
  

 

Abstract—Spatial data warehouses store large volumes of 

consolidated and historized multidimensional spatial data in 

order to be explored and analyzed by various users. The data 

exploration is a process of searching relevant information in a 

data set. The data set to explore is a spatial data cube taken out 

from the spatial data warehouse that users interrogate by 

launching sequences of SOLAP (Spatial On-Line Analytical 

Processing) queries. However, this volume of information can be 

very large and diversified; it is thus necessary to help the user to 

face this problem by guiding him/her in his/her spatial data cube 

exploration in order to find relevant information. 

 
Index Terms—Spatial data, spatial data warehouse, spatial 

data cube, SOLAP (spatial on-line analytical processing) 

queries. 

 

I. INTRODUCTION  

Spatial data warehouse stores a huge quantity of spatial 

data. The work of [1] estimated that the percentage of storing 

this type of data in the future years will increase more and 

more. According to the authors in [2] a spatial data warehouse 

was defined as a collection of spatial and thematic data, 

integrated, no volatile and historical data to make the best 

decision. In addition, a spatial data warehouse integrates and 

stores large volumes of spatial and no spatial data from 

multiple sources. It is realized from a spatial 

multidimensional model which defines the concepts of spatial 

measures and dimensions to take account of the spatial 

component [3], [4]. A spatial data warehouse supports three 

types of spatial dimensions: the non-geometric spatial 

dimensions, the geometric spatial dimensions and the mixed 

spatial dimensions and also supports two types of spatial 

measures: the first type of spatial measures is a set of all the 

geometries representing the spatial objects corresponding to a 

particular combination of dimension members. The second 

type of spatial measures results from the computation of 

spatial metric or topological operators [5]–[8]. In order to 

analyze and explore a spatial data warehouse, we need a 

SOLAP server to help the user to make the best decisions. 

According to the author in [9] OLAP tools offer no 

analytical instrument and exploration of spatial data that can 

help the user to make the best decision. Therefore, a solution 

has been developed under the term Spatial OLAP [8].  

The Spatial OLAP has been identified as an effective 

means to explore the contents of a spatial data warehouse. The 

Spatial OLAP is the result obtained after the combination of 
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Geographic Information Systems (GIS), with OLAP tools. To 

navigate in the spatial data cube the user launches a sequence 

of SOLAP queries over a spatial data warehouse. A spatial 

data cube can be queried by using the MDX (Multi- 

Dimensional eXpressions) with spatial extensions query 

language, named also the SOLAP queries [4]. 

SOLAP users interactively navigate a spatial data cube by 

launching sequences of SOLAP queries over a spatial data 

warehouse. The problem appeared when the user may have no 

idea of what the forthcoming SOLAP query should be. As a 

solution and to help the user in his navigation, we need a 

recommendation system. This system gives the possibility to 

recommend SOLAP queries based on the SOLAP server 

query log. In fact, a recommendation system is usually 

categorized into a content-based method, a collaborative 

method and a hybrid method [7], [10]. 

 Content-based method: The user is recommended 

elements similar to the ones the user preferred in the 

past. 

 Collaborative method: The current user is 

recommended elements similar to the preferences of 

the previous users and the preferences of the current 

user. 

 Hybrid method: This method combines both the 

content-based and the collaborative method. 

In various studies [11]–[14], we find that the authors 

described the characteristics of the general algorithm of a 

recommender system for the exploration of data. These 

characteristics are the inputs, outputs and the 

recommendation steps. The inputs of the algorithm can be a 

log of sessions of queries, a schema, an instance of the 

relational or multidimensional database, a current session and 

a profile. The outputs of the algorithm can be a query, a set of 

ordered queries and a set of tuples. An algorithm of 

recommendation is decomposed into three steps [10], [11], 

[15]. 

The first step consists in choosing an approach for 

evaluating the used scores. In fact, in this step we can choose 

one of the categories of recommendation: a content-based, a 

collaborative and a hybrid method. The second step is the 

filter; this step consists in selecting the candidates’ 

recommendations. The last step is the guide; this step consists 

in ordering the candidates’ recommendations.  

The problem we tackle in this paper is thus the following: 

How to help the user to design for forthcoming SOLAP 

queries, because when this user navigates a spatial data cube 

by launching a sequence of SOLAP queries he may have no 

idea of what the forthcoming SOLAP queries should be. As an 

answer, we propose to use what the SOLAP users did during 

their former exploration of the spatial data cube, and to use 
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this information as a basis for recommending what that 

forthcoming SOLAP queries could be. 

Our contribution is to propose an approach for 

recommending SOLAP queries. For that, we have tree steps to 

make. The first step is the partition for the log of sessions of 

SOLAP queries to group the similar queries. The second step 

is the filter, for generating candidate SOLAP queries. The 

third step is the guide, for ordering the candidate SOLAP 

queries: the result obtained from the previous step. Adding to 

that, our approach has been implemented with the open 

sources GeoMondrian SOLAP server to recommend SOLAP 

queries (MDX with spatial extensions queries), in reality 

these SOLAP queries use the spatial functions (PostGIS 

functions when we use the GeoMondrian server). 

This paper is organized as follows: Section II presents 

related works. Section III presents our approach for 

recommending SOLAP queries. Section IV presents our 

implementation. We discuss future work in Section V. 

 

II. RELATED WORKS 

We introduce in this section the related works on the 

exploration of spatial data warehouse to provide 

recommendations to the user. For this reason, we present 

various methods that have been proposed to explore data. 

A. Existing Methods 

In this section, we survey the methods that recommend 

queries for helping users to explore data. In fact, those 

methods can be classified into two categories, the first 

category exploits the profile and so does the second category 

with the log of queries. 

Concerning the first category, we find a lot of research for 

recommending queries in the exploration of the data 

warehouse by exploiting the profile. So, we present the 

methods proposed in [12]-[14], [16]-[18]. The method 

proposed by the author in [13] gives the possibility to improve 

the current query by using the preferences of the current user, 

and recommends the best query for him, so as to guide him in 

his exploration of data. This method is based on the content 

and use a heuristic for the exploration of the scores. Besides, 

this method can be described as a method of recommendation 

or a personalization. In fact, we find that this method resolves 

many problems but it doesn't take into consideration the 

sequencing of queries launched by the current user, it takes 

only the last query launched. 

The method proposed by the authors in [17], [18] is 

proposed for the personalization of OLAP queries. In fact, 

this method resolves the problem of OLAP query 

personalization by taking into account visualization 

constraints. On the other hand, we find that this method is 

based on the content, and it can be described as a method of 

recommendation or a personalization. In fact, we find that this 

method doesn't take into consideration the previous queries 

launched by the previous users and the sequencing of queries 

launched by the current user. In the work of the authors in 

[12]–[14], the authors proposed operators DIFF, EXCEP, 

RELAX and INFORM. These operators can return all sets of 

tuples corresponding to the explanatory cell anomalies. In fact, 

we observed that this method is based on the content and 

recommend to the user a query. Besides, we find that some 

proposed operators execute the results obtained after 

launching the current query and other operators execute the 

current query only. 

Concerning the second category, we find a lot of research 

for recommending queries in the exploration of data by 

exploiting the log of queries. So, we present the proposed 

methods in [11], [19]-[21]. Moreover, the method proposed 

by the author in [19], [20] gives the possibility to predict the 

next OLAP query that the user can request for the rest of the 

current session, because the next queries proposed by the 

current user don't interest him. We find that this method is a 

collaborative method that uses a statistical model, the Markov 

model. Adding to that, we find that he uses the sequencing of 

queries and the previous queries in the log but this method 

doesn't take into consideration the MDX queries. In addition, 

the method proposed by the authors in [21], gives the 

possibility to take into account the previous queries and the 

current query launched by the user when he explores the 

OLAP cube. In fact, this method is based on the history of 

user queries. Besides, this method gives the possibility to use 

the history of user queries by using the Apriori algorithm to 

extract the most frequently used attributes or measures. We 

find that this method takes into account the previous queries 

but not the sequencing of queries. Furthermore, the method 

proposed by the author in [11] gives the possibility to 

recommend MDX queries in exploring an OLAP cube. We 

find that this method is a collaborative method. Besides, it 

uses the sequencing of queries in the current session and takes 

into consideration the previous queries in the log. Adding to 

that, this method uses only the MDX when we explore the 

OLAP cube and doesn't use the MDX with spatial data when 

we explore a spatial data cube. 

 

III. NEW APPROACH FOR RECOMMENDING SOLAP QUERIES  

To help the user to go forward in his exploration of the 

spatial data cube, we propose an approach for recommending 

SOLAP queries. It uses both the sequences of SOLAP queries 

of the current session and the sessions of SOLAP queries 

stored in the log. In fact, the sequences of SOLAP queries 

formerly launched on the spatial data cube. 

Our approach consists of the three following steps. The 

first step consists in computing all the generalized sessions of 

SOLAP queries of the log. The second step is the filter which 

consists in predicting the candidates SOLAP queries. The last 

step is the guide that consists in ordering the candidates 

SOLAP queries. The RecoSOLAP algorithm represents the 

global algorithm of our approach. The first step in this 

algorithm is to preprocess sessions of SOLAP queries saved 

in the log, to obtain a generalized log. The second step uses 

the result obtained in the first step to search the most similar 

sessions to the generalized current session. Then, with the 

similar sessions, we search the set of candidates SOLAP 

queries. The results obtained in this step can be a set of 

candidates SOLAP queries or an empty set. If we obtain an 

empty set, the recommendation of queries is done by the 

default function and if we obtain a set of candidates SOLAP 

queries, we sort this set in the order of the most similar to the 

query that represent the current session. (See Fig. 1) 
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Fig. 1. Steps of the general algorithm. 

 
Algorithm 1 RecoSOLAP (Sc, Log, Preprocessing, Sim, Rep, PSc, Ordering 

sort, Default) 

 
Require: 

Sc: The current session, 

Log: the log of sessions of SOLAP queries, 

Preprocessing: A function used to generalize the log of sessions of 

SOLAP queries, 

PSc: A function for generalized current session, 

Sim: A function generating candidates sessions of SOLAP queries, 

Rep: A function predicting recommendations queries from a set of 

candidates sessions, 

Ordering: A function ordering the set of candidates SOLAP queries, 

sort: Choosing order to sort queries: < or >, 

Default: A function return default recommendations for user. 

Ensure: 

An ordered set of recommendations (one or more queries). 

 
1: Log_generalized ← Preprocessing (Log) 

2: Set_Candidates_SOLAP_Queries ← Generating_ Candidates _ SOLAP 

_ Queries (Sc, Log_generalized, PSc, Sim, Rep) 

3: if Set_Candidates_SOLAP_Queries ≠ Ø then 

4: return Ordering (Set_Candidates_SOLAP_Queries, sort) 

5: else 

6: return Default (Log_generalized) 

7: end if 

 

A. Preprocessing the Log 

This step consists in partitioning the log. The log contains 

all the previous sessions of SOLAP queries. In this step, we 

propose to use the distance of Levenshtein [22], [23] for 

computing the distances between SOLAP queries. Also, we 

propose to use the method of TF-IDF (Term 

Frequency-Inverse Document Frequency) [24] for evaluating 

the importance of terms like spatial measures, spatial 

dimensions... Beside, for doing the last classification of 

SOLAP queries, we choose the Hierarchical Ascendant 

Classification (HAC) [25]. 

The first thing to do is to extract all the spatial dimensions 

and measures from the schema of the spatial data cube. Then, 

we use them to classify queries in two different classifications 

C1 and C2. C1 contains the SOLAP queries without spatial 

data: OLAP queries and C2 contains the SOLAP queries. In 

fact, the queries classified in C2, can be classified in three 

sub- classes. To do those sub-classes, we use the TF-IDF 

method. The first subclass contains all the simple SOLAP 

queries without PostGIS functions and spatial calculate 

members. The second subclass contains all SOLAP queries 

with only PostGIS functions. And the last subclass contains 

all SOLAP queries with spatial calculate members. 

The Fig. 2 illustrates these classifications. 

Then, for C1 and the sub classes SOLAP, we calculate the 

distance between queries in the same class or subclass. Next, 

we use the hierarchical ascendant classification for getting a 

set of sets of SOALP queries. Finally, for each session of the 

log, we replace in the session each query with the class it 

belongs to. The generalized current session can be computed 

as well. 

 
Algorithm 2 Preprocessing(Log) 

 
Require: 

Log: the log of sessions of SOLAP queries. 

Ensure: 

A set of generalized sessions of SOLAP queries. 

 
1: i ←1 

2: j ←1 

3: k ←1 

4: Ds,Ms Extract_spatial_ dimensions_measures (schema_ spatial _ data _ 

cube.xml) 

5: for each query qi  𝜖 Log do 

6: x ← TF_IDF (qi,Ds,Ms, Total_nb_queries,  Log) 

7: if x == 0 then 

8:  C1[j]  ←qi // clustering contains the set of OLAP queries 

9: j ← j + 1 

10: else 

11: C2[k] ← qi // clustering contains the set of SOLAP queries 

12: k ←k + 1 

13: end if 

14: end for 

15 : Distance_Matrix (C1;M) 

16: Classify_queries (C1;M) 

17: i ←1 

18: j ←1 

19: k ←1 

20: l ← 1 

21: for each query qi 𝜖 C2 do 

22: x ←TF_IDF (qi, functions_PostGIS, nb_queries_C2, C2) 

23: if x == 0 then 

24: C2.1[j] ←qi // clustering contains the set of simple SOLAP queries 

25: j ←j + 1 

26: else 

27: y ←TF_IDF(qi,with_member, nb_queries_C2,C2) 

28: if y! = 0 then 

29: C2.2[k]  ← qi // clustering contains the set of SOLAP queries with spatial 

calculate 

30: k ← k + 1 

31: else 

32: C2.3[l] ←qi // clustering contains the set of SOLAP queries with 

PostGIS functions 

33: l ← l + 1 

34: end if 

35: end if 

36: end for 

37:Distance_Matrix(C2.1,M1) 

38: Classify_queries(C2.1,M1) 

39: Distance_Matrix(C2.2,M2) 

40: Classify_queries(C2.2,M2) 

41 : Distance_Matrix(C2.3,M3) 

42: Classify_queries(C2.3,M3) 

43: for each query qi 𝜖 S 𝜖 Log do 

44: Log_generalized ← Replace (qi, classification_qi) 

45: end for 

46: return Log_generalized 

 
 

 
Algorithm 3 Distance_Matrix(Class, Matrix) 

 
Require: 

Class: A class contains queries that are of the same type, 

Matrix: A matrix of distances, between queries in the same class. 

Ensure: 

A matrix contains distances between queries in the same class. 

 
1: for each query qi 𝜖Class do 

2: for each query qj 𝜖 Class do 

3: if i == j then 

4: Matrix[i, j] ←0 

5: else 
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6: d ←DistanceOfLevenshtein(qi , qj ) 

7: Matrix[i, j]  ←d 

8: Matrix[j, i]  ← d 

9: end if 

10: end for 

11: end for 

 

 
Algorithm 4 Classify_queries(Class,Matrix) 

 
Require: 

Class: A class contains queries have the same type, 

Matrix: A matrix of distances, between queries in the same class. 

Ensure: 

A table contains the final classification of each query. 

 
1: for each query qi 𝜖 Class do 

2: j ← i 

3: for each queries qj 𝜖Class do 

4: HAC (Matrix[i, j]) 

5: end for 

6: end for 

 

B. Generating Candidates Solap Queries 

The previous step has generalized sessions of SOLAP 

queries. First, in this step, we propose to do the generalized 

current session. Then, we present a function Sim used to 

search among the set of generalized sessions of SOLAP 

queries the ones that are the most similar to the generalized 

current session. This function output is a set of pairs 

indicating which generalized sessions match with the 

generalized current session and the position of the matching. 

Then, we propose another function Rep which is used to 

obtain the query representing its session. This function gives 

the possibility to move from a candidate session to a candidate 

query. This set of queries is returned as an answer, it can be an 

empty set or a set of SOLAP queries or a set of OLAP queries 

or a set of SOLAP and OLAP queries. 

 
Algorithm 5 Generating_Candidates_SOLAP_Queries (Sc, Log_ 

generalized, PSc, Sim, Rep) 

 
Require: 

Sc: The current session, 

Log_generalized: The generalized log of sessions of SOLAP queries 

obtained in the previous step, 

PSc: A function for generalized current session, 

Sim: A function generating candidates sessions of SOLAP queries, 

Rep: A function predicting recommendations queries from a set of 

candidates sessions. 

Ensure: 

A set of candidates SOLAP queries:a set of SOLAP queries or a set of 

OLAP queries or a set of SOLAP and OLAP queries or an empty set. 

 
1: S ←Set of sessions of SOLAP queries in the generalized log 

2: PS ← PSc (Sc, Log_generalized) 

2: Candidates_Sessions   ←Sim (PS, S) 

3: Set_Candidates_SOLAP_Quer ies ← Ø 

4: if Candidates_Sessions ≠ Ø then 

5: for each session 𝜖 Candidates_Sessions do 

6: Set_Candidates_SOLAP_Queries ←Set_Candidates_ SOLAP_ Queries 

ᴜ Rep(s) 

7: end for 

8: end if 

10: return (Set_Candidates_SOLAP_Queries) 

 

C. Ordering the Candidates SOLAP Queries 

In the previous step, a set of candidates SOLAP queries is 

returned. So, we order this set by calculating the distance by 

using the distance of Levenshtein between candidates SOLAP 

queries and the query representing the current session, and the 

order selected by the user. In this step we choose to order 

queries by using the quick sort. 

D. Default Recommendation 

As previously noted, the set of candidates SOLAP queries 

can be empty. In that case, it could be useful to still be able to 

provide the user with default recommendations. Various 

default recommendations can be proposed to the user. 

So, we choose to use the idea proposed by [26], we can 

propose as a default recommendation the representative of the 

authority class or the hub class. 

The authority class has the highest number of successors 

and the hub class has the highest number of predecessors. 

 

IV. IMPLEMENTATION AND EXPERIMENTATION 

A. Implementation 

In this section, we present the architecture of our system 

RecoSOLAP. This system applies the algorithm proposed in 

the Section III. Fig. 2 presents the architecture. 

This system gives the possibility to recommend an ordered 

set of SOLAP queries for the user, after launching the current 

session. First, to navigate in the spatial data cube the current 

user launched a sequence of SOLAP queries by using the 

SOLAP server GeoMondrian over a spatial data warehouse 

Simple geofoodmart, stored in PostgreSQL integrating 

PostGIS 1.4. All the previous sessions of SOLAP queries are 

stored in the log. Finally, our RecoSOLAP system 

recommends an ordered set of SOLAP queries to the current 

user. (See Fig. 3 and Fig. 4). 

 
Fig. 2. The architecture of the RecoSOLAP system. 

 
Fig. 3. An example of a SOLAP query launched by the current user via the 

SOLAP server GeoMondrian. 
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Fig. 4. Recommended SOLAP queries for the current user by using the 

RecoSOLAP system 

B. Experimentation 

Our experiment evaluates the efficiency of our approach 

proposed to recommend SOLAP queries. 

The performance is presented in Fig. 5 according to various 

log sizes. These log sizes are obtained by playing with 

parameters X (number of sessions) and Y (maximum number 

of queries per session). X ranges from 10 to 100 and Y ranges 

from 5 to 50. We thus obtain logs of size varying between 50 

and 5000 queries. Note that what is measured is the execution 

time taken by the steps proposed: preprocessing the log, 

generating candidates SOLAP queries and ordering the 

candidates SOLAP queries. 

So, the Fig. 5 shows that the time taken to recommend 

queries increases with the log size but remains highly 

acceptable. 

 

 
Fig. 5. Performance analysis. 

 

V. CONCLUSION 

In this paper, we proposed a recommendation system to 

help users in their exploration of a spatial data cube. For that 

purpose, we suggested an approach for generating 

recommendations SOLAP queries in the context of the 

collaborative exploration of spatial data cubes. Adding to that, 

we developed a prototype RecoSOLAP system integrating and 

validating our approach. Future work consists on going 

further in the recommendations. In fact, the work presented in 

this paper is based on the exploration of a spatial data cube of 

a spatial data warehouse. We would like to improve our 

proposed system by recommending queries based on data 

exploration from a trajectory data warehouse which gathers 

data from pervasive systems involving mobility data. 
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