

Abstract—Spatial data warehouses store large volumes of

consolidated and historized multidimensional spatial data in

order to be explored and analyzed by various users. The data

exploration is a process of searching relevant information in a

data set. The data set to explore is a spatial data cube taken out

from the spatial data warehouse that users interrogate by

launching sequences of SOLAP (Spatial On-Line Analytical

Processing) queries. However, this volume of information can be

very large and diversified; it is thus necessary to help the user to

face this problem by guiding him/her in his/her spatial data cube

exploration in order to find relevant information.

Index Terms—Spatial data, spatial data warehouse, spatial

data cube, SOLAP (spatial on-line analytical processing)

queries.

I. INTRODUCTION

Spatial data warehouse stores a huge quantity of spatial

data. The work of [1] estimated that the percentage of storing

this type of data in the future years will increase more and

more. According to the authors in [2] a spatial data warehouse

was defined as a collection of spatial and thematic data,

integrated, no volatile and historical data to make the best

decision. In addition, a spatial data warehouse integrates and

stores large volumes of spatial and no spatial data from

multiple sources. It is realized from a spatial

multidimensional model which defines the concepts of spatial

measures and dimensions to take account of the spatial

component [3], [4]. A spatial data warehouse supports three

types of spatial dimensions: the non-geometric spatial

dimensions, the geometric spatial dimensions and the mixed

spatial dimensions and also supports two types of spatial

measures: the first type of spatial measures is a set of all the

geometries representing the spatial objects corresponding to a

particular combination of dimension members. The second

type of spatial measures results from the computation of

spatial metric or topological operators [5]–[8]. In order to

analyze and explore a spatial data warehouse, we need a

SOLAP server to help the user to make the best decisions.

According to the author in [9] OLAP tools offer no

analytical instrument and exploration of spatial data that can

help the user to make the best decision. Therefore, a solution

has been developed under the term Spatial OLAP [8].

The Spatial OLAP has been identified as an effective

means to explore the contents of a spatial data warehouse. The

Spatial OLAP is the result obtained after the combination of

Manuscript received November 3, 2013; revised January 24, 2014.

The authors are with the Computer science department, High Institute of

Management, University of Tunis 41, rue de la Libert, 2000, Tunisia (e-mail:

layouni.olfa89@gmail.com, j.akaichi@gmail.com).

Geographic Information Systems (GIS), with OLAP tools. To

navigate in the spatial data cube the user launches a sequence

of SOLAP queries over a spatial data warehouse. A spatial

data cube can be queried by using the MDX (Multi-

Dimensional eXpressions) with spatial extensions query

language, named also the SOLAP queries [4].

SOLAP users interactively navigate a spatial data cube by

launching sequences of SOLAP queries over a spatial data

warehouse. The problem appeared when the user may have no

idea of what the forthcoming SOLAP query should be. As a

solution and to help the user in his navigation, we need a

recommendation system. This system gives the possibility to

recommend SOLAP queries based on the SOLAP server

query log. In fact, a recommendation system is usually

categorized into a content-based method, a collaborative

method and a hybrid method [7], [10].

 Content-based method: The user is recommended

elements similar to the ones the user preferred in the

past.

 Collaborative method: The current user is

recommended elements similar to the preferences of

the previous users and the preferences of the current

user.

 Hybrid method: This method combines both the

content-based and the collaborative method.

In various studies [11]–[14], we find that the authors

described the characteristics of the general algorithm of a

recommender system for the exploration of data. These

characteristics are the inputs, outputs and the

recommendation steps. The inputs of the algorithm can be a

log of sessions of queries, a schema, an instance of the

relational or multidimensional database, a current session and

a profile. The outputs of the algorithm can be a query, a set of

ordered queries and a set of tuples. An algorithm of

recommendation is decomposed into three steps [10], [11],

[15].

The first step consists in choosing an approach for

evaluating the used scores. In fact, in this step we can choose

one of the categories of recommendation: a content-based, a

collaborative and a hybrid method. The second step is the

filter; this step consists in selecting the candidates’

recommendations. The last step is the guide; this step consists

in ordering the candidates’ recommendations.

The problem we tackle in this paper is thus the following:

How to help the user to design for forthcoming SOLAP

queries, because when this user navigates a spatial data cube

by launching a sequence of SOLAP queries he may have no

idea of what the forthcoming SOLAP queries should be. As an

answer, we propose to use what the SOLAP users did during

their former exploration of the spatial data cube, and to use

A Novel Approach for a Collaborative Exploration of a

Spatial Data Cube

Olfa Layouni and Jalel Akaichi

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

63DOI: 10.7763/IJCCE.2014.V3.293

this information as a basis for recommending what that

forthcoming SOLAP queries could be.

Our contribution is to propose an approach for

recommending SOLAP queries. For that, we have tree steps to

make. The first step is the partition for the log of sessions of

SOLAP queries to group the similar queries. The second step

is the filter, for generating candidate SOLAP queries. The

third step is the guide, for ordering the candidate SOLAP

queries: the result obtained from the previous step. Adding to

that, our approach has been implemented with the open

sources GeoMondrian SOLAP server to recommend SOLAP

queries (MDX with spatial extensions queries), in reality

these SOLAP queries use the spatial functions (PostGIS

functions when we use the GeoMondrian server).

This paper is organized as follows: Section II presents

related works. Section III presents our approach for

recommending SOLAP queries. Section IV presents our

implementation. We discuss future work in Section V.

II. RELATED WORKS

We introduce in this section the related works on the

exploration of spatial data warehouse to provide

recommendations to the user. For this reason, we present

various methods that have been proposed to explore data.

A. Existing Methods

In this section, we survey the methods that recommend

queries for helping users to explore data. In fact, those

methods can be classified into two categories, the first

category exploits the profile and so does the second category

with the log of queries.

Concerning the first category, we find a lot of research for

recommending queries in the exploration of the data

warehouse by exploiting the profile. So, we present the

methods proposed in [12]-[14], [16]-[18]. The method

proposed by the author in [13] gives the possibility to improve

the current query by using the preferences of the current user,

and recommends the best query for him, so as to guide him in

his exploration of data. This method is based on the content

and use a heuristic for the exploration of the scores. Besides,

this method can be described as a method of recommendation

or a personalization. In fact, we find that this method resolves

many problems but it doesn't take into consideration the

sequencing of queries launched by the current user, it takes

only the last query launched.

The method proposed by the authors in [17], [18] is

proposed for the personalization of OLAP queries. In fact,

this method resolves the problem of OLAP query

personalization by taking into account visualization

constraints. On the other hand, we find that this method is

based on the content, and it can be described as a method of

recommendation or a personalization. In fact, we find that this

method doesn't take into consideration the previous queries

launched by the previous users and the sequencing of queries

launched by the current user. In the work of the authors in

[12]–[14], the authors proposed operators DIFF, EXCEP,

RELAX and INFORM. These operators can return all sets of

tuples corresponding to the explanatory cell anomalies. In fact,

we observed that this method is based on the content and

recommend to the user a query. Besides, we find that some

proposed operators execute the results obtained after

launching the current query and other operators execute the

current query only.

Concerning the second category, we find a lot of research

for recommending queries in the exploration of data by

exploiting the log of queries. So, we present the proposed

methods in [11], [19]-[21]. Moreover, the method proposed

by the author in [19], [20] gives the possibility to predict the

next OLAP query that the user can request for the rest of the

current session, because the next queries proposed by the

current user don't interest him. We find that this method is a

collaborative method that uses a statistical model, the Markov

model. Adding to that, we find that he uses the sequencing of

queries and the previous queries in the log but this method

doesn't take into consideration the MDX queries. In addition,

the method proposed by the authors in [21], gives the

possibility to take into account the previous queries and the

current query launched by the user when he explores the

OLAP cube. In fact, this method is based on the history of

user queries. Besides, this method gives the possibility to use

the history of user queries by using the Apriori algorithm to

extract the most frequently used attributes or measures. We

find that this method takes into account the previous queries

but not the sequencing of queries. Furthermore, the method

proposed by the author in [11] gives the possibility to

recommend MDX queries in exploring an OLAP cube. We

find that this method is a collaborative method. Besides, it

uses the sequencing of queries in the current session and takes

into consideration the previous queries in the log. Adding to

that, this method uses only the MDX when we explore the

OLAP cube and doesn't use the MDX with spatial data when

we explore a spatial data cube.

III. NEW APPROACH FOR RECOMMENDING SOLAP QUERIES

To help the user to go forward in his exploration of the

spatial data cube, we propose an approach for recommending

SOLAP queries. It uses both the sequences of SOLAP queries

of the current session and the sessions of SOLAP queries

stored in the log. In fact, the sequences of SOLAP queries

formerly launched on the spatial data cube.

Our approach consists of the three following steps. The

first step consists in computing all the generalized sessions of

SOLAP queries of the log. The second step is the filter which

consists in predicting the candidates SOLAP queries. The last

step is the guide that consists in ordering the candidates

SOLAP queries. The RecoSOLAP algorithm represents the

global algorithm of our approach. The first step in this

algorithm is to preprocess sessions of SOLAP queries saved

in the log, to obtain a generalized log. The second step uses

the result obtained in the first step to search the most similar

sessions to the generalized current session. Then, with the

similar sessions, we search the set of candidates SOLAP

queries. The results obtained in this step can be a set of

candidates SOLAP queries or an empty set. If we obtain an

empty set, the recommendation of queries is done by the

default function and if we obtain a set of candidates SOLAP

queries, we sort this set in the order of the most similar to the

query that represent the current session. (See Fig. 1)

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

64

Fig. 1. Steps of the general algorithm.

Algorithm 1 RecoSOLAP (Sc, Log, Preprocessing, Sim, Rep, PSc, Ordering

sort, Default)

Require:

Sc: The current session,

Log: the log of sessions of SOLAP queries,

Preprocessing: A function used to generalize the log of sessions of

SOLAP queries,

PSc: A function for generalized current session,

Sim: A function generating candidates sessions of SOLAP queries,

Rep: A function predicting recommendations queries from a set of

candidates sessions,

Ordering: A function ordering the set of candidates SOLAP queries,

sort: Choosing order to sort queries: < or >,

Default: A function return default recommendations for user.

Ensure:

An ordered set of recommendations (one or more queries).

1: Log_generalized ← Preprocessing (Log)

2: Set_Candidates_SOLAP_Queries ← Generating_ Candidates _ SOLAP

_ Queries (Sc, Log_generalized, PSc, Sim, Rep)

3: if Set_Candidates_SOLAP_Queries ≠ Ø then

4: return Ordering (Set_Candidates_SOLAP_Queries, sort)

5: else

6: return Default (Log_generalized)

7: end if

A. Preprocessing the Log

This step consists in partitioning the log. The log contains

all the previous sessions of SOLAP queries. In this step, we

propose to use the distance of Levenshtein [22], [23] for

computing the distances between SOLAP queries. Also, we

propose to use the method of TF-IDF (Term

Frequency-Inverse Document Frequency) [24] for evaluating

the importance of terms like spatial measures, spatial

dimensions... Beside, for doing the last classification of

SOLAP queries, we choose the Hierarchical Ascendant

Classification (HAC) [25].

The first thing to do is to extract all the spatial dimensions

and measures from the schema of the spatial data cube. Then,

we use them to classify queries in two different classifications

C1 and C2. C1 contains the SOLAP queries without spatial

data: OLAP queries and C2 contains the SOLAP queries. In

fact, the queries classified in C2, can be classified in three

sub- classes. To do those sub-classes, we use the TF-IDF

method. The first subclass contains all the simple SOLAP

queries without PostGIS functions and spatial calculate

members. The second subclass contains all SOLAP queries

with only PostGIS functions. And the last subclass contains

all SOLAP queries with spatial calculate members.

The Fig. 2 illustrates these classifications.

Then, for C1 and the sub classes SOLAP, we calculate the

distance between queries in the same class or subclass. Next,

we use the hierarchical ascendant classification for getting a

set of sets of SOALP queries. Finally, for each session of the

log, we replace in the session each query with the class it

belongs to. The generalized current session can be computed

as well.

Algorithm 2 Preprocessing(Log)

Require:

Log: the log of sessions of SOLAP queries.

Ensure:

A set of generalized sessions of SOLAP queries.

1: i ←1

2: j ←1

3: k ←1

4: Ds,Ms Extract_spatial_ dimensions_measures (schema_ spatial _ data _

cube.xml)

5: for each query qi 𝜖 Log do

6: x ← TF_IDF (qi,Ds,Ms, Total_nb_queries, Log)

7: if x == 0 then

8: C1[j] ←qi // clustering contains the set of OLAP queries

9: j ← j + 1

10: else

11: C2[k] ← qi // clustering contains the set of SOLAP queries

12: k ←k + 1

13: end if

14: end for

15 : Distance_Matrix (C1;M)

16: Classify_queries (C1;M)

17: i ←1

18: j ←1

19: k ←1

20: l ← 1

21: for each query qi 𝜖 C2 do

22: x ←TF_IDF (qi, functions_PostGIS, nb_queries_C2, C2)

23: if x == 0 then

24: C2.1[j] ←qi // clustering contains the set of simple SOLAP queries

25: j ←j + 1

26: else

27: y ←TF_IDF(qi,with_member, nb_queries_C2,C2)

28: if y! = 0 then

29: C2.2[k] ← qi // clustering contains the set of SOLAP queries with spatial

calculate

30: k ← k + 1

31: else

32: C2.3[l] ←qi // clustering contains the set of SOLAP queries with

PostGIS functions

33: l ← l + 1

34: end if

35: end if

36: end for

37:Distance_Matrix(C2.1,M1)

38: Classify_queries(C2.1,M1)

39: Distance_Matrix(C2.2,M2)

40: Classify_queries(C2.2,M2)

41 : Distance_Matrix(C2.3,M3)

42: Classify_queries(C2.3,M3)

43: for each query qi 𝜖 S 𝜖 Log do

44: Log_generalized ← Replace (qi, classification_qi)

45: end for

46: return Log_generalized

Algorithm 3 Distance_Matrix(Class, Matrix)

Require:

Class: A class contains queries that are of the same type,

Matrix: A matrix of distances, between queries in the same class.

Ensure:

A matrix contains distances between queries in the same class.

1: for each query qi 𝜖Class do

2: for each query qj 𝜖 Class do

3: if i == j then

4: Matrix[i, j] ←0

5: else

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

65

6: d ←DistanceOfLevenshtein(qi , qj)

7: Matrix[i, j] ←d

8: Matrix[j, i] ← d

9: end if

10: end for

11: end for

Algorithm 4 Classify_queries(Class,Matrix)

Require:

Class: A class contains queries have the same type,

Matrix: A matrix of distances, between queries in the same class.

Ensure:

A table contains the final classification of each query.

1: for each query qi 𝜖 Class do

2: j ← i

3: for each queries qj 𝜖Class do

4: HAC (Matrix[i, j])

5: end for

6: end for

B. Generating Candidates Solap Queries

The previous step has generalized sessions of SOLAP

queries. First, in this step, we propose to do the generalized

current session. Then, we present a function Sim used to

search among the set of generalized sessions of SOLAP

queries the ones that are the most similar to the generalized

current session. This function output is a set of pairs

indicating which generalized sessions match with the

generalized current session and the position of the matching.

Then, we propose another function Rep which is used to

obtain the query representing its session. This function gives

the possibility to move from a candidate session to a candidate

query. This set of queries is returned as an answer, it can be an

empty set or a set of SOLAP queries or a set of OLAP queries

or a set of SOLAP and OLAP queries.

Algorithm 5 Generating_Candidates_SOLAP_Queries (Sc, Log_

generalized, PSc, Sim, Rep)

Require:

Sc: The current session,

Log_generalized: The generalized log of sessions of SOLAP queries

obtained in the previous step,

PSc: A function for generalized current session,

Sim: A function generating candidates sessions of SOLAP queries,

Rep: A function predicting recommendations queries from a set of

candidates sessions.

Ensure:

A set of candidates SOLAP queries:a set of SOLAP queries or a set of

OLAP queries or a set of SOLAP and OLAP queries or an empty set.

1: S ←Set of sessions of SOLAP queries in the generalized log

2: PS ← PSc (Sc, Log_generalized)

2: Candidates_Sessions ←Sim (PS, S)

3: Set_Candidates_SOLAP_Quer ies ← Ø

4: if Candidates_Sessions ≠ Ø then

5: for each session 𝜖 Candidates_Sessions do

6: Set_Candidates_SOLAP_Queries ←Set_Candidates_ SOLAP_ Queries

ᴜ Rep(s)

7: end for

8: end if

10: return (Set_Candidates_SOLAP_Queries)

C. Ordering the Candidates SOLAP Queries

In the previous step, a set of candidates SOLAP queries is

returned. So, we order this set by calculating the distance by

using the distance of Levenshtein between candidates SOLAP

queries and the query representing the current session, and the

order selected by the user. In this step we choose to order

queries by using the quick sort.

D. Default Recommendation

As previously noted, the set of candidates SOLAP queries

can be empty. In that case, it could be useful to still be able to

provide the user with default recommendations. Various

default recommendations can be proposed to the user.

So, we choose to use the idea proposed by [26], we can

propose as a default recommendation the representative of the

authority class or the hub class.

The authority class has the highest number of successors

and the hub class has the highest number of predecessors.

IV. IMPLEMENTATION AND EXPERIMENTATION

A. Implementation

In this section, we present the architecture of our system

RecoSOLAP. This system applies the algorithm proposed in

the Section III. Fig. 2 presents the architecture.

This system gives the possibility to recommend an ordered

set of SOLAP queries for the user, after launching the current

session. First, to navigate in the spatial data cube the current

user launched a sequence of SOLAP queries by using the

SOLAP server GeoMondrian over a spatial data warehouse

Simple geofoodmart, stored in PostgreSQL integrating

PostGIS 1.4. All the previous sessions of SOLAP queries are

stored in the log. Finally, our RecoSOLAP system

recommends an ordered set of SOLAP queries to the current

user. (See Fig. 3 and Fig. 4).

Fig. 2. The architecture of the RecoSOLAP system.

Fig. 3. An example of a SOLAP query launched by the current user via the

SOLAP server GeoMondrian.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

66

Fig. 4. Recommended SOLAP queries for the current user by using the

RecoSOLAP system

B. Experimentation

Our experiment evaluates the efficiency of our approach

proposed to recommend SOLAP queries.

The performance is presented in Fig. 5 according to various

log sizes. These log sizes are obtained by playing with

parameters X (number of sessions) and Y (maximum number

of queries per session). X ranges from 10 to 100 and Y ranges

from 5 to 50. We thus obtain logs of size varying between 50

and 5000 queries. Note that what is measured is the execution

time taken by the steps proposed: preprocessing the log,

generating candidates SOLAP queries and ordering the

candidates SOLAP queries.

So, the Fig. 5 shows that the time taken to recommend

queries increases with the log size but remains highly

acceptable.

Fig. 5. Performance analysis.

V. CONCLUSION

In this paper, we proposed a recommendation system to

help users in their exploration of a spatial data cube. For that

purpose, we suggested an approach for generating

recommendations SOLAP queries in the context of the

collaborative exploration of spatial data cubes. Adding to that,

we developed a prototype RecoSOLAP system integrating and

validating our approach. Future work consists on going

further in the recommendations. In fact, the work presented in

this paper is based on the exploration of a spatial data cube of

a spatial data warehouse. We would like to improve our

proposed system by recommending queries based on data

exploration from a trajectory data warehouse which gathers

data from pervasive systems involving mobility data.

REFERENCES

[1] C. Franklin, “An introduction to geographic information systems:

linking maps to databases,” Database, pp. 13-21, April 1992.

[2] N. Stefanovic, J. Han, and K. Koperski, “Object-based selective

materialization for efficient implementation of spatial data cubes,”

IEEE Transactions on knowledge and Data Engineering and Data

Engineering, vol. 12, no. 6, pp. 938-958, 2000.

[3] T. Badard, “L’Open Source au service du géospatial et de l’intelligence

d’affaires,” presented at the Conférence Midi-Innovation TI Organisée

par l'ITIS et la Chambre de commerce et d’industrie de Québec,

Université Laval, 29 avril 2011.

[4] T. Badard and E. Dubé, “Enabling geospatial business intelligence,”

Geomatics Sciences Department, Laval University, 2009.

[5] G. Marketos, “Data warehousing & mining techniques for moving

object databases,” Ph.D. dissertation, Department of Informatics,

University of Piraeus, 2009.

[6] S. Rivest, Y. Bédard, M. J. Proulx, and M. Nadeau, “SOLAP: a new

type of user interface to support spatio-temporal multidimensional data

exploration and analysis,” in Proc. the ISPRS Joint Workshop on

Spatial, Temporal and Multi Dimensional Data Modelling and

Analysis, Quebec, Canada, 2–3 October 2003.

[7] Y. Bédard, T. Merrett, and J. Han, Geographic Data Mining and

Knowledge Discovery, 2nd ed., 2008, ch.3, pp. 45-68.

[8] Y. Bédard, M. J. Proulx, and S. Rivest, Data Warehouses and OLAP:

Concepts, Architectures and Solutions, London, UK: IRM Press, 2007,

ch. 13, pp. 298–319.

[9] P. Y. Caron, “Étude du potentiel de OLAP pour supporter l'analyse

spatio-temporelle,” Mémoire de M.Sc., Département des sciences

géomatiques, Faculté de foresterie et géomatique, Université Laval, pp.

132, 1998.

[10] G. Adomavicius and A. Tuzhilin, “Toward the next generation of

recommender systems: a survey of the state-of-the-art and possible

extensions,” IEEE Transactions on Knowledge and Data Engineering,

vol. 17, no. 6, pp. 734-749, 2005.

[11] E. Negre, “Exploration collaborative de cube de données,” Ph.D.

dissertation, Université François Rabelais of Tours, France, 2009.

[12] G. Sathe and S. Sarawagi, “Intelligent rollups in multidimensional

OLAP data,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB),

2001, pp. 531-540.

[13] S. Sarawagi, “Explaining differences in multidimensional aggregates,”

in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 1999, pp.

42-53.

[14] S. Sarawagi, “User-adaptive exploration of multidimensional data,” in

Proc. Intl. Conf. on Very Large Data Bases (VLDB), 2000, pp.

307-316.

[15] F. H. del Olmo and E. Gaudioso, “Evaluation of recommender systems:

A new approach,” ScienceDirecte, Expert Systems with Applications,

vol. 35, no. 3, pp. 790-804, 2008.

[16] H. Jerbi, “Personnalisation d’analyses décisionnelles sur des données

multidimensionnelles,” Ph.D. dissertation, Institut de Recherche en

Informatique de Toulouse – UMR 5505, France, 2012.

[17] L. Bellatreche, A. Giacometti, P. Marcel, H. Mouloudi, and D. Laurent,

“A personalization framework for OLAP queries,” in Proc. the 8th

ACM International Workshop on Data Warehousing and OLAP, New

York, NY: ACM, 2005, pp. 9-18.

[18] L. Bellatreche, A. Giacometti, P. Marcel, and H. Mouloudi,

“Personalization of MDX Queries,” Journées Bases de Données

Avancées (BDA), 2006.

[19] C. Sapia, “On modeling and predicting query behavior in OLAP

systems,” in Proc. DMDW, 1999, pp. 2.1-2.10.

[20] C. Sapia, “PROMISE: predicting query behavior to enable predictive

caching strategies for OLAP systems,” in DaWaK, pp. 224-233, 2000.

[21] F. Bentayeb, R. Khemiri, and O. Boussaid, “Recommandation

interavtive de requêtes décisionnelles,” Actes des Ateliers d'EGC 2012,

2012.

[22] D. Jurafsky, “Minimum edit distance. stanford university,” 2012.

[23] V. I. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals,” Soviet Physics-Doklady, vol. 10, no. 8, pp.

707-710, February, 1966.

[24] C. Brouard, “Comparaison du modèle vectoriel et de la pondération

tf*idf associée avec une méthode de propagation d'activation,” 2013.

[25] G. Gasso and P. Leray, Clustering, 2010.

[26] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”

J. ACM, vol. 46, no. 5, pp. 604-632, 1999.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

67

http://www.google.fr/url?sa=t&rct=j&q=Minimum%20Edit%20Distance%20&source=web&cd=3&cad=rja&ved=0CEUQFjAC&url=http%3A%2F%2Fwww.stanford.edu%2Fclass%2Fcs124%2Flec%2Fmed.pdf&ei=aR2ZUY2aIsexhAfVw4CQDA&usg=AFQjCNH9wf7fFj1gPukK30dJpWQsXC5V4g&bvm=bv.46751780,d.ZG4

Olfa Layouni is a PhD student at the Higher Institute

of Management of Tunis, received the master degree

in business intelligence from the Higher institute of

Management of Tunis in 2013 and has received the

fundamental license of computing science of

management in 2011 from the Higher Institute of

Management of Tunis.

Jalel Akaichi received his PhD in computer science

from the University of Sciences and Technologies of

Lille in France and then his habilitation degree from

the University of Tunis, Tunisia, where he is currently

an associate professor in the Computer Science

Department. Jalel Akaichi has published in

international journals and conferences, and has

served on the program committees of several

international conferences and journals. He is

currently the chair of the Master Science in Business Intelligence. Jalel

Akaichi visited and taught in many institutions such as the State University

of New York, Worcester Polytechnic Institute, INSA-Lyon, University of

Blaise Pascal, University of Lille 1, etc.

International Journal of Computer and Communication Engineering, Vol. 3, No. 1, January 2014

68

