation.

Fig. 2. Total time of multiple 𝜂𝑇 pairings over 𝔽2487 .

As shown in Fig. 2 and Fig. 3, timings of GPU

implementation are slower than CPU implementation with

small number of pairings since GPU resource is not used

sufficiently. We can see that the total time in the case of 𝔽2967

is seemed to have more effect on parallelization compared to

the case of 𝔽2487 . The construction for 12-th extension field

using 𝑠𝑡𝑤 -basis have an impact on timing of CPU

implementation over 𝔽2967 since the cost of multiplication is

bigger than the case of 𝑚 = 487.

Fig. 3. Total time of multiple 𝜂𝑇 pairings over 𝔽2967 .

We then report the timing results for computing per pairing

on GPU in Fig. 4

Fig. 4. Comparison of the computation time of per 𝜂𝑇 pairing.

In this experimental result, we achieved fast timings of

12.7ms and 52.0ms per pairing when computed 1248 parings.

We can consider that the timing per pairing goes down as

increasing number of pairings. In addition, although the order

of growth in algorithm for the 𝜂𝑇 pairing is roughly 𝑂(𝑚3)

where m is extension degree, timing per 𝜂𝑇 pairing over

𝔽2967 is less than the estimation which is showed by the

uppermost line in Fig. 4.

We achieved timing per pairing of 12.7ms per pairing

using GPU Tesla K20c which the core clock is 706 MHz. In

regard to security level for new DLP algorithm, we took the

extension degree of base field 𝑚 = 487 that is greater than

𝑚 = 367, 439 . As future works, we tackle effective

management and use of memories in particular registers on

GPU. We believe that can achieve significant speed up

compared to state-of-the-art result of CPU or GPU

implementation by optimizing our approach.

VI. CONCLUSIONS

In this study, we implemented the parallel arithmetic on

extension fields and multiple 𝜂𝑇 pairings in parallel. In

addition, we used effective construction of extension field so

that we could reduce the cost of the 𝜂𝑇 pairing. We achieved

timing of 12.7ms and 52.0ms per pairing when computed

1248 pairings by using GPU Tesla K20c. We took the

extension degree of base field 𝑚 = 487 which is greater than

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

to
ta

l
ti
m

e
 (

s
e

c
)

number of pairings

extension degree m=487

GPU, stw-basis
GPU, s0w-basis
CPU, stw-basis
CPU, s0w-basis

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200

to
ta

l
ti
m

e
 (

s
e

c
)

number of pairings

extension degree m=967

GPU, stw-basis
GPU, s0w-basis
CPU, stw-basis
CPU, s0w-basis

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 200 400 600 800 1000 1200

c
o

m
p

u
ta

ti
o

n
 t

im
e

 p
e

r
p

a
ir

in
g

 (
m

s
)

number of pairings

32

m=487, stw-basis
m=487, s0w-basis
m=967, stw-basis
m=967, s0w-basis

total time (m=487, stw-basis) multiplied by (967/487)
3

International Journal of Computer and Communication Engineering, Vol. 3, No. 3, May 2014

197

the parameter 𝑚 = 367, 439 that was appropriate for the 𝜂𝑇

pairing at the 128-bit security level. By normalization of

experimental result, we achieved a certain level of speeding

up of the 𝜂𝑇 pairing compared to the state-of-the-art CPU

implementation.

As shown in the Section III and Section II, it is adequately

considered that the extension degree 𝑚 = 487 is not

appropriate for the 𝜂𝑇 pairing at the 128-bit security in the

fields of characteristic 2. However, the parallelize method of

Karatsuba multiplication on extension field we proposed can

be basically apply to performing modular multiplication in

the case of large characteristic. In addition, we achieved

scalability with the extension degree of base field in our

parallel implementation and that also held in the case of large

characteristic.

REFERENCES

[1] N. Koblitz, “Hyperelliptic cryptosystems,” Journal of Cryptography,
vol. 1, pp. 139–150, 1989.

[2] S. Fleissner, “Gpu-accelerated montgomery exponentiation,” in Proc.

International Conference on Computational Science 2007, 2007, vol.
4487, pp. 213–220.

[3] R. Szerwinski and T. Güneysu, “Exploiting the power of GPUs for

asymmetric cryptography. In cryptographic hardware and embedded
systems,” in Proc. CHES 2008, 10th International Workshop, 2008,

vol. 5154, pp. 79–99.

[4] O. Harrison and J. Waldron, “Public key cryptography on modern
graphics hardware,” presented at the Eurocrypt 2009, Cologne,

Germany, April 26-30, 2009.

[5] P. Giorgi, T. Izard, and A. Tisserand, “Comparison of modular
arithmetic algorithms on GPUs,” in Proc. ParCo’09, International

Conference on Parallel Computing, pp. 119–133, France, 2009.

[6] Y. Katoh, Y. Huang, C. Cheng, and T. Takagi, “Efficient

implementation of the 𝜂𝑇 pairing on GPU,” in Proc. 9th International
Conference on Applied Cryptography and Network Security, ACNS

2011, Industrial Track, 2011, pp. 119–133.

[7] P. S. L. M. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott,
“Efficient pairing computation on supersingular abelian varieties,”

Designs, Codes and Cryptography, vol. 42, pp. 239–271, 2007.

[8] J. Beuchat, E. López-Trejo, L. Martínez-Ramos, S. Mitsunari, and F.
Rodríguez-Henríquez, “Multi-core implementation of the tate pairing

over supersingular elliptic curves,” Lecture Notes in Computer Science,

vol. 5888, pp. 413–432, 2009.
[9] J. Beuchat, J. E. González-Díaz, S. Mitsunari, E. Okamoto, F. Rodr

íguez-Henríquez, and T. Teruya, “High-speed software

implementation of the optimal ate pairing over Barreto-Naehrig curves,”
Lecture Notes in Computer Science, vol. 6487, pp. 21–39, 2010.

[10] D. F. Aranha, J. López, and D. Hankerson, “High-speed parallel

software implementation of the 𝜂𝑇 pairing,” Lecture Notes in
Computer Science, vol. 5985, pp. 89–105, 2010.

[11] S. Chatterjee, D. Hankerson, and A. Menezes, “On the efficiency and

security of pairing-based protocols in the type 1 and type 4 settings,”

Lecture Notes in Computer Science, vol. 6087, pp. 114–134. 2010.
[12] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López,

“Faster explicit formulas for computing pairings over ordinary curves,”

Lecture Notes in Computer Science, vol. 6632, pp. 48–68. 2011.
[13] D. F. Aranha, J. Beuchat, J. Detrey, and N. Estibals, “Optimal eta

pairing on supersingular genus-2 binary hyperelliptic curves,” Lecture

Notes in Computer Science, vol. 7178, pp. 98–115, 2012.
[14] S. Mitsunari. (2013). A fast implementation of the optimal ate pairing

over BN curve on intel haswell processor. Cryptology ePrint Archive

Report 2013/362. [Online]. Available: http://eprint.iacr.org/2013/362,
2013.

[15] Y. Zhang, C. Jason-Xue, D. S. Wong, N. Mamoulis, and S. M. Yiu,

“Acceleration of composite order bilinear pairing on graphics
hardware,” in Proc. the 14th International Conference on Information

and Communications Security, 2012, pp. 341–348.

[16] I. Duursma and H. Lee, “Tate pairing implementation for hyperelliptic

curves 𝑦2 = 𝑥𝑝 − 𝑥 + 𝑑 ,” Lecture Notes in Computer Science, vol.

2894, pp. 111–123, 2003.

[17] D. Coppersmith, “Fast evaluation of logarithms in fields of

characteristic two,” IEEE Transactions on Information Theory, vol. 30,

pp. 587–594, 1984.

[18] L. Adleman and M. Huang, “Function field sieve method for discrete

logarithms over finite fields,” Information and Computation, vol. 151,

pp. 5–16, 1999.
[19] A. Joux, “Faster index calculus for the medium prime case application

to 1175-bit and 1425-bit finite fields,” Lecture Notes in Computer

Science, vol. 7881, pp. 177–193, 2013.
[20] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. (2013). On the

function field sieve and the impact of higher splitting probabilities:

application to discrete logarithms in 𝔽21971 and 𝔽23164 . Cryptology
ePrint Archive, Report 2013/074. [Online]. Available:
http://eprint.iacr.org/2013/074

[21] A. Joux. A new index calculus algorithm with complexity 𝐿 1/4 +

𝑜1 in very small characteristic. Cryptology ePrint Archive, Report

2013/095. [Online]. Available: http://eprint.iacr.org/2013/095

[22] F. Göloğlu, R. Granger, G. McGuire, and J. Zumbrägel. Solving a

6120-bit dlp on a desktop computer. Cryptology ePrint Archive, Report

2013/306. [Online]. Available: http://eprint.iacr.org/2013/306

[23] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A quasi-polynomial

algorithm for discrete logarithm in finite fields of small characteristic.

Cryptology ePrint Archive, Report 2013/400. [Online]. Available:
http://eprint.iacr.org/2013/400

[24] G. Adj, A. Menezes, T. Oliveira, and F. Rodríguez-Henríquez.

Weakness of 𝔽36∙509 for discrete logarithm cryptography. Cryptology
ePrint Archive, Report 2013/446. [Online]. Available:

http://eprint.iacr.org/ 2013/446
[25] A. Joux and R. Lercier, “The function field sieve in the medium prime

case,” Lecture Notes in Computer Science, vol. 4004, pp. 254–270,

2006.
[26] N. Shinohara, T. Shimoyama, T. Hayashi, and T. Takagi, “Key length

estimation of pairing-based cryptosystems using 𝜂𝑇pairing,” Lecture
Notes in Computer Science, vol. 7232, pp. 228–244, 2012.

[27] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic
Cryptography. Springer-Verlag, 2004, ch. 2, pp. 48–51.

[28] A. Weimerskirch and C. Paar, “Generalization of the karatsuba

algorithm for efficient implementations,” Cryptology ePrint Archive,

Report 2006/224, [Online]. Available: http://eprint.iacr.org/2006/224

[29] Cuda zone. [Online]. Available: http://developer.nvidia.com/

category/zone/cuda-zone.

Masahiro Ishii received M.S. degree from Nagoya

University in 2011 and received M.E. degree from

Nara Institute of Science and Technology in 2013 and
is currently a Ph.D. candidate in Graduate School of

Information Science at Nara Institute of Science and

Technology. His research interest is pairing-based
cryptography, efficient software implementation of

finite field arithmetic including GPU programming,

and algorithm for discrete logarithm problem in finite
fields.

Atsuo Inomata received M.E. degree in information

science from 1997 to 1999 and a Ph.D. in information

science from Japan Advanced Institute of Science and
Technology in 2002. Currently, he is an associate

professor in Graduate School of Information science,

Nara Institute of Science and Technology. His research
focuses on cryptography, information security. He is a

member of IEICE, IPSJ, and JSISE.

Kazutoshi Fujikawa received M.E. and Ph.D. degrees
in information and computer sciences from Osaka

University in 1990 and 1993, respectively. Currently,

he is a professor of Information Initiative Center, Nara
Institute of Science and Technology. His research

focuses on multimedia communication systems, digital

libraries, ubiquitous computing, and mobile net-
works. He is a member of ACM, IEEE, and IPSJ.

International Journal of Computer and Communication Engineering, Vol. 3, No. 3, May 2014

198

