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Abstract—This paper presents a comparative analysis of the 

Random Telegraph Noise (RTN) deconvolution accuracy 

between the Richardson-Lucy (R-L) algorithm and the 

proposed partitioned forward problem based deconvolution 

means (PFDCV). Unlike the R-L based deconvolution, the 

proposed technique successfully solves the issue of noise 

amplification thanks to eliminating any operations of 

differential and division. This effectiveness has been 

demonstrated for the first time with applying it to a real 

analysis for the effects of the RTN on the overall SRAM margin 

variations. It has been shown that the proposed PFDCV 

technique can reduce its relative errors of the RTN 

deconvolution by 1014–fold compared with the cases of the R-L. 

 
Index Terms—Random telegraph noise, fail-bit analysis, 

static random access memory, deconvolution, richardson-lucy 

deconvolution.  

 

I. INTRODUCTION 

The approximation-error of the tails of random telegraph 

noise (RTN) distribution will become a crucial challenge. 

This stems from the facts that: (1) tails of the RTN 

distribution (g) will become longer than that of 

random-dopant-fluctuation (RDF) (f) that is previously 

dominant factor of overall margin-variations, as shown in Fig. 

1 and (2) the convolution result (h=fg) of the RDF(f) with 

the RTN(g) will be more governed by the RTN than the RDF, 

as can be seen in the comparison of (h=fg) between Fig. 

2(a) and Fig. 2(b) for short and long RTN, respectively. 

Because the increasing paces of variation-amplitude Vth of 

the threshold voltage (Vth) are differently dependent on the 

MOSFET channel-size (LW) like the below expressions of 

(1) and (2), the Vth increasing paces of the RTN is a 1.4x 

faster than that of the RDF if assuming the LW is scaled down 

by 0.5-fold every process generation, as shown in Fig. 1. 

( ) ( )Vth RDF AVt RDF LW                 (1) 

( ) ( )Vth RTN AVt RTN LW                    (2) 

where AVt (RDF) and AVt (RTN) are Pelgrom coefficients for 

the RDF and the RTN, respectively.  

According to the references [1]-[4], there will come the 

time soon around a 15nm-scaled CMOS era.  
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Fig. 1. Trend of variation amplitude of RTN and RDF. Variation amplitude of 

RTN becomes larger than that for RDF in 10nm era. 

 

 
Fig. 2. Comparison of the convolution result h=fg of the RDF(f) with 
RTN(g) between (a) short RTN and (b) long RTN. Convolution result h 

becomes governed by the RTN(g) when the tail length of g is larger than that 

for f. 

 

The reliability design for the static random access memory 

(SRAM) will become an unprecedentedly crucial challenge 

because the increased time-dependent (TD) margin variations 

(MV)-caused failures cannot be predicated any more by only 

ordinary convolution analyses [1]-[4].  

This stems from the facts that latent TD-MV, (i.e., 

unknown MV after shipped to the market), will become much 

larger than already-known MV based on the measurements in 

advance. This leads to an increased pressure to figure out the 

unknown factors by solving the inverse problem [5]-[9], 

although the SRAM designers are unfamiliar with such kind 

of methodology until now.  

Fig. 3(a) and Fig. 3(b) show an example for the 

deconvolution (
-1

) and the convolution (), respectively. 

Where 
-1

 and  are arithmetic symbol for deconvolution 

and convolution, respectively.  

Fig. 3(a) recounts the following scenarios: a certain 

distribution (h) within the product target spec (SPprod) is 

predefined and the RDF distribution (f) is already-known 

based on the measured data. The f is truncated at a certain 

point (TP) based on the screening spec and converted to fTP. 

However, the TP of the fTP and the random telegraph noise 
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(RTN) distribution (g) are unknown and should be decided as 

the screening spec and process target spec, respectively, such 

that the h can be within the SPprod, as shown in Fig. 3(a). The 

g is calculated by the deconvolution of (g=h
-1

fTP). Unlike 

the convolution (h=fTPg) (Fig. 3(b)), the deconvolution of 

the g is sort of ill-posed problem and troublesome operation 

[5]-[8]. 

 

 
Fig. 3. (a) Inverse problem (deconvolution -1) (b) forward problem 

(convolution ). 

 

Here is how the rest of this paper is organized. In Section II, 

we discuss the accuracy of the RTN deconvolution with 

Rechardson-Lucy algorithm. In Section III, we will propose 

the partitioned forward-problem based deconvolution 

(PFDCV) method. In Section IV, we rigorously prove that it 

is possible to reduce the deconvolution error with the 

proposed PFDCV method. Finally, we state our conclusion in 

Section VI. 

 

II. DISCUSSIONS ON THE RICHARDSON-LUCY (R-L) 

DECONVOLUTION OF RTN ACCURACY 

A. Richardson-Lucy Deconvolution Algorithm 

Richardson-Lucy (R-L) algorithm [9] is one of the most 

widely used deconvolution algorithms (See Fig. 4) in the area 

of image processing although it has some shortcomings such 

as noise amplification [9]. As can be seen in Fig. 4, the 

calculation process is based on an iteration and convolution 

(). However, it relies on the maximum likelihood iterations 

[9] and needs some derivative operation.  

As one of the tools for the deconvolution, the “deconvlucy” 

has been built in MATLAB


. 

 

 
Fig. 4. Algorithm of Richardson-Lucy deconvolution of RTN(g). 

 

However, to the best of our knowledge, there have been no 

examples of the R-L deconvolution being used for the SRAM 

margin analyses. It is for the first time to demonstrate the 

issues of the R-L deconvolution of the RTN distribution (g) 

with the SRAM MV (h). Fig. 5(a) shows the issue of an 

abnormal ringing error (noise amplification) confronting the 

R-L algorithm based deconvolution. This is due to an 

unstable division operation and maximum likelihood 

iterations [9]. Even if adjusting the damping factor [10]-[11], 

severe side effect from the damping is unfortunately caused 

around x=0 to -4. (See Fig. 5(b))  

As a result, the deconvoluted RTN distribution is 

significantly deviated from the expected curve (see Fig. 5). 

Unlike the application in the area of image processing, 

“rare-event fail bit count (FBC) analyses for the SRAM 

design” is very susceptible to the error of the probability 

density function (pdf) even if the pdf error level is as small as 

10
-12

. 

 

 
Fig. 5. Richardson-Lucy deconvolution of RTN(g) (a) ringing occurs (b) 

ringing is suppressed with damping factor=0.5 but the deconvolution pdf of 

g undershoots as a side-effect around x=0-4. 

 

As explained in this subsection, the RTN R-L 

deconvolution errors have some dependencies on: 1) the 

number of iteration cycles and 2) damping factors. Thus, in 

the following subsections, the detailed analyses of the 

dependencies of the error will be discussed including another 

dependency of the RTN tail length and shape. 

B. Iteration Cycles Dependency of Deconvolution Errors 

Fig. 6 shows the iteration cycle dependencies of the RTN g 

deconvolution with Richardson-Lucy (R-L) algorithm 

(gRL=h
-1

f). Where h is the convolution of the RDF(f) with 

the RTN(g), i.e., (h=fg). Relative R-L deconvolution error 

(gRL_ERROR ) is defined by the following expression of (3) 

gRL_ERROR=| g(x)- gRL(x)| / g (x)                    (3) 

 

 

 

 
Fig. 6. Iteration cycle dependencies of the deconvolution of RTN g 

(gRL=h-1f). where N is iteration numbers (a)N=0, (b)N=3, (c)N=10, (d)N=50, 

(e)N=80, and (f)N=100 

g(i+1)= g(i)×
h h 

g(i) f
f^

f^ is adjoint of f

g ≈ g(i)

if g(i) converged 
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As can be seen in Fig. 6(a)-Fig. 6(f), the RTN R-L 

deconvolution gRL has a complex dependency on the iteration 

cycles. The frequency and amplification of the ringing curve 

are changed with the iterations. However, it is hard to find the 

best one based on the iteration dependency because of its 

complexity. 

C. RTN Tail-length Dependency of Deconvolution Errors 

As explained with Fig. 1, the amplitude of the Vth shift 

caused by the RTN is increased with the scaling trend. The 

RTN1, RTN2, and RTN3 (see Fig. 7(a), Fig. 7(b), and Fig. 7(c), 

respectively) correspond to the RTN distributions at the 

position of (1), (2), and (3) in Fig. 1, respectively. To make 

the RTN-length dependencies clearer, the R-L deconvolution 

of the RTN gRL were compared among the RTN1, RTN2, and 

RTN3, while changing the iteration cycles N=10,100, and 

1000, as shown in Fig. 8 and Fig. 9. 

 

 
Fig. 7. Relationship of the RTN tail-length among the RTN1,RTN2 and 

RTN3. 

 

 
Fig. 8. Iteration cycle dependencies of the deconvolution of RTN gRL 

(gRL=h-1f) for RTN1 and RTN2 for (a) N=10, (b) N=100, and (c) N=1000, 

respectively. 

 

Fig. 8(a), Fig. 8(b), and Fig. 8(c) show the R-L 

deconvoltions of the RTN1 and the RTN2 at the iteration 

cycles N= 10, 100, and 1000, respectively.  

It is found that no ringing happens in the R-L 

deconvolution of the RTN1 unlike the case for the RTN2 even 

if the iteration number N is increased up to 1000. The relative 

error of the RTN1 deconvolution gRL(x) has an x-position 

dependency. As the N is increased, the relative error of gRL(x) 

for RTN1 in the region of x=0 to -1 is reduced while the error 

in the region of x=-1 to -2 is increased. 

Fig. 9(a), Fig. 9(b), and Fig. 9(c) show the R-L 

deconvoltions of the RTN3 at the iteration cycles N= 10, 100, 

and 1000, respectively.  

It is found that significant ringing happens in the R-L 

deconvolution of the RTN3 unlike the case for the RTN1 if the 

iteration number N is increased up to 1000. The relative error 

of the RTN3 deconvolution gRL(x) has a strong x-position 

dependency. As the N is increased, the relative error of gRL(x) 

for the RTN3 in the region of x=0 to -2 is reduced while the 

error in the region of x=-4 to -12 is increased due to the 

ringing and its amplification. 

 

 
Fig. 9. Iteration cycle dependencies of the deconvolution of RTN gRL 

(gRL=h-1f) for RTN3 for (a) N=10, (b) N=100, and (c) N=1000, respectively. 

D. RTN Shape Dependency of Deconvolution Errors 

According to the reference [1]-[5], the distribution of the 

RTN amplitude will have a complex bounded tail caused by 

“atomistic” variation-behaviors with various variation factors 

of the gate line-edge roughness (GER), fin-edge roughness 

(FER), and metal gate granularity (MGG), as shown in Fig. 

10. They are no longer obeyed to the single gamma 

distribution but to the mixtures of different sloped-gamma 

distribution depending on the tail positions of (O-P), (P-Q), 

and (Q-R), as shown in Fig. 10(a). We refer this shape of the 

RTN distribution to “Combo”. Fig. 10(b) shows the more 

complex shape comprising of the multiple line-segment of 

(O-P), (P-Q), (Q-R), (R-S), (S-T), (T-U),and (U-V) with 

different slope. The multiple line-segments are connected at 

the concave and convex folding points of O, P, Q, R, S, T, U 

and V, as shown in Fig. 10(b). 

 

 
Fig. 10. Relationship of the RTN tail-shape between “Combo” and 

“Complex”. 
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Fig. 11. Iteration cycle dependencies of the deconvolution of RTN gRL 

(gRL=h-1f) for “Combo” for (a) N=10, (b) N=100, and (c) N=1000, 

respectively. 

Fig. 11(a), Fig. 11(b), and Fig. 11(c) show the R-L 

deconvoltions of the “Combo” at the iteration cycles N of 10, 

100, and 1000, respectively.  

It is found that the relative error of the “Combo” 

deconvolution gRL(x) has an x-position dependency. As the N 

-3 is reduced while the error in the region of x=-3 to -7 is 

increased. 

Fig. 12(a), Fig. 12(b), and Fig. 12(c) show the R-L 

deconvoltions of the “Complex” at the iteration cycles N of 

10, 100, and 1000, respectively.   

It is found that the relative error of the “Complex” 

deconvolution gRL(x) has an x-position dependency. As the N 

is increased, the relative error of gRL(x) in the region of x=0 to 

-12 is reduced while the error in the region of x=-12 to -16 is 

also reduced unlike the cases of the RTN2, RTN3, and 

“Combo”. 

 
Fig. 12. Iteration cycle dependencies of the deconvolution of RTN gRL 

(gRL=h-1f) for “Complex” for (a) N=10, (b) N=100, and (c) N=1000, 

respectively. 

E. Cycle and RTN Tail Dependency of Deconvolution 

Errors 

Convergence properties of the Richardson-Lucy iteration 

process for the deconvolution for the different tails of the 

RTN1, RTN2, RTN3, Combo, and Complex are compared, as 

shown in Fig. 13 and Fig. 14, respectively. 

 
Fig. 13. Iteration number N dependencies of the deconvolution of RTN gRL 

(gRL=h-1f) for RTN1, RTN2, 

 
Fig. 14. Iteration number N dependencies of the deconvolution of RTN gRL 

(gRL=h-1f) for “Combo” and “Complex”. 

 

It is found that the convergence properties for the RTN2 

and the “Combo” are not secured. Error amplitude of the 

cumulative density fuction (CDF) are not converged but 

oscillated when the iteration number N is increased up to 10
5
, 

as shown in Fig. 13 and Fig. 14. The convergence behavior is 

similar between the RTN2 and “Combo”. The common factor 

of the two is the length of the tail, i.e., average gradient of the 

slope, as can be seen in Fig. 7(a) and Fig. 10(b).  

Where, the error of the CDF is defined as the following 

expression (4) 

CDFERROR=|CDFRL(-Xp)–CDF(-Xp)|/CDF(-Xp)        (4) 

where CDFRL is the CDF of deconvoluted RTN by the R-L 

algorithm. Xp is the point where pdf=10
-12 

F. Damping Factor Dependency of Deconvolution Errors 

The built-in function of “deconvlucy(DAMPAR)” in 

MATLAB


 can specify the threshold deviation of the 

resulting image. Iterations are suppressed for pixels that 

deviate beyond the “DAMPAR” value from their original 

value.  

 
Fig. 15. Damping factor dependencies of the deconvolution of RTN gRL 

(gRL=h-1f) for RTN3 g. 
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Even if adjusting the damping factor [10]-[11], severe side 

effect from the damping is unfortunately caused around x=0 

to -4, as shown in Fig. 15(d). The gRL is deviated from the 

expected g of the RTN. 

 

III. PROPOSED PARTITIONED FORWARD-PROBLEM BASED 

DECONVOLUTION (PFDCV) 

Thus, the proposed idea tries to keep a sharp eye on the 

rare event probability area by introducing the segmented 

optimization. This is where the proposed one is absolutely 

different from the conventional optimization problem that 

unfortunately attempts to pay more attention to populated 

area and tends to neglect the rare-event probability zone. 

The proposed algorithm enables: (1) to substantially 

circumvent the abnormal ringing errors by eliminating the 

need of the inverse operation and (2) to guarantee the good 

enough deconvolution precision even if the shape of the RTN 

distribution is complex, comprising the complex gamma 

mixtures with the multiple convex and concave folding 

points.   

To the best of our knowledge, this is the first time to 

present the deconvolution algorithm for the SRAM-designs 

featuring an iterative partitioned forward-problem based 

deconvolution (PFDCV) process while comparing with the 

results based on the Richardson-Lucy algorithm. 

A. Partitioned Forward-Problem Based Deconvolution  

Algorithm of the iterative partitioned forward-problem 

based procedure is described below from step (1) to (3). 

1) The distribution of g
(i)

 is approximated by gamma 

distribution with three parameters of  (shape),  

(inverse scale) and  (peak value). 

2) We solve the optimization problem that seeks g
(i)

 for 

minimizing (|h - h
(i)

|), where h
(i)

 is the convolution of 

RTN g
(i)

 with RDF f. We use “fminsearch” in 

MATLAB


 to seek the best combination of (, , ) for 

the approximation of g
(i)

 that minimizes the 

unconstrained multivariable function, which allows a 

derivative-free method. 

3) The h
(i)

 is defined as the convolution of the summation of 

the line-segment of (g1
(i)

:gk-1
(i)

) and gk
(i)

 with f, where k is 

# of partition and N is total # of the partitions. i.e., 

h
(i)

 =[seg(g1
(i)

: gk-1
(i)

)+gk
(i)

]  f                    (5) 

This flow can be repeated until k=N, as shown in Fig. 16. 

The process of seeking the best g
(i)

 follows the sequentially 

step by step manner, i.e., from k=1 to k=N. Once found the 

best gk
(i)

 in each segment, its value is temporally fixed when 

seeking the next gk+1
(i)

 so that each optimization step cannot 

be interfered with by the other higher populated zone. This 

allows seeking the best gN
(i)

 in the attention zone (k=N). 

 

 
Fig. 16. Proposed deconvolution algorithm featuring an iterative partitioned 

forward-problem based deconvolution (PFDCV) process. 

B. Concept of the Proposed PFDCV Method 
 

The concept of the proposed PFDCV method is illustrated 

in Fig. 17(b). Thanks to avoiding the derivative operation, the 

behavior of the proposed RTN deconvolution process 

becomes smoothed and stable. Fig. 17(c) shows the 

comparisons of the relative deconvolution errors between the 

Richardson-Lucy and the proposed PFDCV. It is 

demonstrated that the proposed method can reduce the 

relative deconvolution error by 15-orders of magnitude 

compared with the Richardson-Lucy. 

 
Fig. 17. (a) RTN2 deconvolution comparison between the R-L 
deconvolution and the expected one, (b) proposed deconvolution algorithm 

(PFDCV) and, (c) deconvolution relative error comparison between the R-L 

and the proposed PFDCV. 
 

IV. DISCUSN ON ACCURACY OF STATISTICAL 

APPROXIMATION MODEL FOR RTN DISTRIBUTION 

To illustrate the effects of the proposed scheme on 1) the 

error reduction and 2) convergence properties for the RTN1, 

RTN2, and RTN3, comparison results between the 

Richardson-Lucy and the proposed PFDCV are shown in Fig. 

18 and Fig. 19, respectively.  

It is found that the proposed PFDCV can reduce the 

deconvolution error for RTN1, RTN2, and RTN3 by 10
11

, 10
24

, 

10
14

-fold than that for Richardson-Lucy, as shown in Fig. 

18(a), Fig. 18(b), and Fig. 18(c), respectively. 

The convergence properties of the iterative deconvolution 

process are compared between the Richardson-Lucy and the 

proposed PFDCV, as shown in Fig. 19. This is the best 

advantage of the PFDCV over the Richardson-Lucy. 

 
Fig. 18. Comparisons of the deconvolution error between the 

Richardson-Lucy and the proposed PFDCV. 

seek(gk
(i)) for min(|h - h(i)|)

h
h(i)=[seg(g1

(i): gk-1
(i))+gk

(i)] f

if gk
(i) converged & k<N then k=k+1

if k=N then finish

where k is # of segment 
and N is total # of  the 
segments

g ≈ seg(g1
(i):gN

(i))
if gN

(i) converged 

Temporary fixed 
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Fig. 19. Comparisons of the convergence properties between the 

Richardson-Lucy and the proposed PFDCV. 

 

V. CONCLUSION 

We have proposed the partitioned forward problem based 

deconvolution technique (PFDCV) enabling to successfully 

circumvent the issue of the ringing error confronting the 

Richardson-Lucy (R-L) process. The effectiveness of the 

PFDCV algorithm has been demonstrated for the first time 

with applying it to a real analysis for the effects of the RTN 

and the RDF on the overall SRAM margin variations. 

The proposed PFDCV technique can reduce its relative 

RTN deconvolution errors by 10
14

-fold compared with the 

cases of the Richardson-Lucy. 
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