
  

 

Abstract—The diverse types of mobile applications are used 

regardless of time and place, as a number of Android mobile 

device users have been recently increased. However, the breach 

of privacy through illegal leakage of personal information and 

financial information inside mobile devices has occurred without 

users' notices, as the malicious mobile application is relatively 

increasing In order to reduce the damage caused by the 

malicious Android applications, the efficient detection 

mechanism should be developed to determine normal and 

malicious apps correctly. In this paper, we aggregated real-time 

system call events activated from malware samples distributed 

by Android Malware Genome Project. After extracting the basic 

difference feature and characteristics of system call events 

pattern from each normal and malicious applications, we can 

determine whether any given anonymous mobile application is 

malicious or normal one. 

 

Index Terms—Android, malicious mobile applications, 

system call events, similarity.  

 

I. INTRODUCTION 

The procedural analysis reveals that the user devices will 

get infected with malicious codes and lead to the problems 

rerouting key information to external servers with which 

intruder specified through changes of access permission, once 

users run the programs which were downloaded from open 

market or black markets [1], [2]. Mobile malicious apps based 

on Android which leaks the personal and financial 

information by causing malfunction and consuming the 

batteries of devices have consistently been increasing [3]. 

Therefore, techniques [4], [5] monitoring malicious app 

events have been presented to detect the intrusion toward 

mobile devices in a bid to reduce damages through spread of 

malicious app like this, but mechanism should be developed 

to discriminate malicious apps from normal apps of 

commercial mobile devices. 

Detection methods for attacks on mobile devices [6], [7] 

have been proposed to reduce the vulnerability from 

malicious mobile apps. However, an advanced mechanism 

that provides more enhanced ways of classifying malicious 

apps on common mobile devices should be developed [8], [9]. 

In first, it is necessary to analyze the attack mechanism based 

on the recent security vulnerabilities of Android-based mobile 
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devices, and analyses the characteristics of malicious apps 

with activation pattern using Linux based Strace tool [10] on 

Android Platform. Therefore, we want to suggest a method to 

distinguish Android-based malicious apps based on the 

system call event pattern internally activated after running 

suspicious malicious applications. 

We analyzed the malicious system call event pattern 

selected from Android Malware Genome Project [11]. The 

actual system call patterns are extracted from the normal and 

malicious apps on Android-based mobile devices. And then, 

feature events were aggregated to calculate a similarity 

analysis between normal and malicious event set. Based on it, 

we can extract characteristics of system call event pattern of 

malicious apps. Based on these characteristics, we can 

determine whether any given anonymous mobile application 

is malicious or normal one. 

 

II. MALICIOUS ANDROID MOBILE APPLICATIONS AND 

EXISTING MECHANISM 

A. Implicit Malicious Code 

Malicious code infected apps have been spread through 

open or non-public market by group of anonymous 

developers. The reason that the security threats targeting the 

Android platform are increasing is based on the fact that the 

Android platform provides functions that are easily accessed 

by allowing various forms of attacks to occur based on its 

openness and portable features [12]. Therefore, the security 

vulnerabilities of the Android platform are causing various 

types of attack. As in Fig. 1, attackers hide a malware by 

activating exploits from inside a mobile app that appears 

normal in order to distribute it to common user’s smartphone. 

Users execute an installed app that includes the malware 

silently leaking personal information stored inside of device 

to get root permission and privilege. When the malware is 

executed, the attacker gets illegal access to the internal 

resource without user’s notification. 

 

 
Fig. 1. Attack executed by implicit malicious code. 
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B. Existing Crowdroid System 

Existing Crowdroid [6] system used Strace tool which can 

be run on Android based kernel in a bid to collect system call 

events from mobile devices. Strace creates the output file 

using the collected system call events that are traced at being 

invoked when Android applications are run. The monitoring 

results of system call events to Android kernel using Strace 

are transferred to remote activity based malicious software 

detection servers. The structure of Crowdroid's activity based 

malicious software detection framework is drawn at Fig. 2.  

 

 
Fig. 2. Crowdroid : existing activity driven malicious software detection 

framework.  

 

The system call event information created by running 

mobile apps after Crowdsourcing apps are installed at normal 

users' mobile devices is transferred to activity based malicious 

software detection servers. The detection process of 

malicious software based on information provided by 

Android community users who installed Crowdroid app based 

on the framework in Fig. 2 has been shown at Fig. 3.  

 

 
Fig. 3. Detection process of Android malicious software.  

 

However, problems came from discrimination of malicious 

codes conducted only with similarity analysis on system call 

events occurring on executing normal and malicious apps 

without informing of which system call events are invoked. 

Therefore, we have extracted patterns on system call events 

occurring from apps containing malicious codes, and 

designed and implemented techniques to discriminate the 

malicious codes depending on them by conducting similarity 

analysis on system call events occurring on multiple mobile 

devices which installed Android platform.  

 

III. AGGREGATION OF SYSTEM CALL EVENTS 

We aggregated and analyzed the system call events 

automatically from Android based mobile devices with 

customized Strace module. It collects system call events 

internally occurring on executing normal and malicious apps 

from multiple commercial mobile devices based on Android 

platform, and it made the malicious applications detectable 

based on this as Fig. 4. It also analyzed similarity with 

malicious apps by analyzing occurrence, call correlation and 

sequence of system call events from normal apps running on 

commercial mobile devices in real-time. It transfers system 

call events to servers after checking out the events which 

occur on executing apps through adb shell. 

 

 
Fig. 4. Activation pattern based mobile application determination method 

based on system call events. 

 

As shown in Fig. 5, we developed system call 

event-monitoring procedure that enables the user to 

automatically retrieve activated services and processes 

running on inside of Android kernel. If Activation Monitoring 

application is executed, it invokes system call 

event-monitoring daemon at kernel and the application is 

running in background as Fig. 5. The background running 

application transfers event information to DB server in a log 

format whenever event occurs. DB server is implemented to 

collect and store the event data that comes from multiple 

devices. Those events information collected from the mobile 

device are used to detect any suspected event due to malicious 

exploits. 

 

 
Fig. 5. Activation pattern aggregation and monitoring. 

 

We could measure correlation between normal and 

malicious apps through checking what kind of system call 

event functions exist in two groups of apps and how 

frequently they show up. We also could extract system call 

events in Android kernel by using Strace while normal and 

malicious applications are running. Based on these data sets, 

we compared the patterns of internal event activated from 

Android mobile device. (See Fig. 6). 
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Fig. 6. Activation pattern aggregation steps. 

 

Using proposed mechanism, we can aggregate system call 

events as follow figure. After install cross-compiled Strace 

module on mobile device, we can execute any application to 

extract system call events activated by each application as Fig. 

7. 

 

 

 

 

  

A. Characteristics of Malicious Android Applications 

Android Malware Genome Project categorizes 1,260 

samples of malicious apps largely by their characteristics to 

Malware Installation, Activation, Malicious Payloads and 

Permission Uses [9]. Additionally, we can classify malicious 

app into Repacking, Update-Attack, Drive-by Download and 

Standalone [11]-[13] based on its internal activity pattern.  

Repacking is a method that repacks an application, in 

which the malicious developer downloads an application that 

has been registered by online such as in Android official 

market, inserts a malware, which has been modified from apk 

or jar file, and distributes it. Disguising as a normal 

application, it leaks personal or financial information of users 

by causing damages often [9], [14], [15]. And Update attack is 

a method that installs a malicious app when a user downloads 

an update. It cannot only install an app that the user don't 

know but also leak private information or lead to billing. Also, 

update attack has a self-update feature, and can be divided 

into four main techniques [9]. Drive-by download is a form of 

remote attack that downloads and executes a malware without 

the user knowing and mainly user-after-free and Heap 

Spraying method attack cases are found. Drive-by-download 

has a long patch cycle, so the relevant vulnerability is attacked 

before the patching, allowing leakage of user's private 

information. This Drive-By-Download attack also, like the 

update attack, is difficult to detect compared to other 

malicious apps. Standalone is a type of app that runs by itself 

without help from any different tool. These applications use a 

route attack that makes a detour around the internal security 

sandbox without asking the user [14], [16]-[19]. 

B. Characteristics of Malicious System Call Events 

Among the malicious app, BaseBridge and 

ArtifactDataCable app can change the Wi-Fi option without 

the user knowing and another application is additionally 

installed to damage by leaking SMS, personal information, 

call records or causing billings when the app starts [20]-[23]. 

We analyzed malicious application events targeting the apk 

file contained in Update attack malware. In case of Update 

Attack, we can find a pattern that system call events of 

fchown32, fdatasync, mkdir, rmdir, statfs64 and umask which 

were relatively hard to be found in the earlier system call 

events of normal application. These system call events can be 

used to create or delete directory or have features of 

synchronization of data in file disk, obtaining file system 

information, creation of file mask, therefore these events were 

used to causing damage on user's device. 

System call events of bind, brk, connect, msgget, recv, 

recvfrom, select, semget, semop and setsockopt were 

relatively hard to be found in the earlier system call events of 

Update Attack. The occurred system call events might be used 

to change the size of data segments in the process, or return 

the identification number of message queue and read the data 

and message from socket. 17 system call events of bind, brk, 

connect, fchown32, fdatasync, fsync, mkdir, msgget, recv, 

recvfrom, rmdir, select, semget, semop, setsockopt, statfs64 

and umask, which do not occur in normal application, are 

found in malicious applications. Therefore, any given apps 

could be suspected as malicious mobile application if the 17 

kinds of system call events above have occurred 

simultaneously in the application. 

Based on this, we can find a pattern that the system call 

events such as bind, brk, connect, fdatasync, mkdir, msgget, 

pwrite, recv, recvfrom, rename, rt_sigreturn, semget, semop, 

setsockopt, socket, statfs64, SYS_224 and SYS_248 were 

occurred only in malicious application. And 11 system call 

such as chdir, flock, getcwd, nanosleep, poll, prctl, 

rt_sigreturn, sigaction, SYS_281 and SYS_283 were 

occurred only in normal application. And those occurred both 

in normal and malicious app were 40 including access, chmod 

and clock_gettime as follow Fig. 8. 
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Fig. 7. Activated system call events.

IV. SYSTEM CALL EVENTS FROM MALICIOUS APPLICATIONS



  

 

 
Fig. 8. Activity pattern comparison between normal and malicious 

application. 

 

V. DETERMINATION OF MALICIOUS APPLICATIONS 

A. Distinction Procedure Based on Activity Pattern 

We can construct a determination method between normal 

and malicious application events based on the event analysis 

on normal and malicious application described previously. 

When a user downloaded and installed a found app, it is 

difficult to distinguish whether the app is malicious or not. 

This paper proposed a distinction method for installed apps 

based on system call events. In first, APK file installed in the 

mobile device should be analyzed in order to distinguish 

whether the installed app is malicious or normal by 

decompressing and obtaining the assembly code. Extracting 

application permission from AndroidManifest.xml in the 

decompressed folder and analyzing them based on normal 

permission group and malicious permission group can 

distinguish whether the given app is normal or malicious. 

Algorithm that distinguished malicious app through the 

similarity of activity pattern aggregated from apps can be 

illustrated as Fig. 9. 

 

 
Fig. 9. System call event based similarity analysis procedure. 

 

Installing a found app, obtaining permissions contained in 

the apps and extracting events using Strace can draw out 

similarity with normal event group and malicious event group. 

We randomly chose 10 apps categorized normal and 

malicious app. Through which, SimAppNml (Similarity to 

Normal) and SimAppMal (Similarity to Malicious) were 

drawn through this and the similarity equation, 

(k-SimAppNml)*(SimAppMal *k (i=1, 2,…,n) provides the 

final result of distinguishing normal or malicious. Here, 

S(Similarity) ranges from 0 to 1, and k represents the 

weighted value. We can see the difference pattern on 

activated system call event aggregated each from normal and 

malicious applications as follow Fig. 10. Based on this pattern, 

we can determine whether any application is malicious or not. 

 

 

 
Fig. 10. Pattern of normal and malicious system call event. 

B. Malicious Application Distinction 

Frequent normal event group consists of 32 events that 

occurred only in the previously addressed normal apps 

including clock_gettime, epoll_wait, getcwd and poll, and 

those that occurred more often in normal apps among those 

that occurred in both normal and malicious apps. On the other 

hand, malicious event group also consists of 36 events 

including bind, pwrite, rename and unlink, and those that 

occur relatively more often in malicious apps among those 

that occurred in both normal and malicious apps. As the result, 

the normal and malicious similarity of normal apps and 

malicious apps based on normal event groups and malicious 

event groups can be illustrated as a graph in Fig. 11 and Fig. 

12 respectively as below. 

SimAppNml, the number of normal app events that 

correspond to normal event group, was confirmed to give 

relatively higher value in normal apps than in malicious apps. 

The reason is because the normal event group is a group of 

events that occur both in normal and malicious apps but occur 

more often in normal apps. On the other hand, SimAppMal, 

the number of malicious and normal events that correspond to 

the malicious event group over the number of malicious app 

events, gave much higher value in the malicious apps that in 
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normal apps because the event group occurred only in 

malicious apps will be have a malware.  

 

 
Fig. 11. Result of normal and malicious similarity. 

 

 
Fig. 12. Normal and malicious similarity calculation to distinct malicious 

attack. 

 

In order to make a more precise distinction on whether the 

events found in some apps are closer to malicious, we can use 

similarity equation. We have suggested a malicious app 

distinction method by assign weighted value k to activated 

event in the malicious event group to distinguish malicious 

app through the analyzed similarity. Malicious events that 

correspond more to the malicious event group occurred more 

than normal app events. Therefore, SimAppMal, to which the 

weighted value of k is multiplied, gives much larger value 

than SimAppNml does. As above, malicious app distinction 

similarity showed a high value for a given malicious 

application. Therefore this equation could be expected to 

show the same result when applied to a found app in another 

mobile environment. 

C. Comparison with Existing Mechanism 

The similarity and differences between the suggested 

technique at chapter two of this paper and Crowdroid 

technique [6] are shown in follow Table I. Both mechanism 

collected and analyzed the system calls invoked from Android 

platforms on the basis of Linux kernel via using Strace 

module. However, we conducted the analysis on frequencies 

and similarity of system call functions occurring on executing 

Strace for the commercial mobile devices based on Android 

platform. 

 
TABLE I: PERFORMANCE COMPARISON 

Comparison 
Crowdroid 

System 

Proposed 

Mechanism 

Experimental Platform Android Android 

System Call Event Extraction 

Method 
Strace Strace 

System Call Event Logging ○ ○ 

System Call Event Aggregation 1 device n device 

Real-Time Event Aggregation × ○ 

Apps Event Feature Analysis △  ○ 

Malicious Apps Discrimination 

Algorithm 
K-means 

Frequency 

& Euclidean 

Distance 

Malicious Apps Decision Function ○ ○ 

Malicious Apps Event Sequence 

Extraction 
× ○ 

 

VI. CONCLUSIONS 

This study presented techniques to effectively detect the 

malicious apps which are easy to install and use on its 

Android based commercial mobile device environment. 

Above all, it analyzed the access methods and research results 

on Crowdroid techniques collecting and analyzing the system 

call events occurring upon executing apps. It suggested 

techniques of discriminating the malicious apps based on this, 

implementing the extracting module of the system call events 

in Android based commercial mobile devices. It performed 

comparison analysis on characteristics of system call events 

occurring on normal and malicious apps using Strace module 

being able to collect the system call events in Android kernel. 

It also presented the algorithm to discriminate the malicious 

apps using the algorithm of frequency and similarity analysis 

of occurring events. The use of techniques presented in this 

study made it possible to analyze the characteristics of system 

call events occurring upon executing malicious apps, and can 

be applied for a way to discriminate whether the arbitrary 

mobile apps are malicious or not through this.  

This paper targeted game applications of Google Play 

Store as normal and 1,260 malicious samples distributed by 

Android Malware Genome Project as abnormal, and 

proposed an effective method for distinguishing malicious 

apps in Android-based common mobile device environment. 

Use of the method proposed in this paper could analyze the 

characteristics of system call events that occurred when 

normal apps and malicious apps were in action, which could 

be applied to a method of distinguishing whether any given 

app is malicious. Also, the sequence analysis based on system 

call events extracted from Strace could draw out a system 

function that occurs both in normal and malicious apps with 

more frequent occurrence in malicious apps and relatively 

less frequent occurrence in normal apps. 
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